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Abstract

Formation of tertiary structures made up of helical polymer segments is modified by the introduction of a substrate on which

the polymer is adsorbed. The effect of a substrate on biological systems such as helical structures may have been important in the

formation of early life. We perform replica-exchange Monte Carlo simulations to study this effect on formation of helical structures

in corse grained polymers – comparing the structural phase space for both adsorbed and non-adsorbed helical polymers. For this

purpose a generic, hybrid coarse-grained model for polymer adsorption has been employed.
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1. Introduction

Helical geometries are often found in biological polymers. The transition between disordered random coil and

ordered helical confirmations are found to exhibit features of phase transitions [Poland and Scheraga (1970); Badasyan

et al. (2010)]. In polymers of sufficient length tertiary structures composed of several helix bundles are observed

[Bereau et al. (2011)]. The organization and stability of these helical bundles is the topic of much discussion [Harris

et al. (1994); Irbäck et al. (2000)]. Here we explore the cooperative interactions that dictate tertiary structure formation

and stabilization in helix bundles.

We perform Monte Carlo simulations to examine homopolymer models which include a torsional potential associ-

ated with dihedral angles as well as a bending potential associated with each bending angle similar to the model used

by Rapaport (2002). With the inclusion of a torsional potential and bending potential, helical structures emerge and

can contort to form a variety of tertiary structural phases. The phase which is formed is dependent on the energy scale

of the torsional potential. In a recent study we found that for weak torsion strength, helical structures form but lack the

stability found for conformations in a model with stronger torsion potential [Williams and Bachmann (2015)]. Here
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we investigate helical structures formed with a weak torsion potential which produces unstable structures and study

the effect on tertiary structure formation and stability with the inclusion of an adsorbent the polymer can attach to.

2. Model and sampling algorithm

We model helical polymers using a standard model for elastic flexible polymers [Bachmann (2014)] with additional

torsion, bending, and adsorption potentials. The FENE potential acts between bonded monomers and is given by

EFENE = −1

2
KR2 log{1 − [(r − r0)/R]2}, (1)

where r0 = 1, R = 3/7, and K = 98/5. The Lennard-Jones potential,

ELJ = 4[(σ/r)12 − (σ/r)6] − Ushift (2)

acts only between non-bonded monomers separated by a distance less than rcutoff , with σ = 2−1/6, rcutoff = 2.5σ, and

Ushift = 4[(σ/rcutoff)12 − (σ/rcutoff)6]. The torsion potential is used as suggested by Rapaport (2002),

Eτ = S τ [1 − cos (τ − τ0)] (3)

with τ0 = 0.873 for all dihedral angles. The bending potential reads

Eθ = S θ [1 − cos (θ − θ0)] (4)

and the reference bending angle θ0 = 1.4 induces helix formation [Williams and Bachmann (2015)]. Using a strong

bending energy scale of S θ = 200 allows for the formation of structures with local helical order and global helix

bundle order. With the variation of S τ we are able to control the number of helices present in the helix bundles. Larger

values of S θ produce bundles with fewer but more stable helices. At S τ = 6 we see formation of 3- and 4-helix bundles

with varying helical segment alignment at low temperature.

To determine the effect of a substrate that acts as an adsorbent for the polymer we include a potential associated with

each monomer’s height above the surface. The adsorption energy is calculated by integration of the Lennard-Jones

potential over the entire half space of the substrate. The adsorption potential is given by

EA = S A

[
2

15

(
σ

h

)9
−
(
σ

h

)3]
, (5)

where h is the distance of a monomer above the surface. In this paper we consider an array of adsorption energy scale

parameters between S A = 0 and 2.

For each model, we simulate at 24 temperatures using parallel tempering – developed and advanced by Geyer

(1991), Swendsen and Wang (1986), and Hukushima and Nemoto (1996). During an initial equilibration period,

temperature spacing and displacement box sizes are dynamically adjusted to give adequate exchange probability and

displacement acceptance rates.

3. Structures formed at an array of SA values

We can see in Fig. 1 that at S A = 0 polymer structures, while predominately consisting of three-helix bundles

at low temperature, exhibit variability in terms of alignment and helix segment length. As the adsorption strength is

increased we find that the helical structure forms more consistent tertiary structures over a wide range of temperatures,

taking the form of two-helix bundles instead of three.

