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Variational approach to a hydrogen atom in a uniform magnetic field of arbitrary strength
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Extending the Feynman-Kleinert variational approach, we calculate the temperature-dependent effective
classical potential governing the quantum statistics of a hydrogen atom in a uniform magnetic field at all
temperatures. The zero-temperature limit yields the binding energy of the electron, which is quite accurate for
all magnetic-field strengths, and exhibits, in particular, correct logarithmic growth at large fields.

PACS number(s): 31.15.Pf, 03.65.Ca, 05.30.—d

I. INTRODUCTION

Quantum-statistical and -mechanical properties of a hy-
drogen atom in an external magnetic field are not exactly
calculable. Perturbative approaches yield good results only
for weak uniform fields, as discussed in detail by Le Guillou
and Zinn-Justin [1], who interpolated with analytic mapping
techniques the ground-state energy between weak and strong
fields. Other approaches are based on recursive procedures in
higher-order perturbation theory [2-4]. Zero-temperature
properties were also investigated with the help of an operator
optimization method in a second-quantized variational pro-
cedure [5]. The behavior at high uniform fields was inferred
from treatments of the one-dimensional hydrogen atom
[6-8]. Hydrogen in strong magnetic fields is still a problem
under investigation, since its solution is necessary to under-
stand the properties of white dwarfs and neutron stars, as
emphasized in Refs. [9-12]. A compact and detailed presen-
tation of the bound states and highly accurate numerically
values for the energy levels is given in Ref. [13].

Equations for a first-order variational approach to the
ground-state energy of hydrogen in a uniform magnetic field,
based on the Jensen-Peierls inequality, were set down a long
time ago [14], but never evaluated. Apparently, they merely
served as a preparation for attacking the more complicated
problem of a polaron in a magnetic field [14-16].

In our approach, we calculate the quantum-statistical
properties of the system by an extension of variational per-
turbation theory [17]. The crucial quantity is the effective
classical potential. In the zero-temperature limit, this yields
the ground-state energy. Our calculations in a magnetic field
require an extension of the formalism in Ref. [17], which
derives the effective classical potential from the phase-space
representation of the partition function.

Variational perturbation theory has an important advan-
tage over other approaches: This calculation yields a good
effective classical potential for all temperatures and coupling
strengths. The quantum-statistical partition function is ob-
tained from a simple integral over a Boltzmann factor in-
volving the effective classical potential. The ground-state en-
ergy is then obtained from its zero-temperature limit. The
asymptotic behavior in the strong-coupling limit emerges au-
tomatically, and does not have to be derived from other
sources.
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II. EFFECTIVE CLASSICAL REPRESENTATIONS FOR
THE QUANTUM-STATISTICAL PARTITION
FUNCTION

A point particle in D dimensions with a potential V(x)
and a vector potential A(x) is described by a Hamiltonian

1
H(p.x)= 57 [P~ eA(X) 2+ V(x). (2.1)

The quantum-statistical partition function is given by the Eu-
clidean phase-space path integral

7= %DIDXIDDp e—A[p,X]/ﬁ, (22)
with an action
hp _ .
A[D,X]=J0 dr—ip(7)-x(7)+H(P(7),x(7))],
(2.3)
and the path measure
N+1
dPx,d®p
D'PxDPp= lim f# . (24
% P N—s o0 nl_Il{ (ZﬂTﬁ)D @4)

The parameter 8= 1/kgT denotes the usual inverse thermal
energy at a temperature T, where kg is the Boltzmann con-
stant. From Z we obtain the free energy of the system:

F——EIZ 2.5
= ﬂn. (2.5)

In perturbation theory, one treats the external potential V(Xx)
as a small quantity, and expands the partition function into
powers of V(x). Such a naive expansion is applicable only
for extremely weak couplings, and has a vanishing radius of
convergence. Convergence is achieved by variational pertur-
bation theory [17], which yields good approximations for all
potential strengths, as we shall see in a sequel.

A. Effective classical potential

All gquantum-mechanical systems studied so far in varia-
tional perturbation theory were governed by a Hamiltonian
of the standard form

©2000 The American Physical Society



M. BACHMANN, H. KLEINERT, AND A. PELSTER

2

H(pX) = g +V(X). 26)

The simple quadratic dependence on the momenta makes the
momentum integrals in the path integral (2.2) trivial. The
remaining configuration space representation of the partition
function is used to define an effective classical potentia
Vi(Xg), from which the quantum-mechanical partition func-
tion is found by a classically looking integral

dD
z- | 22 X~ BV, 27)

th
where \y=+2742BIM is the thermal wavelength. The

Boltzmann factor plays the role of alocal partition function
Z*o, which is calculated from the restricted path integral

g AVeo)=7%0=)\p § DPxS(xo—x(7))e~ A

(2.8
with the action
ip M.
A[x]=f0 dr 7X2(T)+V(X(T)) (2.9)
and the path measure
N+1 dDX
Dy _ [i n
3€D X lel nﬂl H[zthB/M(NH)]M}'
(2.10)

The specia treatment of the temporal average of the Fourier
path,

1 (B
Xo=X(7)= s~ dr x(7),

75, (2.12)

is essential for the quality of the results. It subtracts from the
harmonic fluctuation width (x?)¢ the classical divergence
proportional to T=1/kgB of the Dulong-Petit law [17,19].
Such diverging fluctuations cannot be treated perturbatively,
and require the final integration in expression (2.7) to be
done numerically. For the Coulomb potentia V(x)=
—e2/4mre || in three dimensions, the effective classical po-
tential in Eqg. (2.8) can be approximated well by variationa
perturbation theory [17,19,20].

B. Effective classical Hamiltonian

In order to deal with Hamiltonians like Eq. (2.1), which
contain a p-A(x) term, we must generalize the variational
procedure. Extending Eq. (2.8), we define an effective clas-
sical Hamiltonian by the phase-space path integral
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e~ BHei(Po.X0) = 7Po %o

= (2mh)P 5£ D'PxDPps(xo—x(7))

X 8(po—p(7))e”APH", (212
with action (2.3) and measure (2.4). This allows us to ex-
press the partition function as the classical looking phase-
space integral

f DXO - 0 [ ( )] ( )

Z= exp BH Po:Xo) s 2.13

where Po is the temporal average of the momentum:
Po=PpP(7)= —fh d7 P(7 2.14

The fixing of py is done for the same reason as that for xg,
since the classical expectation value (p?)® is diverging lin-
early with T, just as (x?)°.

In the special case of a standard Hamiltonian (2.6), the
effective Hamiltonian in Eq. (2.13) reduces to the effective
classical potential, since the momentum integral in Eq. (2.12)
can then be easily performed, and the resulting restricted
partition function becomes

p2
ZPoXo= exp( — ﬁﬁ) ZXO'

(2.15)
with the local partition function Z*o=exp[—BVg«i(Xo)] of
Eg. (2.8). Thus the complete quantum statistical partition
function is given by Eqg. (2.13), with an effective classica
Hamilton function

2

p
Heti(Po.X0) = gy + Vai(Xo)- (216)

As a conseguence of the purely quadratic momentum depen-
dence of H(p,x) in Eq. (2.6), the py integra in Eq. (2.13)
can be performed, thus expressing the quantum-statistical
partition function as a pure configuration space integral over
the Boltzmann factor involving the effective classical poten-
tial Vgi(Xg), asin Eq. (2.7).

C. Exact effective classical Hamiltonian for an electron in a
constant magnetic field

The effective classical Hamiltonian for the electron mov-
ing in a constant magnetic field can be calculated exactly.
We consider a magnetic field B=Be, pointing along the
positive z axis. The only nontrivial motion of the electron is
in the x-y plane. In symmetric gauge the vector potential is
given by

B
A(x)= E(—y,x,O). (2.17)
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The choice of the gauge does not affect the partition function
since the periodic path integral [Eq. (2.2)] is gauge invariant.
Ignoring the trivial free particle motion along the z direction,
we may restrict our attention to the two-dimensional Hamil-
tonian

2

p 1
H(p,x)= m—wslz(p,X)JrEMwéXZ, (2.18)

with x=(x,y) and p=(py,py). Here wg=eB/2M is haf the
Landau frequency, and

|Z(p,X)=(XXp)Z=Xpy—ypx (219
is the third component of the orbital angular momentum.

It is useful at intermediate stages of the following devel-
opment to treat the more general problem

2 1

p
H(p,x)= m—wglz(p,x)JrEMQfxz. (2.20)

At the end of the calculation, only the limit Q| — wg will be
relevant. The partition function of the problem is given by
Eqg. (2.13), with D=2. Being interested in an effective clas-
sical formulation, we have to calculate the path integra
(2.12). First we express the § function for the averaged mo-
mentum as a Fourier integral

— d?¢ i
5(po—P(T))=f(2W—h)zeXD(—g§'po)

1 (4B
X exp _%fo drvo(é)-p(7)| (2.22)
involving an auxiliary source
Vo= 75 (2.2

which is constant in time. Substituting the & function in Eq.
(2.12) by this source representation, the partition function
reads

ZPO'Xo:f d2§exp<—;i—§‘ po) fplzxpzpaxo_m)
1 (h8 . :

xexp{—g ) dr[—ip(7)-X(7)+H(P(7),X(7))

(8- p(r)]} - 223

Evaluating the momentum integrals and utilizing the period-
icity property x(0)=x(%B), we obtain the configuration
space path integral
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M
2128

§2

i
ZPo 0= f d*¢ exp( ~ 76 Po~

X 5£D2x5(x0—ﬁ)

1 (%8
X exp 7l dr

M. 1
X ?x2(7)+ zM(Qf—wé)xz(r)

—IMwg[X(7)XX(7)],+X(7) 'J'1(§)” .

