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By means of Metropolis Monte Carlo simulations of a coarse-grained model for flexible polymers,
we investigate how the integrated autocorrelation times of different energetic and structural quantities
depend on the temperature. We show that, due to critical slowing down, an extremal autocorrelation
time can also be considered as an indicator for the collapse transition that helps to locate the transition
point. This is particularly useful for finite systems, where response quantities such as the specific heat
do not necessarily exhibit clear indications for pronounced thermal activity. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4891800]

I. INTRODUCTION

The necessity for a better understanding of general phys-
ical principles and mechanisms of structural transitions of
polymers, such as folding, crystallization, aggregation, and
the adsorption at solid and soft substrates has provoked nu-
merous computational studies of polymer models. Autocor-
relation properties of such models govern the statistical ac-
curacy of estimated expectation values of physical quantities
but also help illustrate the dynamic behavior or the relax-
ation properties. Verdier and co-workers1–4 were among the
first to investigate autocorrelations of a simple lattice polymer
approach, in which the Brownian motion of the monomers
is simulated by kinetic displacements of single monomers.
By using Monte Carlo methods, the autocorrelation functions
and relaxation times of structural quantities were calculated
in order to study dynamic properties of random-coil polymer
chains such as the relaxation of asphericity in lattice-model
chains with and without excluded volume interaction.5, 6 More
recently, these studies were extended to continuous models,
where autocorrelation properties of the center-of-mass veloc-
ity, Rouse coordinates, end-to-end distance, end-to-end vec-
tor, normal modes, and the radius of gyration for polymer
melts,7–9 and of dynamic quantities of a polymer immersed
in a solution10–16 were investigated. Integrated autocorrelation
times are also employed to judge the efficiency of importance-
sampling algorithms.17 However, much less is known about
how autocorrelation times and structural transitions of poly-
mers depend on each other.

In the past, most of the studies on analyzing the prop-
erties of the autocorrelation times focused on spin models.
The second-order phase transition between ferromagnetism
and paramagnetism is characterized by a divergent spatial cor-
relation length ξ at the transition point Tc. In the thermo-
dynamic limit (i.e., infinite system size), the divergent be-
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havior is given by ξ ∼ ε−ν , where ε ≡ |1 − T/Tc| and ν

is a critical exponent.18–20 If an importance sampling Monte
Carlo method is employed,18, 21, 22 the number of configura-
tional updates that is needed to decorrelate the information
about the history of macroscopic system states is measured
by the autocorrelation time τ . It is described by the power
law τ ∝ ξ z ∝ ε−νz, where z denotes the dynamic critical
exponent, which depends on the employed algorithm.18–20

However, in a system of finite size, the correlation length
can never really diverge. This is because the largest possi-
ble cluster has the volume Ld, where L is the system size and
d is the dimensionality. Thus, the divergence of the correla-
tion length as well as the autocorrelation time are “cut off”
at the boundary, i.e., ξ � L. Consequently, τ ∼ Lz at tem-
peratures sufficiently close to the critical point.18–20 For local
updates, such as single spin flips, and by using the Metropo-
lis algorithm,23 the autocorrelation time becomes very large
near the critical temperature because the dynamic critical ex-
ponent is in this case z ≈ 2. This effect is usually called critical
slowing down, but it can be reduced significantly if non-
local updates, such as in Swendsen-Wang, Wolff, and multi-
grid algorithms,19, 22, 24, 25 are employed. Metropolis simula-
tions with local updates yield for the Ising model z ≈ 2.1665
in 2D and z ≈ 2.02 in 3D.19, 26, 27 For non-local updates, nu-
merical estimates yield a z value less than unity.19, 28–30

Since most phase transitions in nature are of first
order,31–34 it is also useful to discuss autocorrelation proper-
ties near first-order phase transitions. In a finite system, the
characteristic feature of a first-order transition is the double-
peaked energy distribution with an entropic suppression
regime between the two peaks. The dip is caused by the en-
tropic contribution to the Boltzmann factor ∝ exp(−2σLd−1),
where σ is the (reduced) interface tension and Ld − 1 is the pro-
jected area of the interfaces. Thus, the dynamics in a canonical
ensemble will suffer from the “supercritical slowing down,”
in which the tremendous average residence time the system
spends in a pure phase is described by the autocorrelation time
τ ∝ exp(2σLd−1).20, 35 Since this slowing down is related to
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the shape of the energetic probability distribution itself, it is
impossible to reduce the autocorrelation time by using cluster
or multigrid algorithms. The simulation in a generalized en-
semble, such as the multicanonical ensemble, where the slow-
ing down can be reduced to a powerlike behavior with τ ∝ Ldα