To classify structures more rigorously we introduce a pair of order parameters (q1 and q2) which make a distinction

between local helical order and globular collapse disorder in a polymer structure. In order parameter space, qualita-

tively similar structures form distinct clusters. As illustrated in Fig. 2, the parameter q1 describes the average over all

monomers of their total Lennard-Jones interaction with other monomers within 6 or fewer bonds,

q1(X) =
1

N

N−2∑
i=1

N∑
j=i+2

Θ6 j−i ELJ(ri j). (6)
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Fig. 1. This figure shows examples of structures formed under varied conditions. Each row shows structures for a single value of S A along an array

of temperatures between T = 0.03 and 1.62. The adsorption strength increases from top to bottom from a value of S A = 0 to 2.

Conversely, q2 is the average over all monomers of their Lennard-Jones interaction with those of distance along the

chain of more than 6 bonds,

q2(X) =
1

N

N−2∑
i=1

N∑
j=i+2

Θ j−i 7 ELJ(ri j). (7)

Here we have introduced the symbol

Θkl =

{
1, k ≥ l,
0, otherwise.

(8)

Let us consider two examples to show the usefulness of this parameter pair. In a single long helix all monomers have

Lennard-Jones contact with other monomers within 6 bonds along the chain but no contact with monomers outside

of this local neighborhood; q1 is minimal and q2 maximal. In contrast, for a two-helix bundle local LJ interaction at

the joint between the two helix segments is sacrificed for the formation of contacts between monomers belonging to

the different segments. These monomers are more than 6 bonds distant along the chain. Therefore, compared to the

single-helix case, q2 decreases at the expense of q1. Similarly, higher-order helix bundles can also be distinguished by

means of these parameters.

Considering each temperature independently we can calculate the canonical mean 〈q2〉. By comparing the different

values S A on the left in Fig. 3, we can discern the temperatures at which each tertiary structure type occurs. The

temperature at which polymers desorb from the surface can be seen by noting the peak in the fluctuation of the

distance of the center of mass of the polymer from the substrate (dhcm/dT ). Above the desorption temperature we see

all of the curves converge to that of the S A = 0 case.

Fig. 2. Black monomer has FENE interaction with nearest neighbor (green) monomers, and Lennard-Jones interaction with all remaining (blue

and red) monomers. Lennard-Jones interaction among monomers within a distance of 6 along the polymer chain is distinguished from Lennard-

Jones interaction with those of distance along the chain of more than 6. The black monomer interaction with red monomers contributes to q1 and

interaction with blue monomers contributes to q2.
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Fig. 3. In the left hand figure we plot 〈q2〉 as a function of temperature for an array of different values for S A. On the right we see the temperature

variation of the center of mass distance of polymers at several different adsorption strengths. Note that the peak locations correspond to the

temperature at which the polymer desorbs from the surface.

We can better understand the relationship between the ensembles formed at each value of S A by considering the

structures produced in each of these simulations in q1 − q2 space, as seen in Fig. 4. The low-energy structures

(produced at low temperature) must in general have lower q1 and q2 values, and therefore lie in the lower left hand

corner. As we increase S A and transition from three-helix to two-helix structures we find that the system sacrifices

Lennard-Jones energy from globular collapse in favor of lower energy in the torsion potential and larger contact with

the adsorption surface. We see this exhibited by a decrease in q1 and increase in q2.

4. Conclusion

In Fig. 4 we can see that for S A = 0 or 0.5, structures formed at low temperature are (in the lower left corner)

spread out over several unique structure clusters. This indicates that there is instability in the low temperature structure

formation. Not only are the structures at both of these values of S A unstable, they are also highly sensitive to changes

to their environment, as seen by the drastic change in structure type with the introduction of even a weak adsorption

Fig. 4. Shown above is a plot of q1 vs q2 for a collection of example structures produced across all temperatures simulated. The color of each point

corresponds to the torsion energy scale at which the structure it represents was formed. Structures in q1, q2 space cluster with similar structure

types. Colors agree with the legend shown in Fig. 3.
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surface. Not shown here is their high sensitivity to other changes such as a small change in S τ. The inherent instability

as well as both of these sensitivities is greatly decreased by the inclusion of an adsorption surface as demonstrated by

the consistent and single peaked cluster corresponding to two-helix bundles formed for all values of S A between 0.75

and 2.0. We infer from these findings that the presence of an adsorption surface stabilizes the tertiary helix bundles

formed in a polymer with weak torsional potential.
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