(2.24)

where the source v, coupled to the momentum in Eq. (2.23)
has turned to a source j; coupled to the path in configuration
space [21], with components

. |(1)BM
j1( =Mwgoy(§),—vox(£))= W(_fy,&()-
(2.25)

Expressing the & function in the path integral of Eq. (2.24)
by the Fourier integral

86— X(7)) f X (i
Xo—X(7))= exp( i X
0 (T (277)2 p( K 0)
1 (8
X exp _gfo d7js(k)-x(7)| (2.26)
with the new source
) i ke
Jo(K) = 5 (2.27)
the partition function (2.24) can be written as
Zpo'xo=fd2§ex _i_g. B M &
p % pO 2}12,8
><J LI Zo[I(E1)]. (2.28)
i K- X K] (2
(2m)? p(K o) ol (& x

The functional Z,[J(&,k)] is defined as the configuration
space path integral
1fﬁﬁd ﬁﬁd ,
- E T T

0 0

Zo[I(&0)]= % D2x exp

XX(7)G (7,7 )x(7")

1

"B
—%fo drJ(&r)-X(7)|, (2.29)

where we have introduced the combined source J(&, k)
=j1(&) +j.(k). Formally, the solution reads
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f drf d7'J(& k)

XG(7,7)&K) |,

Zo[I(&r)]= ZQ[O]eXP

(2.30)

where G(r,7") is the matrix of Green functions obtained by
inverting the kernel

2
—d——l—Qz—wB 2ind
L dr? d
G (T,T)—? q P2
: 2 2
ZIwBE —;+Ql—w5
Xo(r—1"). (2.31)

The inversion is easily done in frequency space after spec-
trally decomposing the & function into the Matsubara fre-
qguencies w,=27m/#% B:

)

S 1 iom(7—1") 232
(17— T)_h,Bm_fwe . (2.32)
The result is
~ o1 w2m+Qf—sz —2wgwp
G —_ .
(On) M 4B 20p0m  wl+0?- o}
(2.33)

At this point, the additional oscillator in Eq. (2.24) proves
useful: It ensures that the determinant

det G(wp) = (02+ Q% — 03)°+4wiw?,  (2.34)

is nonzero for m=0, thus playing the role of an infrared
regulator. The Fourier expansion

G(r,7 =B mZ_m G(oy)e om(=7)  (2.35)
yields the matrix of the Green functions,
Gu(T,7") ny( 7,7")
G(r,7)= (2.36)

Gyu(7,7") Gyy(7,7")

which inherits the symmetry properties from the kernel
(2.31):

Gyx(7,7').

Gyy(7,7)=—
(2.37)

Gl 7, 7")=Gyy(7,7),

A more detailed description of these Green functionsis given
in Appendixes A and B.

Since the current J does not depend on the Euclidean
time, expression (2.30) therefore simplifies to
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Zo[I(&,0)]=Zo[O]exp

Y Y
Xf de d7r'Gy(7,7")|. (2.38)
0 0

The Green function has the Fourier decomposition

1
- ﬁJZ(g,K)

” o, +Qz . ,
G, 7' ) =% 5 5 “iop(r=7"),
MB m== (w2 +Q )(wm+Q_)
(2.39)
where () .. are the frequencies,
0. =0, *wg, (2.40)

and ), > wg, for stability.

The ratios in the sum of Eg. (2.39) can be decomposed
into two partial fractions, each of them representing a single
harmonic oscillator with frequencies (), and () _, respec-
tively. The analytic form of the periodic Green function of a
single harmonic oscillator is well known (see Chapter 3 in
Ref. [17]), and for the present Green function (2.39) we ob-
tain

h coshQ, (|7—7'|—%BI2)
7 )=
4MQ |

GXX(

sinh#A B8O, /2
coshQ_(|7—7'|—hBI2
e A
By writing the determinant (2.34) as
det G(wm) = (wp+ Q%) (0p+02) (2.42)

and summing over the logarithms of this, we calculate the
partition function as a product of two single harmonic oscil-
lators:

1

2snh2 8O, /2 2snhh BQ_12°
(2.43)

Zo=2Zg[0]=

Results (2.41) and (2.43) determine the generating functional
(2.38). The Euclidean time integrations are then easily done,
and subsequently the k and & integrations in Eq. (2.28). Asa
result, we obtain the restricted partition function

2P0 Xo— 1I sinh7#BQ /2 sinhh BQ_[2
—oP A T ga 2 Thpa 2

2

Po 1
+oag ~ @8l2(Po.Xo) + El\mfxg> ] (2.44)

Taking the limit O, —wg, from Eqg. (2.40) we find Q
—2wg and Q_—0, and therefore
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snh#i Q.12 sinhfiBwg

lim
0, —og hBQ 12 hBwg
i sinhABQ _[2 (2.45)
im —————= .
0, —og hBQ_I2

Recalling definition (2.12), we identify the exact effective
classical Hamiltonian for an electron in a magnetic field as

1 sinh#Bwg Pj

Het(Po . Xo) = EIHW+ m_wBlz(pOyXO)
1. 20
+SMoBE. (2.46)

Integrating out the momenta in Eq. (2.13), the configuration
space representation (2.7) for the partition function contains
the effective classical potential for a charged particle in the
plane perpendicular to the direction of a uniform magnetic
field:

1 SnhiiBog
— n—
B hBwg

Note that this is a constant potential.
Denoting the area [ d?x, by A, we find the exact quantum-
statistical partition function

Vert(Xo) = (2.47)

7= A _fBws 2.48

A2 sinhfBwg’ (248)
After these preparations, we can turn our attention to the
system we want to study in this paper: the hydrogen atom in
a uniform magnetic field, where the additional Coulomb in-
teraction prevents us from finding an exact solution for the
effective classical Hamilton function.

I11. HYDROGEN ATOM IN CONSTANT
MAGNETIC FIELD

The zero-temperature properties of the hydrogen atom
without external fields are exactly known. For the quantum
statistics at finite temperatures, an analytical expression ex-
ists, but it is hard to evaluate. It is easier to find an accurate
approximate result with the help of variational perturbation
theory [20]. Similar calculations have been performed for the
electron-proton pair distribution function which can be inter-
preted as the unnormalized density matrix [19].

Here we extend this method of calculation to the hydro-
gen atom in a constant magnetic field. This extension is quite
nontrivial, since the weak- and strong-field limits will turn
out to exhibit completely different asymptotic behaviors. Let
us first generalize variational perturbation theory to an elec-
tron in a constant magnetic field and arbitrary potential.

A. Generalized variational perturbation theory

We consider once more the effective classical form (2.13)
of the quantum-statistical partition function, which requires a
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path integration (2.12) in phase space. Fluctuations parallel
and vertical to the magnetic-field lines are now both non-
trivial; we must deal with a full three-dimensional system,
and the components of the electron position and momentum
are now denoted by x=(Xx,y,z) and p=(py,py,p,). For a
uniform magnetic field pointing along the z axis, the vector
potential A(x) is used in the gauge (2.17). Thus the Hamilton
function of an electron in a magnetic field and an arbitrary
potential V(X) is
2
H(p,x)= Pl (p,x)+ E|v| X2+ V(x). (3.1)
’ 2M B!z p’ 2 wp . .