(α ≈ 1),36–41 can overcome this difficulty.
In this paper, we will investigate autocorrelation proper-

ties of different quantities for elastic, flexible polymers, de-
scribed by a simple coarse-grained model. The thermody-
namic behavior of the system is simulated by local monomer
displacement and Metropolis Monte Carlo sampling, resem-
bling Brownian dynamics in a canonical ensemble. The goal
is to identify structural transitions and transition temperatures
for this model.

The paper is structured as follows. The coarse-grained
polymer model, the simulation method, and a brief introduc-
tion to autocorrelation theory are described in Sec. II. Sim-
ulation results are presented and discussed in Sec. III. Our
conclusions are summarized in Sec. IV.

II. MODEL AND METHODS

A. Model

For our study, we use a generic model of a single flexi-
ble, elastic polymer chain.42 Monomers adjacent in the linear
chain are bonded by the anharmonic FENE (finitely extensi-
ble nonlinear elastic) potential43, 44

VFENE(rii+1) = −K

2
R2ln

[
1 −

(
rii+1 − r0

R

)2
]

. (1)

We set r0 = 1, which represents the distance where the FENE
potential is minimum, R = 3/7, and K = 98/5. Non-bonded
monomers interact via a truncated, shifted Lennard-Jones
potential

V mod
LJ (rij ) = VLJ(rij ) − VLJ(rc), (2)

with

VLJ(rij ) = 4ε

⎡
⎣(

σ

rij

)12

−
(

σ

rij

)6
⎤
⎦ , (3)

where we choose the energy scale to be ε = 1 and the length
scale to be σ = r0/21/6. The cut-off radius is set to rc = 2.5σ

so that VLJ(rc) ≈ −0.0163ε. For rij > rc, V mod
LJ (rij ) ≡ 0. The

total energy of a conformation ζ = (�r1, · · · , �rL) for a chain
with L monomers reads

E(ζ ) =
L−2∑
i=1

L∑
j=i+2

V mod
LJ (rij ) +

L−1∑
i=1

VFENE(rii+1). (4)

B. Simulation method

In our simulations, we employed the Metropolis Monte
Carlo method. In a single MC update, the conformation is
changed by a random local displacement of a monomer. Once
a monomer is randomly chosen, its position is changed within
a small cubic box with edge lengths d = 0.3r0. Denoting the
inverse thermal energy by β = 1/kBT, with kB ≡ 1 in our sim-

ulations, the probability of accepting such an update is given
by the Metropolis criterion23

p = min(1, exp[−β(Enew − Eold)]), (5)

where Eold and Enew are the energies before and after the
proposed update. According to Eq. (5), an update will be
directly accepted if Enew ≤ Eold. If Enew > Eold, the update
will be accepted only with the probability e−βδE, where δE

= Enew − Eold. In each simulation, we performed about
3 × 108 sweeps after extensive equilibration. A sweep
contains L Monte Carlo steps, where L is the number of
monomers for a chosen polymer. In this study, we compare
autocorrelation properties for flexible polymers with L = 30
and 55 monomers.

C. Autocorrelation theory

Suppose a time series with a large number of data from
an importance sampling MC simulation has been generated,
the expectation value of any quantity O can be estimated by
calculating the arithmetic mean over the Markov chain,

O = 1

N

N∑
j=1

Oj, (6)

where Oj is the value of O in the jth measurement and N is
the number of total measurements. In equilibrium, the expec-
tation value of O is the same as the expectation value of the
individual measurement

〈O〉 = 1

N

N∑
j=1

〈Oj 〉 = 〈O〉, (7)

because of time-translational invariance. In Metropolis simu-
lations, the individual measurements will not be independent.
Thus, by introducing the normalized autocorrelation function
(A(0) = 1),

