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For the estimation of transition points of finite elastic, flexible polymers with chain lengths from 13 to 309
monomers, we compare systematically transition temperatures obtained by the Fisher partition function zeros
approach with recent results from microcanonical inflection-point analysis. These methods rely on accurate
numerical estimates of the density of states, which have been obtained by advanced multicanonical Monte Carlo
sampling techniques. Both the Fisher zeros method and microcanonical inflection-point analysis yield very similar
results and enable the unique identification of transition points in finite systems, which is typically impossible in
the conventional canonical analysis of thermodynamic quantities.
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I. INTRODUCTION

Phase transitions are among the most fascinating phenom-
ena in nature, and huge efforts have been made to understand
the features that characterize these cooperative processes for
many different systems in a general and systematic way.
Strictly speaking, thermodynamic phase transitions occur
only in the thermodynamic limit, i.e., for infinitely large
systems. However, recent growing interest has also involved
finite systems. Prominent representatives for such systems
are finite polymer chains and, in particular, proteins. Because
of surprisingly manifest common properties of transitions in
finite and infinite systems, the question arose to what extent
the relationship between “pseudotransitions” in finite systems
and their infinite-system counterparts can be stressed. It is
well known that the precise determination of the location
of transitions in finite systems is typically ambiguous, and
different fluctuating quantities suggest different points in pa-
rameter space as transition points. In the thermodynamic limit,
scale freedom would let this space collapse to a single unique
transition point. However, most contemporary problems in soft
condensed matter and technology are apparently of small size,
for which the thermodynamic limit is not applicable at all. For
this reason, it is necessary to verify if the methods of statistical
analysis that have been developed for infinitely large systems
and have proven to be so extremely successful in these cases
can be employed for, or adapted to, finite systems as well.

Another important aspect is the fact that computer simu-
lations open a completely new view on statistical physics, as
only the most recently developed computational methods and
algorithms enable the accurate study of fundamental statistical
quantities that could hardly be approached by theoretical
methods in the course of the establishment of the theory of
complex phenomena and phase transitions in the past decades.
One such quantity is the density of states g(E), i.e., the number
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of system configurations within a given energy interval. Its
logarithm can be associated with the entropy of the system
in energy space, S(E) = kB ln g(E), and the first derivative
with respect to energy yields the inverse temperature β(E) =
dS(E)/dE. It has been shown recently that the careful analysis
of inflection points of this quantity reveals all transitions in the
system uniquely and without any ambiguity [1]. Since in this
approach the temperature is considered to be a derived quantity
and a function of energy, this method is a representative of
microcanonical statistical analysis.

In this paper we will also make use of the density of states,
but we are going to interpret its features in a canonical way
by considering the partition function Z(T ) of the system as a
function of the (canonical) temperature T . The thermodynamic
potential associated with the canonical ensemble (we consider
fixed system size N and volume V ) is the free energy
F (T ) = −kBT ln Z(T ). Thermodynamic phase transitions are
located in temperature space, where a derivative of F of a
certain order exhibits a singularity [2–6]. Examples are the
canonical entropy S(T ) = −(dF (T )/dT )N,V and response
quantities such as the heat capacity CV = T (dS(T )/dT )N,V =
−T (d2F (T )/dT 2)N,V . Yang and Lee were the first to relate
catastrophic singularities to partition function zeros in the
grand canonical ensemble by introducing complex fugacities
[7]. Fisher evolved this idea for the canonical partition function
by introducing a complex temperature plane [8].

There is extensive literature on applications of such meth-
ods to various physical systems such as spin models (see, e.g.,
Refs. [9–11]), proteins [12,13], and to polymers [14,15]. Most
applications of the partition function zero analysis method are
considered to be alternative approaches to scaling properties
near phase transitions in large systems. However, this method
is also promising for the identification and characterization
of analogs of phase transitions in finite systems, in particular
in finite linear polymer chains that are known to exhibit a
variety of structural transitions which sensitively depend on
the chain length [1,16–18]. The understanding of these struc-
ture formation processes is relevant from both fundamental
scientific and applied technological perspectives of molecular
building-block systems.
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Typically these processes are accompanied by nucleation
transitions, where crystalline shapes form from a liquid or va-
por phase. Crystalline or glasslike structures of single polymer
chains can serve as the basic elements of larger assemblies
on nanoscopic scales; and beyond that, the crystallization
behavior exhibits strong similarities to the cluster formation of
colloidal (or atomic) particles [17]. The nucleation is governed
by finite-size and surface effects, where functionalization
is based on the individual structural properties of small
molecules forming large-scale composites [17]. These effects
can be analyzed by means of microcanonical thermodynamics
[19], in which case transition properties can be derived
directly and systematically from the caloric entropy curve
[1]. This approach has been successfully applied to a variety
of structural transitions in macromolecular systems such as
folding [1,20–22], aggregation [23], and adsorption processes
of polymers and proteins [24,25]. One particular problem
that has gained increased interest recently is the influence
of the interaction range on the stability of structural phases
[21,26]. This has been addressed by means of systematic
microcanonical analyses in discrete and continuous polymer
models.