The orbital angular momentum | ,(p,x) was introduced in Eq.
(2.19), and the frequency wg below Eqg. (2.18). The impor-
tance of the separation of the zero-frequency components X,
and py was discussed in Sec. Il. Their divergence with the
temperature T prevents a perturbative treatment. Thus it is
essential to set up a perturbation theory only for the fluctua-
tions around X, and py. For this we rewrite the action func-
tional (2.3) associated with Hamiltonian (3.1) as

Alp,x]=A g [p,x]+ Al p,X], (3.2)

where we have introduced the fluctuation action

X kB i \
A p,x]= fo dr( —i[p(7)—po]-x(7)

1
+m[p(7)_p0]2_QBlz(p(T)
1 2r L 192
—Po.X(7) —Xg)+ EMQL[X (17)—X%o1

1 2 2
+§MQ”[Z(T)—20] ], (33)

in which x*=(x,y) denotes the transverse part of x and
Q,>0g, for stability. The interaction is now

hB
AinlP.X]= | drVin(p(7),X(7))=A[p,x]— A g [p,X],
(34

with the interaction potential
1
Vin(p(7),X(7))= m{pz(r) —[P(7)—Ppol?} — wex*(7)
Xp*(7)+Qp(x" (1) = %)X (P(7) —Pp)

1 1
+ 5 Magx ¥(1) = s MOE[X" (1) —xg 2

_1 2, _ 2
MQ”[Z(T) Z()] +V(X(T)),

5 (35

where p"=(py,py). The frequencies Q=(Qg,Q, Q)
are arbitrary for the moment. The decomposition (3.2)
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forms the basis for the variational approach, where the first
term in action (3.2) allows an exact treatment. The transverse
part was given in Sec. Il C, and the longitudinal part is
trivial, since it is harmonic with frequency (). The associ-
ated partition function is given by the path integral

Z0070= 3€ D"3xD3pS(Xg—X(7))

X 8(po—p(7))e Aa IPXIh, (36)

which can be performed. Details are given in Appendix C.
The result is

poo_ MBRI2  RBO12  hpOY2
Q

T Snh#BQ /2 Snh7iBQ_/2 SnhipQ /2"
(3.7)

where auxiliary frequencies are composed of the frequencies
Qg and O, inaction (3.3) as
0.(Qp,02,)=0, +0p. (3.8
This partition function serves in the subsequent pertubation
expansion as a trial system which depends explicitly on the

frequencies €. The correlation functions are a straightfor-
ward generalization of Eq. (2.36) to three dimensions:

GUTT) G717 0
Go(r,7)=| GA(n7) GO(7,7) 0 :
X ’
0 0 G2(7,T")

(3.9

whose explicit form is derived in Appendix C.
The Q-dependent action in Eq. (3.2) is treated perturba-
tively. Writing the partition function (2.12) as

ZPoXo= (2771;)3 36 DD 3p8(xo—X(7))8(po—p(7))
L pox
xexp{ - %A';{” O[P,X]]

X exp (3.10)

1 (%8
-7 drvim(pm,x(r))),

the second exponential is expanded into a Taylor series,
yielding

ZPoXo=(271)3 fﬁ D"3xD3p8(xo—X(7))8(Po—P(7))
1o
xexp{ ~7Aq’ O[P,X]]

X

1 (2B
- fo dAVin(p( ) X(7))
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1 (#p
+_

hp
2‘712 0 dTlfo dTZVint(p(Tl)!X(Tl))

XVin(p(72),X(72))— -+ - | (3.11)

Defining harmonic expectation values with respect to the re-
stricted path integral as

(27h)3 —
(- )P0 T 4;1)’3x1>3p o 8(Xo—X(7))
Q

_ 1
X 8(po—p( T))exp( - gAi’S'XO[p,x]] ,
3.12)

the perturbation expansion for the partition function (3.11)
reads

o (=N

ZPo %o = 7Po %o
2 =0 a1

|

This power series expansion can be rewritten in the exponen-
tial form

hB
| dr Vot xo)

n> Po X0
Q

(3.13)

[

—13\n
ZpO'XOZZEIO’XO expl z ( 1)

n=0 #"nl
><<

where the subscript ¢ on the expectation values indicates
cumulants. The lowest cumulants are related to the full ex-
pectation values as follows:

hB
fo drVin(P(7).X(7)

n> Po“o}
Q,c

(3.14)

(Ow(P(ma) X(70)) 2= (O (Pl ma) X(7D)) ™,

(O1(p(71),X(71))O02(p(72), X( Tz))>?§'cxo
=(01(P(71), X(71))02(P(72), X(72))) ™
—(O1(p(71),X( 7'1))>?10'X0<02(p( 72),X( Tz)))?f'xo.

i, (3.15)
where O;(p(7;),X(7;)) denotes any observable depending on
momentum and position. Recalling relation (2.12) between
partition function (3.14) and effective classical Hamiltonian

H:(Po,Xo), from Eq. (3.14) we obtain the effective classical
Hamiltonian as a cumulant expansion:
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1 1 & (—1"
Heff(po,xo)=—EInZ':§’X°+Egl pray

|

Up to now, we did not make any approximation. The expan-
sion on the right-hand side is an exact expression for the
effective classical Hamiltonian for any €.

For systems with a nontrivial interaction, we are capable
of calculating only some initial truncated part of series
(3.16), say up to the Nth order, leading to the approximate
effective classical Hamiltonian

hp
fo d7 Vin(p(7),X(7))

n>p0,x0
Q,c

(3.16)

N
1 1 N (—pn
HG (Po,Xo) = —Elnzﬁf"‘% 3 nz,l prsy

|

This depends explicitly on the three parameters . Since the
exact expression (3.16) is independent of , the best ap-
proximation for H{(pg,Xo) should depend on © minimally.
Thus the optimal solution will be found by determining the
parameters from the conditions

Po:Xo

] n
. d7 Vim(p( T),X(T))) >

Q,c
(3.17)

!
VQHSI)(DO,XO) =0. (3.18)

Let us denote the optimal variational parameters to Nth order
by

QM= (pg.%0), 2N (po.%0), 2" (po.%0)).
(3.19)

Inserting these into Eq. (3.17) yields the optimal effective
classical Hamiltonian H V) (py,Xo).

B. First-order effective classical potential

The first-order approximation of the effective classica
Hamiltonian (3.17) reads

1
B

The invariance of the system under time translations makes
one of the time integrals in expansion (3.16) trivia, yielding
merely an overal factor # 8. In particular, the first-order ex-
pectation value of V;(X) in EQq. (3.20) is independent of the
Euclidean time 7.

In order to calculate H{Y(pg,Xo), We use the two-point
correlation functions derived in Appendix C, and the vanish-
ing of the linear expectations, e.g.,

HG (Po,X0) = —=INZE 70— (V;(p,x)) 507 (3.20)

(Px(7)— Pox)ey °=0, (3.21)
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to find

2
Po 1
H(Po.X0) =531~ @8l 2(Po. Xo) + 5 Mwp(X3+Yg)

+W (%), (3.22)

where we have collected al terms depending on the varia
tional parameters Q in the potential

1
W§ (x0) = — Elnzi’s'XO—ManB—QB) b?(xo) +M(w?

1
—0%) al (x) — 5MQfaf(x0) +(V(x)g ™.

(323

The quantities aZ (o), af(Xo), and b? (xo) are the transverse
and longitudina fluctuation widths

a? () =G2™(0), af(x0)=G32™(0),

b2 (x )=LG’)°'X°(0) (3.24)
1L \A0 MQB . .

Xpy
Note that potential (3.23) is independent of p,. This means
that approximation (3.22) of the effective classical Hamil-
tonian contains no coupling of the momentum pg to a varia-
tional parameter ©, such that the optimal Q) determined
by minimizing H{Y(po.Xo) is independent of p,. We may
therefore integrate out p, in the phase-space representation
of the first-order approximation for the partition function

3¢ 43
29= f %e‘*”ﬁ)ww (3.25)
T
to find the pure configuration space integral
3
7= f d)\:o eww&%)(xo), (3.26)
th

in which W{ (xo) is the first-order approximation to the ef-
fective classical potential of an electron in a potential V(x)
and a uniform magnetic field.

C. Application to the hydrogen atom in a magnetic field

We now apply the formulas of Sec. |1l B to Hamiltonian
(3.1) with an attracting Coulomb potential
e2

V(x)=— (3.27)

4meg|X|’
where |x| is the distance between the electron and the proton.
The only nontrivial problem is the calculation of the expec-
tation value (V(x(7)))2 in Eq. (3.23). This is done using
the so-called smearing formula, which is a Gaussian convo-

lution of V(x). This formula was first derived by Feynman
and Kleinert [18], and now also exists in an extension to
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arbitrary order [19,20]. The generalization to position- and-
momentum dependent observables was given in the phase-
space formulation [21]. We briefly rederive the first-order
smearing formula. The expectation value is defined by

3
(V(X(7")))go 0= (;WTQ) 35 D"3xD3p V(X(7')) 8(Xo
Q

—X(7))8(po—p(7))e Aa P/,
(3.28)

Now we substitute the potential with the expression

V(x(7'))= f d3x V(X) 8(x—x(7"))

d3k
=f d3xV(x)f (Zw)sexp[im(x—xo)]

1 (h8
XeXp[—gJO drj(7)[X() =Xl

(3.29)
where we have introduced the source
(r)=ihkd(T—17"). (3.30)
Inserting expression (3.29) into Eq. (3.28), we obtain
V)= o [ @V o
Te T Zbexg (2m)°
x expli re- (x—%0)1 Z¢y "“[j1,
(3.31)
with the harmonic generating functional
200 (j1= (27h)?  D'XDD oto—X()
_ _E Po X0
X 8(po—p(7))exp| — A5 [PX]
1(m8
_%f d7j(7)-[X(7)—Xg] - (3.32)
0
The solution is
1 (%8 ip
PoXor i 1— 7Po.X ’s
23 1=2 exp ﬁfo drfo d7'j(7)
X G"o(r, T’)j(r’)], (3.33)

with the 3X 3 matrix of the Green functions of Eq. (3.9). The
properties of the Green functions are discussed in Appen-
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dixes A and B. Expressing the source j(7) in terms of « via
Eq. (3.30), and performing the 7 integrations, we arrive at

d3k
7T)Bexp{ix-[x—xo]}

(v(x(r’))>§§‘x°=J d3XV(X)J 2
1

X exp{ - EKGXO(O) K|. (3.34)

Recognizing that G 5(0)=G,3(0) vanish, the « integral is
easily calculated, and leads to the first-order smearing for-
mula for an arbitrary position-dependent potential

(V(X(7")))e 0= ! fd3xV(x)
¢ (2m)¥2a2 (xo) VAl (xo)
(X—X0)?+ (Y —Yo)?
Xexp| — >
2a’ (Xo)
(2_20)2
2e70x0) | (3.35)

the right-hand side containing the Gaussian fluctuation
widths (3.24).

