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Abstract

In canonical statistical analysis, it is common to employ response quantities such as the specific heat to identify changes in the

thermodynamic behavior of finite systems. However, as a consequence of finite-size effects, conventional thermodynamic quantities

do not necessarily exhibit clear indications for pronounced thermal activity. By means of Metropolis Monte Carlo simulations of

a coarse-grained model for flexible polymers, we investigate how the integrated autocorrelation times of energetic and structural

quantities depend on the temperature. We show that, due to critical slowing down, an extremal autocorrelation time can also be

considered as an indicator for the so-called collapse transition, which corresponds to a gas-liquid phase transition.
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1. Instruction

The biological function of proteins is often related to their three-dimensional geometric structures and severe ill-

nesses can be caused by the misfoldings of proteins. Therefore, the necessity for a better understanding of general

physical principles and mechanisms of structural transitions of polymers such as folding, crystallization, aggregation,

and the adsorption at solid and soft substrates has increased rapidly in the past decades. Experimental and com-

putational approaches have been developed to understand these various features. In order to improve the statistical

accuracy of estimated expectation values of measured physical quantities, appropriate estimates of the corresponding

autocorrelation times are necessary. In the past, most of the studies on analyzing the properties of the autocorrelation

times focused on spin models. In the Ising model, the phase transition between ferromagnetism and paramagnetism

is of second order. In the thermodynamic limit (i.e., infinite system size), the autocorrelation time τ approximately

satisfies the power law τ ∝ ξz ∝ |1 − T/Tc|−νz in the neighborhood of the critical point Tc, where ξ denotes the spa-

tial correlation length, ν and z denote the critical exponent and dynamic critical exponent, respectively. In computer

simulation, z is an algorithm dependent critical exponent. For a system with finite size L, τ ∼ Lz at temperatures
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sufficiently close to the critical point [Landau and Binder (2000); Newman and Barkema (1999); Janke (2002)]. The

combination of local updates, such as single spin flips, and the Metropolis algorithm [Metropolis et al. (1953)] cause

the autocorrelation time to be rather large, since z ≈ 2 in this case. This effect is usually called critical slowing

down which can be reduced to less than unity if non-local update mechanisms, such as Swendsen-Wang, Wolff, and

multigrid algorithms are employed [Newman and Barkema (1999); Janke (1998); Sokal (1989, 1992); Kandel et al.

(1988, 1989); Coddington (1992)]. For systems exhibiting a first-order phase transition, the dynamics in a canonical

ensemble will suffer from the “supercritical slowing down”. At the transition temperature, the average residence time

the system spends in a pure phase is described by the autocorrelation time τ ∝ exp(2σLd−1), where σ is the (reduced)

interface tension and L is the projected area of the interfaces. For our study, we investigated the autocorrelation times

of different quantities for a coarse-grained, elastic, flexible polymer model with the combination of local monomer

displacement and Metropolis Monte Carlo sampling. The reason why we chose this combination is to resemble Brow-

nian dynamics in a canonical ensemble. Our goal is to identify structural transitions and transition temperatures by

employing autocorrelation times.

2. Model and Methods

We employ a model for elastic and flexible homopolymers [Bachmann (2014)], where the bonds are represented

by the finitely extensible nonlinear elastic (FENE) potential [Bird et al. (1987); Kremer and Grest (1990); Milchev et

al. (2001)]

VFENE(rii+1) = −K
2

R2ln

[
1 −
( rii+1 − r0

R

)2]
. (1)

Non-bonded monomers interact via a truncated, shifted Lennard-Jones potential

Vmod
LJ (ri j) = VLJ(ri j) − VLJ(rc). (2)

with

VLJ(ri j) = 4ε

⎡⎢⎢⎢⎢⎢⎣
(
σ

ri j

)12

−
(
σ

ri j

)6⎤⎥⎥⎥⎥⎥⎦ , (3)

The total energy of a conformation ζ = (�r1, · · · ,�rL) for a chain with L monomers reads

E(ζ) =

L−2∑
i=1

L∑
j=i+2

Vmod
LJ (ri j) +

L−1∑
i=1

VFENE(rii+1). (4)

Details of the parametrization are given in Qi and Bachmann (2014).

We employed the Metropolis Monte Carlo Method combined with local displacement updates in our simulation. In

a single MC update, the conformation is changed by a random local displacement of a monomer. A chosen monomer

is allowed to change its position within a small cubic box with edge lengths d = 0.3r0. Once the update is suggested,

we further utilize the Metropolis criterion [Metropolis et al. (1953)],

p = min(1, exp[−β(Enew − Eold)]), (5)

to decide if the update is accepted. Here, the inverse thermal energy is denoted by β = 1/kBT (we set kB ≡ 1 in the

simulations); Eold and Enew are the energies before and after the proposed update, respectively.

Suppose we generate a time series with a large number of data N from an importance sampling MC simulation.

For a quantity O, the strength of the correlation between two measurements with time displacement k is described by

the autocorrelation function

A(k) =
〈OlOl+k〉 − 〈Ol〉2

σ2
O

, (6)

where l can be any integer in the range [1,N − k], and σ2
O = 〈O2

l 〉 − 〈Ol〉2 = 〈O2〉 − 〈O〉2 is the standard variance of O.