In principle, once the density of states g(E) is given,
the partition function can easily be calculated and its zeros
identified. However, examples of systems for which g(E)
can be calculated exactly, or quite accurately by theoretical
methods, are very rare. It requires sophisticated numerical
methods such as generalized-ensemble Monte Carlo sampling
that allow for accurate estimates of g(E). Among the most
popular methods are multicanonical sampling [27,28] and
the Wang-Landau method [29]. These methods are capable
of scanning the entire phase space effectively in a single
simulation.

Compared to recent studies on partition function zero
analyses of polymers such as Ref. [14], we here employ a more
realistic coarse-grained model for elastic, flexible polymers
with continuous, distance-dependent monomer-monomer in-
teractions based on van der Waals forces. Recently developed
sophisticated simulation methodologies specific to this model
[30] enable a very precise estimation of fundamental statistical
quantities such as the density of states. This is essential for the
careful identification of low-entropy phases that include liquid-
solid and solid-solid transitions. For finite systems, these
transitions are strongly affected by finite-size effects, which
are of particular interest in this comparative study of advanced
statistical analysis methods. One major question is whether
the partition function zeros method, which is effectively a
canonical approach, is capable of revealing the same intricate
details of these effects as the microcanonical inflection-point
analysis [1]. For this purpose, we systematically analyze the
canonical partition function zeros for all chain lengths ranging
from 13 to 309 monomers in this model and identify and
classify all structural transitions. Since the finite-size effects in
the solid phases are surface effects specific to the explicit chain
length, transitions in between them do not exhibit obvious
scaling properties [1,17,31]. Therefore, scaling considerations
are not in the focus of this study.

This paper is organized as follows: In Sec. II we review the
partition function zeros approach and describe the numerical
methods used for the estimation of the density of states and

for the identification of the Fisher zeros. This section also
includes a brief discussion of the microcanonical inflection-
point analysis. The results of our study are presented in Sec. III,
where we first discuss the different scenarios in the liquid-solid
and solid-solid transition regimes thoroughly by investigating
the zero maps for four representative examples that differ in the
processes of Mackay and anti-Mackay overlayer formation.
We then generalize and summarize the results obtained by
the zeros method for all polymers with chain lengths up to
309 monomers and compare with former results obtained
by microcanonical inflection-point analysis [1]. The paper is
concluded with a summary in Sec. IV.

II. METHODS AND MODEL

A. Partition function zeros and thermodynamics

We consider a polymer system in thermal equilibrium with
a heat bath that is described by the canonical NV T ensemble
(constant particle number N , volume V , and temperature T ).
This ensemble connects microscopic quantities and thermo-
dynamical properties via statistical relations described by the
canonical partition function Z. In thermal equilibrium, the
probability for a discrete energetic state is pm = gme−βEm/Z,
where gm denotes the density of states at each energy Em;
β = 1/kBT is the inverse thermal energy and kB is the
Boltzmann constant. In this work the units are chosen so
that kB = 1. For a discrete ensemble of energetic states, the
partition function reads

Z =
∑
m

gme−βEm = e−βE0
∑
m

gme−β(Em−E0), (1)

where we have extracted the Boltzmann factor of the ground
state for future convenience. All essential thermodynamic
quantities such as entropy and response functions like the heat
capacity derive from the free energy F = − ln Z/β.

For the subsequent analysis of a model with a continuous
energy spectrum, it is necessary to discretize the density of
states. Estimates obtained by means of generalized-ensemble
Monte Carlo methods such as multicanonical [27,28] and
Wang-Landau sampling [29] are naturally discrete in energy
space (see Fig. 1). If the energy bin size is chosen to be ε, the
partition function (1) can be rewritten as

Z = e−βE0

n−1∑
m=0

gme−βmε, (2)

where n denotes the total number of bins.
Defining x ≡ e−βε, the partition function can assume the

form of a polynomial

Z = e−βE0

n−1∑
m=0

gmxm = e−βE0

n−1∏
j=1

(x − xj ). (3)

In the latter expression, the polynomial was decomposed into
linear factors (x − xj ), where xj denotes the j th zero (or root)
of the polynomial. With the polynomial defined in this way, the
density of states can cover the entire space of energy for both
positive and negative energies. Note that x � 0; if T → 0,
then x → 0, whereas x → 1, if T → ∞.
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FIG. 1. (Color online) Pictorial demonstration of the discretiza-
tion of a continuous density of states over an energy range which
is divided in n bins of size ε. Here the bins are labeled from 0 to
n − 1; thus the energy of the mth bin is Em = E0 + mε. All states
with energy between Em and Em + ε are recorded in the mth bin gm.