For the Coulomb potential (3.27) that we are interested in,
the integral in the smearing formula (3.35) cannot be done
exactly. An integral representation for a simple numerical
treatment is

e2 Po:Xo
B 4meg|X|

o
B e? |2 ’ 1 d¢
= daeg 7Ta(Xo)foa|2(xo)+§2[ai(xo)—a2(xo)]
“ l 2( X§+ Y5
eX _
"2 af(xo) + & af (xo) —af(xo)]
2
+ 220 )] (3.36)
aj(Xo)

With this expression we know the entire first-order effective
classical potential (3.23) for an electron in a Coulomb poten-
tial and a uniform magnetic field which has to be optimized
in the variational parameters Q.

IV. RESULTS

We are now going to optimize the effective classica po-
tential by extremizing it in Q at different temperatures and
magnetic-field strengths. In the zero-temperature limit this
will produce the ground-state energy.
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wn 4 T

PO/GB’ZO/GB

FIG. 1. Effective classical potential (in units of 2 Ry) as a func-
tion of the coordinate pg= \/x02+ y(,2 perpendicular to the field lines
at zo=0 (solid curves), and parallel to the magnetic field as a func-
tion of zy a py=0 (dashed curves). The inverse temperature is
fixed at B=1, and the strengths of the magnetic field B are varied
@l in natural units). The small figure enlarges the range O
<pg,Zp=<1 with noticeable anisotropy.

A. Effective classical potential for different temperatures
and magnetic field strengths

The optimization of w§§>(x0) proceeds by minimization
in © and must be done for each value of x,. Reinserting the
optimal parameters Q)(x,) into expressions (3.23) and
(3.36), we obtain the optimal first-order effective classical
potential W (x,). The calculations are done numerically,
where we used natural units #=e?/4mreq=kg=c=M=1.
This means that energies are measured in units of ¢
=Me*/(4meg)°h?=2Ry~27.21 eV, temperatures in
€9/kg~3.16X10° K, distances in Bohr radii ag
=(4meo)*h2IMe?~053x10"m, and magnetic-field
grengths in  By=e3M?/%3(4meo)?~2.35X10° T=2.35
%X 10° G. Figure 1 shows the resulting curves for various
magnetic-field strengths B and an inverse temperature S8
=1/T=1. Examples of the lower-temperature behavior are
shown in Fig. 2 for 8=100. To see the expected anisotropy
of the curves in the magnetic-field direction and in the plane
perpendicular to it, we simultaneously plot the curves for
W (x,) transversal to the magnetic field as a function of
po=\X3+y?2 at z=0 (solid curves) and parallel as a func-
tion of z; a pg=0 (dashed curves). The curves become
strongly anisotropic for low temperatures and increasing
field strengths (Fig. 2). At a given field strength B, the two
curves converge for large distances from the origin, where
the proton resides, to the same constant depending on B. This
is due to the decreasing influence of the Coulomb interaction
which shows the classical 1/r behavior in each direction.
When approaching the classical high-temperature limit, the
effect of anisotropy becomes less important since the violent
thermal fluctuations do not have a preferred direction (see
Fig. 1). For pg— or z;—, the expectation value of the
Coulomb potential (3.36) tends to zero. The remaining effec-
tive classical potential
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FIG. 2. Analogous plot to Fig. 1, but at the larger inverse tem-
perature 8= 100.

1

Wg)(xo)H - 8

InZE0 70— Qp(wp—Qg) b?

1
+(w5—0%)a’— Eﬂﬁaﬁ (4.2

is a constant with regard to the position xg, and the optimi-
zation yields 0§ =0 =wg and OfY=0, leading to the
asymptotic constant value

1 Bwg
Dy )y — — "B
W (Xg) 3 Insinh,BwB' (4.2
The B=0 curves are of course identical with those obtained
from variational perturbation theory for the hydrogen atom
[20].

B. Ground-state energy of the hydrogen atom
in uniform magnetic field

In what follows we investigate the zero-temperature be-
havior of the theory. Figures 1 and 2 show that the minimum
of each potential curve lies at the origin. This means that the
first-order approximation to the ground-state energy for a
fixed magnitude of the magnetic field B is found by consid-
ering the zero-temperature limit of the first-order effective
classical potentia in the origin

E@= limw®(0).
,B*WC

4.3

Thus we obtain from Eq. (3.23) the variational expression for
the ground-state energy,

1 Q 1\°
ER(B)= 55 (02 +0h)+ 5 - <M> ,
Q
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where the expectation value for the Coulomb potential (3.36)
can now be calculated exactly, since the exponentia in the
integral simplifies to unity:

<1> [0 1 1-V1-0)/9,

J— = — n .
Xlq Y 7V1-QQ, 1+1-Q,/Q,
(4

.5)

Equations (4.4) and (4.5) are independent of the frequency
parameter () such that the optimization of the first-order
expression for the ground-state energy (4.4) requires satisfy-
ing the equations

JEP(B) 1 sED(B) !
ol -0, 2 ® !, (4.6)
A, €Y

Reinserting the resulting values Q" and Q" into Eq. (4.4)
yields the first-order approximation for the ground-state en-
ergy E®(B). In the absence of the Coulomb interaction the
optimization with respect to ), yields Q{Y=wg, rendering
the ground-state energy E®(B)=wg, which is the zeroth
Landau level. An optimal value for () does not exist since
the dependence of the ground-state energy of this parameter
islinear in Eq. (4.4) in this specia case. To obtain the lowest
energy, this parameter can be set to zero (all optima fre-
guency parameters used in the optimization procedure turn
out to be nonnegative). For a vanishing magnetic field, B
=0, Eq. (4.4) exactly reproduces the first-order variational
result for the ground-state energy of the hydrogen atom,
EM(B=0)~ —0.42[2Ry], obtained in Ref. [20].

To investigate the asymptotics in the strong-field limit B
—o0, it is useful to extract the leading term wg. Thus we
define the binding energy

e(B)=wg—E(B), (4.7)
which possesses a characteristic strong-field behavior to be
discussed in detail subseguently. The result is shown in Fig.
3 as a function of the magnitude of the magnetic field B,
where it is compared with the high-accuracy results of Ref.
[1]. As afirst-order approximation, this result is satisfactory.
It is of the same quality as other first-order results, for ex-
ample those from the operator optimization method in the
first order of Ref. [5]. The advantage of variational perturba-
tion theory is that it yields good results over the complete
range of the coupling strength, here the magnetic field.
Moreover, as a conseguence of the exponential convergence
(Ref. [17] Chap. 5), higher orders of variational perturbation
theory push the approximate result of any quantity very rap-
idly toward the exact value.

1. Weak-field case
We now investigate the weak-field behavior of our theory,

starting from expression (4.7) and the expectation value of
the Coulomb potentia (4.5) in natural units,

B QO 7 B2 [ Q)
(1) S — i N
Sn,Q(B) 2 2(1+ 2) 80 T h(n)v

(4.8)
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FIG. 3. First-order variational result for the binding energy (in
units of 2 Ry) as a function of the strength of the magnetic field.
The dots indicate the values of Ref. [1]. The dashed curve shows
the simple estimate of Landau and Lifschitz [6] 0.5In?B, which is
closely related to the ground-state energy of the one-dimensional
hydrogen atom [7,8].

with
h(p) = — n 127 4.9)
vi-n 1+yl1—79

In comparison with Eq. (4.4), we introduce new variational
parameters

Q)

= 0=0Q,

(4.10

and utilize, as calculations for the binding energy shown, that
aways n<1. Peforming the derivatives with respect to
these variational parameters, and setting them equal to zero,
yields conditional equations which, after some manipula
tions, can be written

Q [Q 1 1 1 1-J1—-7\|"'

—+\/—| 1+ = In U =0,

4 mnl—n 21— 1+J1-9

(4.11)

1 B2 1 1 1-JV1-7'

1 7n B 1 /7 n 7 0.