A(k) = 〈OlOl+k〉 − 〈Ol〉2

σ 2
O

, (8)

where l can be any integer in the range [1, N − k] and σ 2
O

= 〈O2
l 〉 − 〈Ol〉2 = 〈O2〉 − 〈O〉2, the corresponding variance

of O is calculated as20

σ 2
O

= 〈O2〉 − 〈O〉2

= 2σ 2
O

N

[
1

2
+

N∑
k=1

A(k)

(
1 − k

N

)]
. (9)

For large time separation k, the autocorrelation function de-
cays exponentially,

A(k) −→ e
−k/τ

O,exp , (10)

where τO,exp is the exponential autocorrelation time of O. Be-
cause of large statistical fluctuations in the tail of A(k), the
accurate estimation of τO,exp is often difficult. By introducing
the integrated autocorrelation time,

τ ′
O,int = 1

2
+

N∑
k=1

A(k)

(
1 − k

N

)
, (11)
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Eq. (9) becomes

ε2
O

≡ σ 2
O

= 2σ 2
O

N
τ ′
O,int = σ 2

O

Neff

, (12)

with the effective statistics Neff = N/2τ ′
O,int. According to

Eq. (10), in any meaningful simulation with N � τO,exp, we
can safely neglect the correction term in the parentheses in
Eq. (11). This leads to the frequently employed definition of
the integrated autocorrelation time,

τO,int = 1

2
+

N∑
k=1

A(k). (13)

The estimation of the integrated autocorrelation time requires
the replacement of the expectation value in A(k) by mean val-
ues, e.g., 〈OlOl + k〉 and 〈Ol〉 by OlOl+k and Ol . Therefore, it
is useful to introduce the following estimator:

τ̃O,int(kmax) = 1

2
+

kmax∑
k=1

Ã(k), (14)

where Ã(k) is the estimator of A(k). Since Ã(k) usually decays
to zero as k increases, τ̃O,int will finally converge to a constant.
Because of the statistical noise of Ã(k) for large k, τ̃O,int is
obtained by averaging Ã(k) over several independent runs.

The standard estimator for the variance of O is

σ̃ 2
O = O2 − O

2 = (O − O)2 = 1

N

N∑
i=1

(Oi − O)2, (15)

and its expected value is

〈σ̃ 2
O〉 = 〈O2 − O

2〉 = σ 2
O

(
1 − 1

Neff

)
, (16)

with σ 2
O = 〈O2〉 − 〈O〉2. It is obvious that this form system-

atically underestimates the true value by a term of the order of
τO,int/N . The 2τO,int/N correction is the systematic error due
to the finiteness of the time series, and it is called bias. Even in
the case in which all the data are uncorrelated (τO,int = 1/2),
the estimator is still biased, 〈σ̃ 2

O〉 = σ 2
O (1 − 1/N). Thus, it is

reasonable to define the bias-corrected estimator

σ̃ 2
O,c ≡ Neff

Neff − 1
σ̃ 2

O = 1

N − 2τO,int

N∑
i=1

(Oi − O)2, (17)

which satisfies 〈σ̃ 2
O,c〉 = σ 2

O . Thus, the bias-corrected estima-
tor for the squared error of the mean value becomes

ε2
O

= σ̃ 2
O,c

Neff

= 1

N (Neff − 1)

N∑
i=1

(
Oi − O

)2
. (18)

For uncorrelated data, the error formula simplifies to

ε2
O

= σ̃ 2
O,c

N
= 1

N (N − 1)

N∑
i=1

(
Oi − O

)2
. (19)

Integrated autocorrelation times can also be estimated by
using the so-called binning method. Assuming that the time
series consists of N correlated measurements Oi, this time se-
ries can be divided into K bins, which should be large enough

so that the correlation of the data in each bins decays suffi-
ciently (NB � τO,int). In this way, a set of K uncorrelated data
subsets is generated, each of which contains NB data points

such that N = NBK. The binning block average O
B
k of the kth

block is calculated as

O
B
k = 1

NB

NB∑
i=1

O(k−1)NB+i , k = 1, . . . , K, (20)

and

O = 1

K

K∑
k=1

O
B
k , (21)

coincides with the average (6). Since each bin average repre-
sents an independent measurement, the variance of the bin-
ning block averages σ 2