In Eq. (3), Z is written as a polynomial of degree n − 1
which has n − 1, generally complex, roots. Since Z ∈ � and
for a finite system always Z > 0 and since the coefficients
gm are nonzero positive real numbers, the roots must occur as
complex conjugate pairs aj ± ibj with a,b ∈ �. Real-valued
roots must be negative.

Once the partition function is determined thermodynamic
quantities can be extracted from the the Helmholtz free energy
F . The internal energy is

U = 〈E〉 = −∂ ln Z

∂β
, (4)

and, most interesting for the following consideration, the
specific heat at constant volume reads

cV = 1

N

(
∂U

∂T

)
V

= kBβ2

N

∂2 ln Z

∂β2
. (5)

Inserting the factorization (3), these quantities can also be
expressed by the Fisher zero components:

U = E0 +
n−1∑
j=1

(
εx

x − xj

)
= E0 +

n−1∑
j=1

[
εx(x − aj )

(x − aj )2 + b2
j

]

(6)

and

cV = kBx(ln x)2

N

n−1∑
j=1

[ −xj

(x − xj )2

]

= kBx(ln x)2

N

n−1∑
j=1

{−aj (x − aj )2 + b2
j (2x − aj )

[(x − aj )2 + b2
j ]2

}
. (7)

Obviously this expression can only become singular at x = aj ,
if bj = 0, i.e., if the j th zero lies on the positive real axis.
According to Yang and Lee, zeros that come arbitrarily close
to the real axis in the thermodynamic limit mark the transition
points. This is essential for our study as we are interested here

exclusively in transition properties of polymers of finite length.
Therefore, we do not expect to find any real-valued zeros in the
analysis of the complex-zero space of these systems. Rather,
we will identify the zeros closest to the positive real axis,
which are called the leading zeros because they contribute
most to the quantity of interest, if x ≈ aj . If such zeros have
a rather isolated appearance in the distribution of the zeros in
the complex map near the positive real axis, they represent
a signal in that quantity that might become a singularity in
the infinitely large system. At least, in the finite system, they
indicate increased thermal activity. Canonical quantities such
as the specific heat typically possess a peak or a “shoulder” in
those regions in temperature space.

Technically, apart from finite-size scaling, there are two
possibilities to define transition points for finite systems by
means of partition function zeros. Either one considers the
zero as if it lies on a circle (in first-order like transitions, the
transition-state zeros distribute indeed near a circular line),
in which case the radius defined via |xj |2 = a2

j + b2
j can be

used to locate the intersection point on the positive real axis:
xc ≡ a′

j = |xj |. Alternatively, since bj will be small near the
positive real axis, one can also simply choose xc = aj ≈ |xj |.
Either way, by performing the projection upon the real axis, a
specific-heat singularity is mimicked even for a finite system.
The transition point can then be defined by

Tc = − ε

kB ln |xj | . (8)

On this basis, conclusions about the structural transitions of
finite-length flexible polymers will be drawn in this study,
but these transitions should not be confused with the strictly
defined thermodynamic phase transitions in the Yang-Lee
sense.

The accurate estimation of the partition function zeros
requires two separate parts that for a complex system can only
be accomplished computationally. First, generalized-ensemble
Monte Carlo simulations have to be performed to obtain the
density of states. Second, all zeros of the polynomial form of
the partition function must be identified. Since a polynomial
of degree five or higher has no algebraic solution in general,
as stated by the Abel-Ruffini theorem, the zeros can only be
found by means of numerical computation. We will review the
polymer model and the simulation and analysis methods used
in the following.