2 4 802 2Va0Jl-9 1+JV1—79
Expanding the variational parameters into perturbation series
of the square magnetic field B,

7(B)= 2 7,87, Q(B)=X 0B (412)

and inserting these expansions into the self-consistency con-
ditions (4.11) we obtain order by order the coefficients given
in Table I. Inserting these values into the expression for the
binding energy (4.8) and expanding with respect to B?, we
obtain the perturbation series
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TABLE |. Perturbation coefficients up to order B® for the weak-field expansions of the variational
parameters and the binding energy in comparison to the exact ones of Ref. [2].

n 0 1 2 3
10 40572 05576 168289657 13023 38869993320757° 4.2260
n ' 7168 1258815488 884272562962432
Q 16 05659 997 0.6042 129397572 524431667187 ° » 0038
" or 448 730337984 55267035185152 ©
€ 4 0.4244 9 0.2209 —8019773 0.1355 —256449807775 0.2435
" 37 128 1835008 322056764928
3 5581
e, [2] -05 0.25 2 -
n To5~ — 02760 1605~ L2112
B & ' 2
8(1)(8)25—2 Snan. (4.13) V@Tuz—ﬁ(anH—IanJrZ—lnm, (4.17)
n=0
The first coefficients are aso given in Table I. We thus find ! / o)
i : i /. B
the important result that the first-order variational perturba- Q,= TTM 2 1+4’7TBZ' (4.18)

tion solution possesses a perturbative behavior with respect
to the square magnetic-field strength B? in the weak-field
limit, thus yielding the correct asymptotics. The coefficients
differ in higher order from the exact ones, but are improved
in higher orders of the variational perturbation theory (Ref.
[17] Chap. 5).

2. Asymptotical behavior in the strong-field regime

In the discussion of the pure magnetic field below Eq.
(4.6), we mentioned that the variational calculation for the
ground-state energy, which is thus associated with the zeroth
Landau level, yields a frequency ), =B, while (=0.
Therefore, we use the assumption

QJ_>QH, QH<B (4.14)
for the consideration of the ground-state energy (4.4) of a
hydrogen atom in a strong magnetic field. In a first step we
expand the last expression of the expectation value (4.5)
which corresponds to condition (4.14) in terms of Q/Q,
and reinsert this expansion into the equation of the ground-
state energy (4.4). Then we omit al terms proportional to
C/Q, where C stands for any expression with a value much
smaller than the field strength B. In natural units, we thus
obtain the strong-field approximation for the first-order bind-
ing energy (4.7):

8(1) :E_ &4_ BZ +ﬂ+ ﬂ"]ﬂ
Q.0 2 2 80, 4 Nz 'an )

(4.15)

As usual, we consider the zeros of the derivatives with re-
spect to the variational parameters

(988'3 'QH |

¢9QH ’

1)
ehloy ! 0 (4.16)
an ! )

which lead to the self-consistence equations

Let usfirst consider the last equation. Utilizing the second of
conditions (4.14), we expand the second roct around unity,
yielding the expression

2
LY LU BIPLL
2 T @B T ;2B3 '

(4.19)
where the terms are sorted with regard to their contribution
starting with the largest. Since we are interested in the
strong-B limit, we can obviously neglect terms suppressed

by powers of 1/B. Thuswe only consider the following terms
for the moment:

(4.20)

Inserting this into the other condition (4.17), expanding the
corresponding logarithm, and, once again, neglecting terms
of order 1/B, we find

2
JO= —=(InB—InQ+In2-2).

Ja

(4.22)

To obtain a tractable approximation for , we perform
some iterations starting from

(4.22)

\/Qﬁljz iIn 2Be 2.
N

Reinserting this on the right-hand side of Eq. (4.21), one

obtains the second iteration VQ{?. We stop this procedure
after an additional reinsertion which yields
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TABLE Il. Example for the competing leading six terms in Eq. (4.29) at B=10°B,~2.35X10%° T.

(Um)In?B —(4mInBIninB (4w InfInB —(4b/m)IninB  [2(b+2)/7w]InB b«
421912 —35.8181 7.6019 4.8173 3.3098 0.7632
2 2 tion for the binding energy (4.15), and expanding the loga
QO 9= —( In2Be ?—2In| — In2Be? rithmic term once more as described, we find, up to the order
N Jr In—2B,
_2in| Zin2Be? (4.23) 1
Jr : : 8(1)(B)=; IB—4InBIninB+4In’lnB—4bIninB

The reader may convince himself that this iteration proce-
dure indeed converges. For a subsequent systematical extrac-
tion of terms essentialy contributing to the binding energy,
expression (4.23) is not satisfactory. Therefore, it is better to
separate the leading term in the curly brackets and expand
the logarithm of the remainder. Then this proceeding is ap-
plied to the expression in the angular brackets and so on.
Neglecting terms of order In~3B, we obtain

2
\/Qﬁ3)~ T( In28e‘2+ln;—2 InInZBe‘z) .

ko

(4.24)

The double-logarithmic term can be expanded in a similar
way as described above:

In2—-2
Inin2Be 2=In|InB| 1+ ”
InB
i B+In2—2 1(|n2_2)2+0| ag
=Inin inB > 7B (In"°B).
(4.25)

Thus expression (4.24) may be rewritten as

ko n

\/9135— 2 InB—2IninB 2a @& b
| —\/—_ n nin +ﬁ+@+
+0(In"%B), (4.26)

with abbreviations
o
a=2—-1n2~1.307, b=|n5—2w—1.548. (4.27)

The first observation is that the variational parameter () is
always much smaller than ), in the high-B-field limit as has
been assumed in (4.14). Thus we can further simplify ap-
proximation (4.20) by replacing

0 B[1,2. [n)_B
3\ eV T

without affecting the following expression for the binding
energy. Inserting solutions (4.26) and (4.28) into the equa-

(4.28)

1
+2(b+2)InB+b?— ﬁ[s InPInB—8b IninB

+2b?%]| +0O(In"2B). (4.29)

Note that the prefactor 1/ of the leading In? B term differs
from a value 1/2 obtained by Landau and Lifschitz [6]. Our
different value is a conseguence of using a harmonic trial
system. The calculation of higher orders in variationa per-
turbation theory would improve the value of the prefactor.

At a magnetic-field strength B=10°B,, which corre-
sponds to 2.35x 10'° T, the contribution from the first six
termsis 22.87[2 Ry]. The next three terms suppressed by a
factor In"1B contribute —2.29[2 Ry], while an estimate for
the In~2B terms yields nearly —0.3[2Ry]. Thus we find

™M (10%)=20.58+0.3[2 Ry]. (4.30)
Thisisin very good agreement with the value 20.60[2 Ry]
obtained from the full treatment.

Table Il lists the values of the first six terms of Eq. (4.29).
This shows, in particular, the significance of the second lead-
ing term — (4/7)InBlInlIn B, which is of the same order of
the leading term (1/7r)In?B but with an opposite sign. In Fig.
3, we plot the expression

1
g (B)= E|n2|3, (4.31)

from Landau and Lifschitz [6], to illustrate that it gives far
too large binding energies even at very large magnetic fields,
e.g. at 2000B,< 108 T.

This strength of magnetic field appears on surfaces of
neutron stars (10°-10% T). A recently discovered type of
neuton star is the so-called magnetar [22]. In these, charged
particles such as protons and electrons produced by decaying
neutrons give rise to the giant magnetic field of 10** T. Mag-
netic fields of white dwarfs reach only up to 10°—~10* T. All
these magnetic-field strengths are far from direct realization
in experiments. The strongest magnetic fields ever produced
in a laboratory were only of the order 10 T, an order of
magnitude larger than the fields in sun spots, which reach
about 0.4 T. Recall, for comparison, that the Earth’s mag-
netic field has the small value of 0.6X 1074 T.
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It should, however, be noted that there are systems in
solid-state physics, where a rescaling of variables corre-
sponds to extremly strong magnetic fields. In a donor-
impured semiconductor like GaAs, the properties of the sys-
tem of an electron bound to a positively charged donor
nucleus in an external magnetic field of strength 6.57 T are
comparable to a hydrogen atom in a field of strength 2.35
X 10° T [23]. The reason for this is the strongly reduced
effective mass of the electron bound to the donor nucleus,
the large dielectric constant of the semiconductor, and thus
the much larger radius of the orbit of the electron. Hence the
Coulomb interaction between the donor nucleus and the elec-
tron is much weaker than in the hydrogen atom. This ap-
proximate analogy between both systems can thus be used to
investigate the effects of extremely strong magnetic fields in
earthbound experiments.

As we see in Fig. 3, the nonleading terms in Eq. (4.29)
give important contributions to the asymptotic behavior even
at such large magnetic fields. It is an unusual property of the
asymptotic behavior that the absolute value of the difference
between the Landau expression (4.31) and our approxima-
tion (4.29) diverges with increasing magnetic-field strengths
B; only the relative difference decreases.

V. SUMMARY

We have calculated the effective classical potential for the
hydrogen atom in a magnetic field. For this we have gener-
alized variational perturbation theory to make it applicable to
physical systems with a uniform external magnetic field.