As usual, the autocorrelation function is a monotonically decreasing function. The independence of two measurements
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Fig. 1. (a) Mean energy 〈E〉 and square radius of gyration 〈R2
gyr〉; (b) heat capacity Cv and thermal fluctuation of the square radius of gyration

d〈R2
gyr〉/dT for a flexible polymer with 30 monomers. Error bars are smaller than the symbol size.

is judged by the autocorrelation time τ. If the time displacement between two measurements is larger than τ, these

two measurements are considered to be independent. For large time separation k, the autocorrelation function decays

exponentially,

A(k) −→ e−k/τO,exp , (7)

where τO,exp is the exponential autocorrelation time of O. Because of large statistical fluctuations in the tail of A(k),

the accurate estimation of τO,exp is often difficult. Instead, we can calculate the integrated autocorrelation time

τO,int =
1

2
+

N∑
k=1

A(k), (8)

which can be obtained by

τ̃O,int(kmax) =
1

2
+

kmax∑
k=1

Ã(k), (9)

where Ã(k) is the estimator of A(k) and kmax is the maximum time displacement. Because of Eq. (7), τ̃O,int will finally

converge to a constant [Janke (2002)]. An alternative way of calculating the integrated autocorrelation time is by

binning analysis [Janke (2002); Bachmann (2014)], in which case the integrated autocorrelation time is estimated by

τ̃O,bin =
1

2
NB

σ̃2

O
B
,c

σ̃2
O

, (10)

where NB is the bin size, σ̃2

O
B
,c

denotes the estimator for the variance of the binning block averages, and σ̃2
O is the

estimator for the variance of O [Qi and Bachmann (2014)]. As NB increases, this estimator will converge to a constant

which corresponds to integrated autocorrelation time. This method is more convenient than the integration method

(Eq. (9)) since a precise estimate of the autocorrelation function is not needed.

3. Results

We first investigate two representative quantities by means of canonical analysis. The statistical averages of energy

and square radius of gyration are shown in Fig. 1(a) and their thermal fluctuations are plotted in Fig. 1(b). At high

temperatures, due to large thermal fluctuations, the polymer is in the gas phase and dominant structures are dissolved

or random coils. As temperature decreases, the polymer collapses, and compact globular conformations (liquid phase)

are favorably formed. A clear collapse transition signal is exhibited in the thermal fluctuation of the square radius of
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Fig. 2. (a) Autocorrelation functions of E and R2
gyr at T = 2.8 for the 30-mer. For each quantity, the estimated integrated autocorrelation time

converges to a constant as shown in (b). The corresponding binning analysis results also show good convergence and are plotted in (c). Dashed

lines represent the fitted curves.
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Fig. 3. Temperature dependence of integrated autocorrelation times (a) obtained by the integration of autocorrelation functions; (b) estimated with

the binning method for the 30-mer.

gyration curve where a peak occurs at T ≈ 1.4, whereas the heat capacity curve only presents a “shoulder” around

this temperature. As the temperature decreases further, the polymer transfers from the globular phase to the “solid”

phase which is characterized by locally crystalline or amorphous metastable structures. A corresponding transition

peak could be observed in the heat capacity curve where the freezing transition happens at T ≈ 0.28.

We performed the integration of the autocorrelation (8) and the binning analysis to estimate the integrated auto-

correlation times at 17 temperatures in the interval T ∈ [0.26, 4.5] for the 30-mer. Once we generated the estimated

integrated autocorrelation time curves for these two methods in each temperature [details of the procedures that we

employed to generate these two curves are given in Qi and Bachmann (2014)], we further performed least square fit-

ting for these curves in order to estimate the integrated autocorrelation time systematically. The empirical fit function

for any quantity O is chosen to be of the form

fO(x) = τ
f
O(1 − e−x/x f

), (11)

where x represents kmax in the integration of the autocorrelation functions method and NB in binning analysis; τ
f
O

and x f are two fit parameters. An example containing the estimated integrated autocorrelation time curves and the

corresponding fitting curves are plotted in Fig. 2.

Figure 3 shows how the fitted estimated integrated autocorrelation times τ
f
O vary with temperature. In Fig. 3(a) the

integrated autocorrelation time curves, estimated by using integration method, are shown. These results are virtually

identical to the ones estimated by binning analysis [see the Fig. 3(b)]. The integrated autocorrelation time of R2
gyr is

always larger than that of E. This is because the structural quantity is less sensitive to conformational changes within

a single phase and the displacement update does not allow immediate substantial changes. Slowing down occurs

at T ≈ 1.4 in the autocorrelation time curves. Comparing with the collapse transition signals in Fig. 1(b) near this
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temperature leads to the claim that slowing down can also be used as an indicator to locate the θ transition temperature.

Within this temperature region, the autocorrelation time becomes extremal. Large parts of the polymer have to behave

cooperatively which delays the overall collapse dynamics. In the low temperature region, autocorrelation times of all

quantities begin to increase considerably. The autocorrelation time calculation is ceased at T < 0.26 for the reason

that Metropolis simulation with local updates typically get stuck in metastable states of polymer at low temperatures.

In addition, the autocorrelation times naturally increase at low temperatures, because of low entropy. Therefore, the

freezing transition is not easily accessible using the autocorrelation analysis. Last but not least, the autocorrelation

times of R2
gyr converge to a constant value as temperature increases but the one of E decays. One partial reason is that

R2
gyr possesses upper limiting values at high temperatures whereas E could access any value in the continuous model.

4. Summary

We have investigated the autocorrelation time properties for different quantities by employing the Metropolis Monte

Carlo algorithm for a simple coarse-grained flexible polymer model. We estimated the autocorrelation times for vari-

ous temperatures and performed an autocorrelation analysis by using the integration method and binning analysis. The

primary result is that slowing down occurs as expected and is clearly represented by peaks in the autocorrelation time

estimators near the collapse transition temperature. By comparing with temperatures of extremal thermal structural

fluctuations, we claim that the extremal autocorrelation time can also be considered as an indicator for the collapse

transition.
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