O
B can be estimated from Eq. (17),

σ̃ 2
O

B
,c

= 1

K − 1

K∑
k=1

(
O

B
k − O

)2
, (22)

and the statistical error of the mean value ε2
O

≡ σ 2
O

= σ 2
O

B/K

is given by

ε2
O

=
σ̃ 2

O
B
,c

K
= 1

K(K − 1)

K∑
k=1

(
O

B
k − O

)2
. (23)

By comparing this expression with Eq. (12) and consider-
ing Eqs. (11) and (13), we see that σ 2

O
B/K = 2τO,intσ

2
O/N .

Hence, the autocorrelation time can also be estimated by
means of the binning variance as

τ̃O,bin = 1

2
NB

σ̃ 2
O

B
,c

σ̃ 2
O

. (24)

Since the bin averages are supposed to be uncorrelated, we
utilized the standard estimator (15) for the variance of the
individual measurements σ 2

O (N � 2τO,int). This method is
more convenient than the integration method (14) since a pre-
cise estimate of the autocorrelation function is not needed. For
uncorrelated data and NB = 1, σ̃ 2

O
B
,c

= σ̃ 2
O for N � 1. Conse-

quently τ̃O,bin = τO,int = 1/2. In the correlated case, too small
bin sizes will underestimate the autocorrelation time. Given a
time series consisting of N measurements, the estimator σ̃ 2

O

remains unchanged if NB is modified. Increasing NB reduces
the number of bins K which leads to the decrease of the vari-
ance σ̃ 2

O
B
,c

. However, the decrease rate is not the same as NB

is increased. Thus, the right-hand side of (24) will converge
to a constant value identical to τO,int. Therefore, one typically
plots the right-hand side of Eq. (24) for various values of NB
and estimates τO,int by reading the value the curve converges
to.20, 42

III. RESULTS

A. Autocorrelation times at constant displacement

For the interpretation of the autocorrelation times of
energy, square end-to-end distance, square radius of gyra-
tion, and number of contacts, it is helpful to first investigate
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FIG. 1. (a) Mean energy 〈E〉 and number of contacts 〈Nc〉; (b) heat capacity CV and thermal fluctuation of the number of contacts d〈Nc〉/dT; (c) square end-to-
end distance 〈R2

ee〉 and square radius of gyration 〈R2
gyr〉; (d) thermal fluctuations of the square end-to-end distance d〈R2

ee〉/dT and the square radius of gyration
d〈R2

gyr〉/dT for a flexible polymer with 30 monomers. Error bars are smaller than the symbol size.

thermodynamic properties of these quantities. We have plot-
ted the mean values of energy and number of contacts in
Fig. 1(a), as well as the heat capacity and thermal fluctua-
tion of the number of contacts in Fig. 1(b). A contact between
two non-bonded monomers is formed, if their distance is in
the interval rij ∈ [0.8, 1.2] for the 30-mer and rij ∈ [0.87,
1.13] for the 55-mer. The number of contacts is a simple dis-
crete order parameter which is also helpful in distinguishing
phases. It has proven to be particularly useful in studies of
lattice models.45–47 In the continuous model used here, it is a
robust parameter that does not depend on energetic model de-
tails. Square end-to-end distance and square radius of gyration
curves are shown in Fig. 1(c) and their thermal fluctuations in
Fig. 1(d). The two clear peaks at T ≈ 1.4 of the latter represent
the collapse transition of the 30-mer. Note that the fluctua-
tions of energy and contact number in Fig. 1(b) do not exhibit
a peak at the transition point, but only a “shoulder.” As the
temperature decreases, dissolved or random coils (gas phase)
collapse in a cooperative arrangement of the monomers, and
compact globular conformations (liquid phase) are favorably
formed. As the temperature decreases further, the polymer
transfers from the globular phase to the “solid” phase which is
characterized by locally crystalline or amorphous metastable
structures. A corresponding peak and valley which mark the
liquid-solid (crystallization) or freezing transition of the 30-
mer can be observed at T ≈ 0.28 in the heat capacity and
d〈Nc〉/dT curves, respectively, in Fig. 1(b). These results co-
incide qualitatively with those of a previous study, where a
slightly different model was employed.51 Due to insufficient

Metropolis sampling at low temperatures, we did not include
data in the T < 0.2 region.