The effective classical potential containing the complete
guantum statistical information of the system was deter-
mined in first-order variational perturbation theory. For zero
temperature, it gave the energy of the system. Our result
consists of a single analytic expression which is quite accu-
rate at all temperatures and magnetic-field strengths.
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APPENDIX A: GENERATING FUNCTIONAL FOR
PARTICLE IN MAGNETIC FIELD AND
HARMONIC-OSCILLATOR POTENTIAL

For the determination of the correlation functions of a
system, we need to know the solution of the two-dimensional
generating functional in the presence of an external source

j:(jwjy):

29011=)5 § D2 sl X e A (A1)
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The action of a particle in a magnetic field in the z direction
and a harmonic oscillator reads

M. .
?XZ(T)_iMQB([X(T)_XO]XX(T))Z

hp
AXO[x;j]:L dr
1
+5M(QF - Qg)[X(7) ~x0)®

+j(7)- (X(1)=Xo) |, (A2)

where (), >, for stability. The position-dependent terms
are centered around Xo=(Xg,Yq), Which is the temporal av-
erage of the path x(7), and thus equal to the zero-frequency
component of the Fourier path,

X(T) =Xt Dy (X “m™+ X e~ om), (A3)
m=1

with the Matsubara frequencies w,=27m/% 8 and complex
Fourier coefficients X,=Xp+iXm . Introducing a similar
Fourier decomposition for the current j( ) with Fourier com-
ponents j,, and using the orthonormality relation

1 hb (o= op)T
ﬁfo drel@monr=g (Ad)

the generating functional can be written as

[

zoj1= 1

m=1

= Am(Xm ,X'm m ,j’m)/ﬁ ,

f dxppdxndyrady
(7IM Bwy)?

(A5)
with
A(Xem X im i) = BM (05 + Q2 = Q) ([Xip]?+ [x1?
+IYS2+[yim2)
+4i% M Qgwm(Xieym — Xmyie)
+ 20 Bl xin X xm Vi yin

im: im

+Ymlym)- (A6)

Expression (Ab5) is equivalent to the path integral (A1) and
after performing integrations and retransforming the currents

'—1fﬁﬁd' “iom? A7
Jm_ﬁﬁ 0 T](T)e ’ ( )

we obtain the resulting generating functional
. 1 (n6 he .
ZXO[J]=ZX°eXp[—J drf dT’J(T)GXO(r,r’)J(T’)],
2h2%J)o 0

(A8)

with the partition function
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o 4
wm
ZX0=7%[ 0] = , A9
Lo r’rl\_zll 40202+ (02 +0Q2)? (A9
and the 22 matrix of the Green functions:
XO(T 7') G:(;,( 77"
G*o(7,7')= ) “ NE (A10)
(') G )

The elements of this matrix are position-position correlation
functions what can be easily proved by applying two func-
tional derivatives with respect to the desired component of
the current to functional (A1), for example,

Gii( 7,7 ) =((X(7) = Xp) (X(7") —Xg))*®

, 1 52 _
g2k 11 | B
271 81x(7) 81 7") j

I
o

(A11)

where we have defined expectation values by
AZ _
<. . .>Xo: % 3€ D2k ... 5(X0—X(T))e”4 o[x;0]/%_

(A12)

From the above calculation, we find the following expres-
sions for the Green functions in Fourier space (0<r,7’

<hpB):

G2(r.7) = (XN (7))o= G(r,7) = (F(7) J( )
2 + QZ —QZ

1 40%wh+ (w5 +Qf — 0F)?

2 o0
“WB 2,

X @~ tem(7=7"), (A13)

G(r 1) =(X(NY())o=~G(r,7)

=~ (M%)
_ 4QB ” Wm
MB m=1 403w3+ (w2 + 0% —03)?

X e lom(7=7), (A14)
where, for simplicity, X(7) =xX(7) —Xo. It is desirable to find
analytical expressions for the Green functions and the parti-
tion function (A9). All these quantities possess the same de-
nominator, which can be decomposed as

40305+ (0h+ Q2 —08)?= (i +0%) (wh+0Q2)
(A15)
with frequencies
2:(Qp,0,)=0, *0s. (A6)
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Therefore the partition function (A9) can be split into two
products, each of which known from the harmonic oscillator
(Ref. [17] Chap. 5):

©

2 2

wm wm
Z%0= H 2 2 |11 2 2
m=1 a)m+Q+ m=1 wm+Q_
ABOLI2  HBO_I2

= SnhhBOL 12 SThABO_I2" (AL7)

Now we apply property (A15) to decompose the Green func-
tion (A13) into partia fractions, yielding

Gig(T,T'):G;g/(T,T')
i 1 ;efiwm('r*r’)
MB m=—e @2 +02
~ 1 . ) 1
+ —eflwm(rfr)_ '
.2, 0 Q.-
(A18)
with coefficients
02-02+0% 0,+04
Tz 20;
0%2-0%2+02 0,-0Q
= — L B_ i1 B (A19)

0202 20,

Following Ref. [17] Chap. 3, sums of the kind occuring in
expression (A18) are spectral decompositions of the correla-
tion function for the harmonic oscillator, and can be summed
up as

o

1
m=—o wﬁ;f-ﬂi

ZQIBi g+(7,7). (A20)

e*i“’m(T*T’):

Here we introduced the expression

coshQ,(|7—7'|—4B12)

g.(7,7")= SPh7BO.2 , 7,7 e(0hB),
(A21)
with e e {+,—,L1,||}. Thus, the xx and yy correlation func-

tions can be expressed by

Gr,m)=Gl(7,7)= 1(ﬁﬁ (1.7')
T, T T, T B ng+T,T

—ﬁ'B ! ! A22
+4QLg_(T'T) 0.0 ) (A22)
where, from Eq. (A16), Q.=Q.(Qg,Q,) are functions of
the original frequencies )z from the magnetic field and |
from the additiona harmonic oscillator (A2). It is ob-
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vious that expression (A22) reduces to the Green function of
the harmonic oscillator for g—0,

1 (hBQ, ,
MBQi TgL(TvT)_l )
(A23)

lim G°(r,7")=
Qg—0

withi e {x,y}. Inthislimit, partition function (A17) turns out
to be the usual one (Ref. [17] Chap. 5) for such a harmonic
oscillator:

hBQ, 12

N
lim 2%= Son7 g0, 12

Qg—0

(A24)

It is worth mentioning that with the last term in Green func-
tion (A22), the classical harmonic fluctuation width

1

Gcl= 2\cl _
== -0z

(A25)

is subtracted. This is the consequence of the exclusion of the
zero frequency mode of the Fourier path (A3) in the gener-
ating functional (A1l). The necessity to do this was already
discussed in Sec. Il. The other terms in Eq. (A22) are those
which we would have obtained without separation of the X,
component. Thus these terms represent the quantum-
mechanical Green function containing all quantum fluctua-
tions as well as thermal fluctuations. It is a nice property of
all Green functions discussed in this paper that
Go1,7)=G](r,7")—GS,. (A26)
Such arelation exists for all other Green functions appropri-
ately, including momentum-position correlations which we
consider subsequently.
The knowledge of relation (A20) makes it quite easy to
determine the algebraic expression for the mixed xy correla-
tion functions. Rewriting Eq. (A14) as

G(r,7)=—GR(7,7")

i d | < 1 . ,
_ o e*lwm(T*T)
ZMBQL or m=—o wr2n+Qi

o

1 _

+ ———— e fem(m=T) | A27
m;w wﬁq-l— 0? ) ( )
and applying the derivative with respect to 7 to relation
(A20), we obtain the following expression for the mixed
Green function:

X N X (A
GOo(r, T )——Gy?((T,T )=

0 {0(r—)[h.(7,7)

4iMQ,
—h_(r,7)]=0(7' = Dlh,(7',7)
—h_(+', 01},

where we have used the abbreviation

(A28)
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, snhQ (7— 7' —hBI2) ,
h.(7,7")= Snh7 3012 , 7,7 e(0,hB),
(A29)

with s e{+,—,L1,|}. Note that classically (xy)®=0, such
that Eq. (A26) reduces to
G(r,7)=GHl(7,7"). (A30)

The Heaviside function in Eqg. (A28) is defined symmetri-
caly:

1, =7
O(r—7)={ V2, =1 (A31)
0, <7.

In the guantum-mechanical limit of zero temperature (B
—), the Green function (A22) simplifies to

limG3(7,7')=limG(7,7')

B—x B—x
f
— -Q |7 -Q_|r—1'|
amq, & T e )
(A32)
while in Eqg. (A28) only h..(7,7") changes:
limh.(r,7)=—e (=), (A33)

B—oo

APPENDIX B: PROPERTIES OF GREEN FUNCTIONS

In this section we list properties of Green functions (A22)
and (A28), which are important for the forthcoming consid-
eration of the generating functional with sources coupling
linearily to position or momentum in Appendix C. For all
relations, we suppose that 0<r7,7' <% 3.

1. General properties
A first observation is the temporal trandational invariance
of the Green function,

Giij(T, 7')= GinO(T— '), (B1)

where each of the indices i and j stands for x or y, respec-
tively. For equal times we find

Xo _ hp hB 1
Gij(T'T)_M_/g Eg+(7’7)+mg’(7’7)_ﬂ+ﬂ,
1, =]
“lo, i#]. (B2

Moreover we read off the following symmetries from expres-
sions (A22) and (A28):

) =
Xo 1 — Xo(
Gij(T,’T) Gij(T,T)Xr_l’ %], (B3)
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Otherwise,

Gixjo( T, T'):G}(iO(T,,T). (B4)
Throughout the paper we aways use periodic paths. Hence it
is obvious that all Green functions are also periodic:

G2(0,7)=GX(#B,7), GA7.0)=Gr%ip).
(B5)

2. Derivatives of Green functions

We now proceed with derivatives of the Green functions
(A22) and (A28), since these are essential for the derivation
of the generating functional of position- and momentum-
dependent correlations in Appendix C.

Before considering concrete expressions, we introduce a
new symbol indicating uniquely to which argument the de-
rivative is applied. A dot on the left-hand side means to
perform the derivative with respect to the first argument and
the dot on the right-hand side indicates that to differentiate
with respect to the other argument. Having a dot on both
sides, the Green function is derived with respect to both ar-
guments:

X ’
o"Gijo( T,7)

e~ X Ny —
GijO(T;T)_ a7 ,

(B6)

Applying such derivatives to Green functions (A22), we ob-
tain (i e{x,y})

e ~Xo "N
Gi(m )= M0,

~0(7'—Dfy(7',7)]

[O(r— )7, 7")
=-G (7,7, (B7)
with

fi(m.7")=(Q, +Qg)h (7,7")+(Q, —Qg)h_(7,7'),
(B8)

where h..(7,7) was defined in Eq. (A29). Performing the
derivatives to both arguments leads to the expression

- h
‘G(r,7) =B )+ 81, (BY)

where we have introduced the partial function
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G(r,1)=— [039.(r,7)+Q2g_(7,7)],

(B10)

IMQ,

which is finite for equal times.

Applying derivatives with respect to the first respective
second argument to the mixed correlation function (A28), we
find

h
. XO N — AN ’
ny(TyT ) 4|MQJ_ [Q+g+(T!T ) Q—g—(TIT )]
=—G"3(r,7) (B11)
and
GR(r,T)=—"G(r,). (B12)

Differentiating each argument of the mixed Green function
resultsin

if
e ~eXg " — o ’
GTy(7.™)= g 1O 7)ol ™)

—0O(r —7n)fy(7,7)]

= —'G'§g( 7,7'). (B13)

with

fo(r,7)=(Q, +Qp)?h,(7,7)— (2, —Qp)*h_(7,7).
(B14)

An additional property we read off from Egs. (B7) and (B11)
is(i,j e{x,y}):

"G(7, T')I.GinO(T',T)X{ (B15)

1, i#j,
-1,

1, i#]. (B16)

G (7,7 =G+, 7) x(

The double-sided derivatives (B9), (B10), and (B13) imply

=]

‘G O(T,T’):-G-ijO(T"T)X[_1’ i, (B17)

ij
Derivatives (B7), (B10), (B11), and (B13) are periodic:

‘GA(r,0)="G(,hB), "G(0,7)="GhB,T'),

(B18)
GY(r0 =G (nhB), GO )=GCT0(RB),
(B19)
"G(1,00="G"(7,48),
.é.ixio(o'T,)z-é-ﬁomﬁ,f), (B20)

"G(r0)="G (7,4 B),
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GUO(0,7)="G"1B,7) (i#)).  (B2D)

APPENDIX C: GENERATING FUNCTIONAL FOR
POSITION- AND MOMENTUM-DEPENDENT
CORRELATION FUNCTIONS

With the discussion of the generating functional for
position-dependent correlation functions and, in particular,
the Green functions in Appendix A, and that of their proper-
tiesin Appendix B, we have laid the foundation to derive a
generating functional for correlation functions depending on
both position and momentum. Following the framework pre-
sented in an earlier work [21], such a functional involving
sources coupled to the momentum can always be reduced to
one containing position-coupled sources only.

We start from a three-dimensional effective classical rep-
resentation for the generating functional

Zg[j,v]= J 2 h)r;o Z90 9, v, (Cy)

with zero-frequency components Xy= (Xg,Yo,Zg) = const and
Po= (Pxo,Pyo,Pyo) = const of the Fourier path separated. The
reduced functional is

Z?S’Xo[j,v]=(277h)3 § D'3xD3p 5(X0—X(_T))

S 1
X 8(po—p(7)) exp( - gA?{"XO[p,x;j vt
(C2

where the path integral measure is that defined in Eq. (2.4).
Extending action (2.3) by source terms, considering a more
general Hamilton function than Eq. (2.18), and introducing
an additional harmonic oscillator in the z direction, the action
functional in Eq. (C2) reads

AR p,x;j,v]= f dr{—np(ﬂ x(r>+ PA(7)
T T ~
—Qgly(p,X) + S MOTX*(7) +y*(7)]

+ %Mnﬁ-’zz(f)+j(r)~?<(r)+v(r)-B(T)
(C3)

with shifted positions and momenta

X=X(7)=Xg, P=P(7)—Po- (C4)
The orbital angular momentum 1,(p,x) is defined in Eq.
(2.19), and used in Eq. (C3) with shifted phase-space coor-
dinates (C4). We have introduced three different frequencies
in Eq. (C3), Q=(Qg,, ,Q), where the first both compo-
nents are used in regard to the oscillations in the plane per-
pendicular to the direction of the magnetic field which shall
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be considered here to point in the z direction. The last com-
ponent () is the frequency of atrial oscillator paralel to the
field lines.

Due to the periodicity of the paths, we suppose that the
sources might also be periodic:

1(0)=j(AB), V(0)=V(1iB). (CH)
Since we want to simplify expression (C2), such that we can
use the results obtained in Appendix A, the momentum path
integral is solved in the following. In a first step we re-
express the momentum § function in Eq. (C2) by

N 1 (%8
(0P | exp{—gjo drvo-[p(7) ~pol |

(C6)

(2mh)3

where

Vo(£)= ﬁ'—ﬁg )

is an additional current which is coupled to the momentum
and is constant in time. Defining the sum of al sources
coupled to the momentum by

V(& 1)=Vv(7)+Vo(§), (C8)
functional (C2) can be written as
2827 1= [ &% § DxD% 06— x(7)
1 (h8 . 2
xexp{ - gJo dr| —ip(7)-x(7)+ pzfvlT)

v 1 2752 2
~ el (p(7) X(7) + 3 MO (%) +¥2( 7))

|

(C9)

1 222 i X
+ 5 MOFZ2(7) +j(7) - X(7) + V(£ 1) p(7)

where we have used the translation invariance p—p of the
path integral. To solve the momentum path integra, it is
useful to express it in its discretized form. Performing qua
dratic completions such that the momentum path integral
separates into an infinite product of simple Gaussian inte-
grals which are easily calculated, the remaining functiona is
reduced to the configuration space path integral
fﬁ D3x

— 1
X 8(Xg— X( T))exp[ - %A?;”Xo[x;j ,v]}

M (B
Zg = f dSEGXD{ﬁ fo drV2(£7)

(C10)

with the measure (2.10) for D= 3. The action functiona is

052509-17



M. BACHMANN, H. KLEINERT, AND A. PELSTER

M. .~
EXZ( 7)+HiIMQg{X(7)y(7)

h
A?f’x"[x;j,V]zfo “ar
\ v 1 2 2y 1y2
—Y(DX(}+ 5 MQT-Qp){x(7)

~ 1 ~
+YA(}+ SMOfZ(0) +X(7)[x(7)

+MQgVy(£7)]+Y(7)[jy(7)

—MQgVy(&7)]+2(7)j(7)

iM (hB .
——j d7x(7)-V(& 1), (C11)
i Jo
where the last term simplifies by the following consideration.
A partia integration of this term yields

hB . hB .
fo dTX(T)'V(f,T)Z—fO d7(X(7)—Xg)- V(& 7).
(C12

The surface term vanishes as a consequence of the periodic-
ity of the path and the source. This periodicity is aso the
reason why we could shift x(7) by the constant x, on the
right-hand side of Eq. (C12). Obviously, the importance of
this expression lies in the coupling of the time derivative of

V(& 7) to the path x(7). Thus V(£,7) can be handled like a
j(7) current [21], the action (C11) can be written as

ARx;j,V]= AR [%;J,0]

— AP x;0,0] Efﬁﬁdﬁ(r)-d(g )
o) T filo Y

(C13)
with a new current vector J(&, 7) which has the components
IE7)=]x(1)+MQgVy(£7) —IMVy(£7),

Jy(£7)=y(1) = MQeVy(£7)—IMVy(£7), (CL4)

1
IA&7) =11 = 5MQNVL(E7),

and couples to the path x(7) only. With expression (C10) for
the generating functional, and action (C13), we have derived
a representation similar to Eq. (A1) with action (A2), ex-
tended by an additional oscillator in the z direction. We iden-
tify

Ix=3x jy=Jy. (C15)
Inserting substitutions (C15) into solution (A8) for the gen-
erating functiona in two dimensions, and performing the
usua calculation for a harmonic oscillator with external
source (Ref. [17] Chaps. 3 and 5) in the z direction, we
obtain an intermediate result for the generating functional in
three dimensions [Eq. (C2)]:
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Zg V= NG 2 f d°¢ exp