We performed the integration of the autocorrelation (14)
and the binning analysis to estimate the integrated autocorre-
lation times at 17 temperatures in the interval T ∈ [0.26, 4.5]
for the 30-mer and at 16 temperatures in the interval T ∈ [0.3,
5] for the 55-mer. Mean values QO(x) (where QO(x) stands

for ÃO(k), τ̃ O,bin(NB), or τ̃ O,int(kmax)) for a quantity O were
calculated at each temperature in Nr (Nr > 20) independent
runs,

QO(x) = 1

Nr

Nr∑
i=1

Qi
O(x), (25)

where Qi
O(x) is the value calculated in the ith run. As shown

in Fig. 2, all estimates of autocorrelation functions and times
converge for large values of k, kmax, and NB, respectively, as
expected. The error of QO(x) is estimated by

ε2
Q

O
(x)

= 1

Nr − 1

Nr∑
i=1

(
Qi

O(x) − QO(x)
)2

, (26)

because all runs were performed independently of each other.
The consistency of the two different methods used for the esti-
mation of autocorrelation times for the investigated quantities
become apparent from Table I, where we have listed the auto-
correlation time estimate for three temperatures below, near,
and above the � point. The results coincide within the numer-
ical error bars.
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TABLE I. Autocorrelation times of E, R2
ee, R2

gyr, and Nc estimated by integration of autocorrelation functions and by using the binning method at three
temperatures below, near, and above the collapse transition.

T τ̃
E,int τ̃

E,bin τ̃
Nc,int τ̃

Nc,bin τ̃
R2

ee,int τ̃
R2

ee,bin τ̃
R2

gyr,int τ̃
R2

gyr,bin

0.8 122 ± 7 122 ± 13 101 ± 7 102 ± 13 696 ± 33 680 ± 75 427 ± 28 426 ± 50
1.37 810 ± 45 808 ± 94 763 ± 39 763 ± 93 1851 ± 103 1853 ± 201 2450 ± 138 2443 ± 272
3.5 209 ± 13 205 ± 25 446 ± 27 438 ± 52 2145 ± 106 2103 ± 228 2539 ± 121 2485 ± 268

In order to estimate the integrated autocorrelation time
systematically, we performed least-squares fitting for all the
curves in both the integration method of the autocorrelation
function and binning analysis at each temperature. The em-
pirical fit function for any quantity O is chosen to be of the
form

fO(x) = τ
f

O (1 − e−x/xf

), (27)

where x represents kmax in the integration of the autocorre-
lation functions method and NB in binning analysis; τ

f

O and
xf are two fit parameters. The fitting curves, also plotted in
Fig. 2, coincide well with the mean values of the integrated
autocorrelation times in the NB/kmax region, where conver-
gence sets in.

It is necessary to mention that when using the binning
method to calculate error bars one needs to ensure that the
binning block length is much larger than the autocorrelation
time. The reason is obvious from Fig. 2. If the autocorrelation

time estimated by the binning method has not yet converged,
the estimate τ̃O,bin is less than the integrated autocorrela-
tion time (τ̃O,bin < τO,int). Therefore, the estimated standard
deviation

ε2
O

=
σ̃ 2

O
B
,c

K
= 2σ̃ 2

O

N
τ̃O,bin (28)

underestimates the true value ε2
O

= 2σ 2
OτO,int/N in this case,

yielding a too small error estimate.
After the preliminary considerations, we will now dis-

cuss how the dependence of the autocorrelation time on the
temperature can be utilized for the identification of structural
transitions in the polymer system.

B. Slowing down at the � point

Figure 3 shows how the fitted estimated integrated
autocorrelation times τ

f

O vary with temperature. As the
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FIG. 2. (a), (b), and (c) Autocorrelation functions of E, R2
ee, R2

gyr, and Nc at temperatures below, near, and above the collapse transition temperature, respectively,
for L = 30. For each quantity, the estimated integrated autocorrelation time converges to a constant as shown in (d), (e), and (f). The corresponding binning
analysis results also show good convergence and are plotted in (g), (h), and (i). Dashed lines represent the fitted curves. Values of the fitted autocorrelation times
the curves converge to are listed in Table I.
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FIG. 3. Temperature dependence of integrated autocorrelation times (a) estimated with the binning method; (b) obtained by the integration of autocorrelation
functions for the 30-mer.

comparison shows, the autocorrelation times estimated by us-
ing the binning analysis are in very good agreement with the
results obtained by integrating autocorrelation functions.