M (4B
ﬁfo dTV2(§,T)}

1 (B hB ,
X exp %fo drfo dr’" J(&7)

X G*o(7,7") I(&, T’)] . (C1e)

The partition function follows from Egs. (A17) and (A24),
Zg070=279"0,0]
_ hpQLI2 hABQ_I2 h B2
~sinhABQO /2 sinhaBO_[2 sinh#% B /2°
(C17)

and G*o(7,7") isthe 3X 3 matrix of Green functions:
GUTT) GrT) 0

Go(r,7)=| GnT) GO(nT) 0
X ’
G (7, 7")

0 0
(C18)

Except for G’Z(g(r, 7'), the Green functions are given by the
expressions in Egs. (A22) and (A28). The Green function of
the pure harmonic oscillator in the z direction,

1 [hBY
# MBQF\ 2

gH(T,T')—l , (Clg)

follows directly from limit (A23). Since the current J in Eq.
(C14) till depends on time derivatives of V, we have to
perform some partial integrations in functional (C16). Thisis
avery extensive but straightforward work, and thus we only
present an instructive example. For that we apply the prop-
erties and the time derivatives of the Green functions which
we presented in Appendix B. Consider the integral

M2 (ag (B Xo( — I\ '
=5z, ar [ Cer e sln ) vie )
(C20)

occuring in the second exponential of Eg. (C16) with i
e{X,y,z}. A partia integration in the 7’ integral leads to
M2 ' =hp
212

e )
[P arvien| e vie )

=0

B fﬁBd ~ r?Gixio( 7,7)

0 ar’

Vi(fvT,))

M2 (#8 e i , ’
:ﬁfo deo dr'Vi(§ 1) G(7,7') Vi(§ 7).

(C21)
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The surface term in the first line vanishes as a conseguence
of the periodicity of the current (C5) and Green function
(B5). A second partia integration, now in the 7 integral,
results in

M2 (1

hB , o ~eXg ’ '
= 2ﬁ2 o d’Tjo dT Vi(f,T) G ii(TvT )Vi(giT)

M2 (#p

hp ~
) dTJO dr' Vi(£7) "G o7, 7)) Vi(7)

M (%
~or | drviEn. (c22)

Here we have applied the periodicity property of the right-
hand derivative of Green function (B19), leading to a van-
ishing surface term in this case too. In the second line, we
have used the decomposition (B9) of the double-sided differ-
entiated Green function. Note that the last term just cancels
the appropriate term in the first exponential of the right-hand
side of Eq. (C16). Eventualy, after performing all such par-
tial integrations, we reexpress Eq. (C16) by

ZRO V=N 2 ZR0 70 | d3¢ex 2 "ar["ar
o U T pZﬁzo o T

XS(&7) HO(7,7') (&, r'>} : (C23)
with six-dimensional sources
SED=((7),V(&7) (C24)

and the 6 X6 matrix H*o(7,7"), which has no significance as
long as we have not done the & integration. We explicitly
insert decomposition (C8) into expression (C24) of the
source vector s. Since Vo(£) from Eq. (C7) is constant in
time, some temporal integralsin the exponential of Eq. (C23)
can be calculated, and we obtain
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1 (%8 hp
ZPoXorj v =N 3 ZPoYoex —f drf dr’ s(7
Q [J ] th Q p th 0 0 S()

XHXO(T,T')S(T')] f d3¢

X exp] — §2+il§-Jhﬁd V()
P 2428 r2p” Jo T
(C25)
with the new six vector
S(7)=((7),v(7)) (C26)

consisting of the original sourcesj and v only. The Gaussian
¢ integra in Eq. (C25) can be easily solved, and the terms
appearing from quadratic completion modify the above ma-
trix H*(7,7"). The fina result for the generating functional
of all position and momentum dependent correlations is
given by

1 (8 hB
PoXor; __ —Po X ’
ZL V=2 °exp‘—2ﬁ2J0 dr . dr
X (1) GPoXo(r,7) S(T’)} . (C27)

The complete 6 X 6 matrix GPo-*o(r,7") contains all possible
Green functions describing position-position, position-
momentum, and momentum-momentum correlations. As a
consequence of separating the fluctuations into those perpen-
dicular and parallel to the direction of the magnetic field, all
correlations between x and y on the one hand and z on the
other hand vanish, as well as those for the appropriate mo-
menta. The symmetries for the position-position Green func-
tions and their derivatives were investigated in detail in Ap-
pendix B, and lead to a further reduction of the number of
significant matrix elements. It turns out that only nine ele-
ments are independent of each other. Therefore we can write
the matrix

GEQ’XO( 7)) GES’XO( 7,7") 0 GEg)’(XO( 7,7) ng;xo( 7,7") 0
GR™(r, 1) GR(r,7) 0 —Gp nT) GRT ) 0
0 0 GPoXo(7,7') 0 0 Gy (7. 7)
Greo(r ') = GPoXo(7r 7y —GPoYo(7 1) 0 GPoXo(r 71y GPOXo(7 1) 0
XPy ’ xpy, ! PPy * PxPy ~ '
Po:Xo 1 Po:Xo/ 1 Po X0/ 1 Po:Xo ’
pry (7',7) prx (7',7) 0 prpy (7',7) prpx (r,7") 0
0 0 Gy (7', 7) 0 0 Gl (7, 7")

(C28)
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The matrix decays into four 3X3 blocks, each of which
describes another type of correlation: the upper left a
position-position correlation, the upper right (as well as the
lower left) position-momentum correlation, and the lower
right a momentum-momentum correlation. The different -
ements of the matrix are
GROO(7,7") = (X(T)X(7" ) "°=G(7,7"), (C29)
G (7, ) =(X(NY(7)g = G(7,7"), (C30)
GPo(7,7")={z()z(7"))9"°=G(1,7'), (C3D)

G O(r,7) = (X(1)px( 7))y ™

=iMG(7,7)~MQG (7,7
f
= 2i{0(r=m)[h(1.7)+h_(7,7')]

-O(r'—n[h (7", n)+h_(7",7]},
(C32)
Glp, o(r ) =(X(7)py (7))
=iMG (7, 7)+MQGS(7,7)

& , 1 0
=gl (n ) =g (n )= e

(C33)
G (7,7 ) = (2 1)p,(7') g O =IMG (7, 7")
= %[(T— )7, 7) =0 (7 = hy(', 7],
(C34)
Goop (7.7 ) = (P 1)Px(7)) ™
=—MZG(1,7)—2iM*Qg'G (7, 7')

M
+M2QEGO(1, 1) — —

B
AMQ,
= 4 [g+(T,’T,)+g_('T,T,)]
M( 02
_E l—m y (C35)

Ghop (1. 7) = (P 1)Py( 7)) = 2IM?Q G (7,7')

~MZG (7, 7))+ M2QEG(7,T)

_AMQ,
Y

{0(r—7)[h(r,7")—h_(7,7')]
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—O(r'=n[h (", 7)—h_(7", 7]},

(C36)
GPE (7, 71) = (Bl PPl 7N 0=~ MZET(7,7) —
p,P, ’ 4 z Q zz\ " ’3
_ MY, N M
= 2 gH(T’T )_E, (C37)

where the expectation values are defined by Eq. (3.12). Note
that all these Green functions are invariant under time trans-
lations, such that

GPo*o(r, 7 ) =GP (7 1')

(C38)

with u,ve{X,y,z,px, Py, P}

It is quite instructive to prove that all these Green func-
tions can be decomposed into quantum-statistical and classi-
cal parts as we did it in Eq. (A22). Since we know that the
classical correlation functions do not depend on the Euclid-
ean time, all derivative terms in Egs. (C29)—(C37) do not
contribute a classical term. We can write each Green func-
tion as

GPo*(7,7) =GN 7,7) G5, (C39)
This relation was already checked for Egs. (C29)—(C31) in
Appendix A. Theclassical contribution is zero in Egs. (C32),
(C34), and (C36) following from the absence of classical
terms in derivatives of the Green functions and mixed corre-
lations like Eq. (A30). It seems surprising that correlation
(C33) contains a classical term, while Eq. (C32) possesses
none. This is, however, a consegquence of the cross product
of the orbital angular momentum appearing in action (C3),
and the explicit classical calculation entails

Qg
02-02
(C40)

1
Gilpxz <pr>d =0, Gilpy: <Xpy>d:'E

where the latter is the subtracted classical term in Eq. (A22)
when considering the first two substitutions in Eq. (C15). In
Eq. (C37), the second term is obviously the classical one,
since

M
ngpzz <pzpz>C| :E . (C41)
The extraction of the classical terms
GY  =(psp >C'=M 1+ g (C42)
XMX
PrPx B\" 0l-03

in the case of the Green function G,‘;Or’)xo(r, ') requires the

consideration of the last two terms in Eq. (C35). Thus we
have shown that the decomposition (C39) holds for each of
the Green functions (C29)—(C37). Note the necessity of sub-
tracting the classical terms since they al diverge in the clas-
sical limit of high temperatures (8—0).
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