The integrated autocorrelation time curves of R2
ee and

R2
gyr behave similarly at most of the temperatures except the

temperatures close to the freezing transition. This is not sur-
prising as both are structural quantities that are defined to
describe the compactness of the polymer. In addition, the
integrated autocorrelation time curves of E and Nc behave
similarly. Their relation can be understood as following. The
polymer conformation in the solid phase is characterized by
locally crystalline or amorphous metastable structures. There-
fore, the main contribution of each monomer to the energy
in this phase originates from the interaction between this
monomer and its non-bonded nearest neighbors. This is also
reflected by the number of contacts to the nearest neigh-
bors. Thus, E ∝ Nc in the solid phase (see Fig. 1(a)). The
autocorrelation times of the two structural quantities are al-
ways larger than the ones of E and Nc. The reason is that
these quantities are not particularly sensitive to conforma-
tional changes within a single phase. Furthermore, the dis-
placement update used here does not allow for immediate sub-
stantial changes. This can be seen in Fig. 4(a) where the time
series are shown at high temperature. From Figs. 4(b) and
4(c), one notices that E and Nc fluctuate more strongly than
R2

gyr.
The most important observation from Fig. 3 is that slow-

ing down appears near T ≈ 1.4 which signals the collapse
transition. This temperature is close to the peak positions of
the structural fluctuations shown in Fig. 1(d). Within this tem-

perature region, the autocorrelation time becomes extremal.
Large parts of the polymer have to behave cooperatively
which slows down the overall collapse dynamics.

Near the freezing transition (T ≈ 0.3), the autocorre-
lation times of all four quantities rapidly increase. Since
Metropolis simulations with local updates typically get stuck
in metastable states of the polymer at low temperatures, we do
not estimate autocorrelation times in the T < 0.26 region. The
freezing transition is, therefore, virtually inaccessible to any
autocorrelation time analysis based on local-update Metropo-
lis simulations. This is amplified by the fact that the autocor-
relation time increases naturally at low temperatures, because
of the low entropy. That means if there would be a signal of
the freezing transition at all in the autocorrelation time curves,
it would be difficult to identify it.

The autocorrelation times of R2
ee, R2

gyr, and Nc seem to
converge to constant values at high temperatures, whereas the
autocorrelation time of E decays. This is partly due to the fact
that the structural quantities and Nc possess upper limiting
values that are reached at high temperatures, thereby reduc-
ing the fluctuation width at constant displacement range. This
is a particular feature of the results obtained in simulations
with fixed maximum displacement and it is different if the ac-
ceptance rate is kept constant instead. This will be discussed
in Sec. III C.

The overall behavior is similar to Metropolis dynamics
for the two-dimensional Ising model on the square lattice, in
which the external field is excluded so that E ∈ [− 2JL2, 2JL2]
where J > 0 is the coupling constant and L is the lattice size
and M ∈ [− L2, L2].19
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FIG. 4. (a), (b), and (c) are parts of the time series of R2
gyr, E, and Nc at T = 5 in equilibrium for the 30-mer.
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FIG. 5. Same as Fig. 3, but for the 55-mer.

In order to verify that the general autocorrelation prop-
erties apply also to larger polymers, we repeated the simula-
tions for a 55-mer. From Fig. 5, we notice that the behavior
is qualitatively the same, but the autocorrelation times of all
quantities are larger than the ones for the 30-mer, as expected.
This supports our hypothesis that the qualitative behavior of
the autocorrelation times of the 30-mer is generic and repre-
sentative for autocorrelation properties of larger polymers. In
particular, this method offers a possible way for the identi-
fication of transitions, where standard canonical analysis of
quantities such as the specific heat fails.

C. Autocorrelation times at a fixed acceptance rate

In order to find out how the autocorrelation time changes
at a fixed acceptance rate rather than at a fixed maximum dis-
placement range, we used the binning method to calculate the

integrated autocorrelation times at different constant accep-
tance rates Paccp for different temperatures near the collapse
transition for the 30-mer. The results for the energetic auto-
correlation times τ̃E,bin(Paccp) are shown in Fig. 6(a), mea-
sured for five different temperatures. Autocorrelation times of
the other quantities exhibit a similar behavior. Two important
conclusions can be drawn: (i) the values of the autocorrelation
times depend on acceptance rate and temperature, but (ii) the
monotonic behavior of τ̃E,bin as a function of Paccp is virtu-
ally independent of the temperature. Thus, if multiplied by a
temperature-independent empirical modification factor

M(Paccp) = e
−4|Paccp−0.2|1.65

, (29)

the modified autocorrelation time curves become almost in-
dependent of Paccp at these temperatures (see Fig. 6(b)):

τ̃bin(Paccp) · M(Paccp) ≈ const. (30)

1

10

102

103

104

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

τ̃ E
,b

in
(P

ac
cp

)

Paccp

(a)

T = 0.65
T = 1.37
T = 2.3
T = 3.5
T = 4.5

1

10

102

103

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

τ̃ E
,b

in
(P

ac
cp

)
·M

(P
ac

cp
)

Paccp

(b)

T = 0.65
T = 1.37
T = 2.3
T = 3.5
T = 4.5

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
d ac
cp

(T
)

T

d = 0.3r0

(c)

10

102

103

104

0.5 1 1.5 2 2.5 3 3.5 4 4.5

τ̃
a bi

n(
T

)

T

(d)

τ̃a
E,bin

τ̃a
R2

ee,bin
τ̃a
R2

gyr,bin

τ̃a
Nc,bin

FIG. 6. (a) Integrated autocorrelation times of the energy τ̃
E,bin at different acceptance rates Paccp for various temperatures near the collapse transition of
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in the interval Paccp ∈ (0.14, 0.78). This feature of unifor-
mity in monotonic behavior and the empirical modification
factor (29) can then be used to modify the autocorrelation
times at all temperatures. For this purpose one reads the au-
tocorrelation time τ̃ d

bin(T ) and the acceptance rate P d
accp(T ) at

fixed maximum displacement at a given temperature T from
Figs. 3(a) and 6(c), respectively, calculates the modification
factor M(P d

accp(T )) from Eq. (29), and obtains the modified
autocorrelation time τ̃ a

bin at constant acceptance rate P a
accp by

making use of Eq. (30). For simplicity, we choose P a
accp = 0.2,

which yields

τ̃ a
bin(T ) = τ̃ d

bin(T ) · M(P d
accp(T )), (31)

since M(0.2) = 1. The temperature dependence of this mod-
ified autocorrelation time is shown in Fig. 6(d). One notices
that the peaks indicating the collapse transition are more pro-
nounced than the ones in the fixed maximum displacement
case, but qualitatively (and quantitatively regarding the �

transition point) this modified approach leads to similar re-
sults. In the temperature range investigated here, the autocor-
relation times of all quantities seem to decrease above the �

point. This is different than the behavior at fixed maximum
displacement range (cp. Fig. 3(a)).

IV. SUMMARY

Employing the Metropolis Monte Carlo algorithm, we
have performed computer simulations of a simple coarse-
grained model for flexible, elastic polymers to investigate the
autocorrelation time properties for different quantities. Two
different methods were employed to estimate autocorrelation
times as functions of temperatures for polymers with 30 and
55 monomers: by integration of autocorrelation functions and
by using the binning method. The results obtained for differ-
ent energetic and structural quantities by averaging over more
than 20 independent simulations are consistent.

The major result of our study is that autocorrelation time
changes can be used to locate structural transitions of poly-
mers, because of algorithmic slowing down. We deliberately
employed Metropolis sampling and local displacement up-
dates, as slowing down is particularly apparent in this case.
We could clearly identify the collapse transition point for the
two chain lengths investigated. Low-temperature transitions
are not accessible because of the limitations of Metropolis
sampling in low-entropy regions of the state space.

The identification of transitions by means of auto-
correlation time analysis is, therefore, an alternative and
simple method to more advanced technique such as micro-
canonical analysis42, 48–51 or by investigating partition func-
tion zeros.52–55 Those methods require the precise estima-
tion of the density of states of the system which can only be
achieved in sophisticated generalized-ensemble simulations.
The autocorrelation time analysis method is very robust and
can be used as an alternative method for the quantitative es-
timation of transition temperatures, in particular, if the more
qualitative standard canonical analysis of “peaks” and “shoul-
ders” in fluctuating quantities remains inconclusive.
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