B. Coarse-grained polymer model

A linear polymer of length L is formed by concatenation of
L identical chemical units called monomers. Each monomer is
composed of several atoms, thus the size of the chain suitable
for simulation is limited by the computational resources
and methods currently available. For the study of generic
thermodynamic properties of polymers, however, all-atom
models can typically be replaced by a simpler coarse-grained
representation with effective interactions. We here consider
such a generic coarse-grained model for linear, elastic, flexible
polymers [16]. Nonbonded monomers interact pairwise via a
truncated and shifted Lennard-Jones (LJ) potential

V mod
LJ (rij ) = VLJ[min(rij ,rc)] − VLJ(rc), (9)
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where rij denotes the distance between the ith and the j th
monomer, rc is the cutoff distance, and

VLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(10)

is the standard LJ potential. In this work the LJ parameters
were chosen as ε = 1, σ = 2−1/6r0, and rc = 2.5σ .

The elastic bonds between monomers adjacent along the
chain are modeled by the finitely extensible nonlinear elastic
(FENE) potential [32]

VFENE(rii+1) = −K

2
R2 ln

[
1 −

(
rii+1 − r0

R

)2]
. (11)

This potential possesses a minimum at r0 and diverges for
r → r0 ± R. K is a spring constant, and we set the parameters
as R = 0.3, r0 = 0.7, and K = 40.

C. Numerical methods

1. Monte Carlo sampling in a generalized ensemble

Since the simulation of structural phases of polymers is
challenging, even for a coarse-grained model and moderate
system sizes, a sophisticated advanced Monte Carlo update set
[30] was applied in combination with multicanonical sampling
[27,28,30]. The majority of moves consisted of attempted
displacements of single monomers within a sphere around
their original location. Depending on energy E and number of
monomers N the radii of these spheres were chosen such that
high acceptance rates could be achieved for all energies and
system sizes. In addition, we used bond-rebridging moves,
where all monomers keep their position, but the linkage
between them is altered. Furthermore, a novel cut-and-paste
move was developed in which one monomer is removed and
reinserted in an entirely different location within the polymer
chain.

Most of the data were produced in a single simulation
by sampling a generalized “grand-multicanonical” ensemble
[30]. The main goal was to avoid free energy barriers by
enabling the system to change its size. Therefore, in addition
to the trial update schemes described above, a Monte Carlo
step was introduced by means of which single monomers
could randomly be added or removed. A weight function
W (E,N ) assured that all energies and sizes were visited
with the same probability. It was tuned using a delayed
Wang-Landau procedure, in which the modification factor of
the original Wang-Landau method is made weight-dependent.
If the multicanonical weight function at Monte Carlo “time” t

is denoted by Wt , then it is modified after the next update to

Wt+1(E,N ) = Wt (E,N )/f Wt (E,N)/Wt−d (E,N) (12)

for E = Et−d , N = Nt−d . For other values of E and N , the
weights remain unchanged as in a conventional multicanonical
simulation. Therefore, the effect of the Wang-Landau mod-
ification factor f to smooth out the free-energy landscape
is delayed by d. This slows down the saturation speed of
Wang-Landau sampling and enables a better efficiency in
exploring phase space regions of low entropy at low energy,
in particular in isolated regions that might contain hidden
barriers. For the polymer system considered here, this is

particularly relevant in the solid-solid transition regime. A
sufficiently large delay for the polymer model considered here
is obtained by the choice d = 104.

Once the weights had converged data were generated in
a grand-multicanonical production that consisted of approxi-
mately 2 × 1012 Monte Carlo moves and consumed about 0.5
CPU years.

2. Zeros finder

Computing the zeros of polynomials can be posed as an
eigenvalue problem [33,34]. Consider the matrix pair (A,B)
where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 −g0

1 0 0 · · · 0 −g1

0 1 0 · · · 0 −g2

0 0 1 · · · 0 −g3
...

...
...

. . .
...

...
0 0 0 · · · 1 −gn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

is the Frobenius companion matrix related to a monic polyno-
mial [35] of degree n [36], and

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 gn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14)

Then a straightforward computation shows that

det (xB − A) =
∑
m

gmxm = P (x). (15)

On the other hand, the well-known generalized eigenvalue
problem (GEP) [37] can be stated as

det (λB − A) = 0. (16)

By comparing Eqs. (15) and (16) one finds that eigenvalues
of the matrix pencil (A,B) are the zeros of P , i.e., xk = λk .
The GEP can be solved by the QZ algorithm [38], just after
performing a balance on the matrix pair (A,B), which is very
important for accuracy [39–41]. Both of these algorithms can
be found in LAPACK [42]. Alternatively, as implemented
in MATHEMATICA [43], one can write a companion matrix
of P as

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 −g1/g0

1 0 0 · · · 0 −g2/g0

0 1 0 · · · 0 −g3/g0

0 0 1 · · · 0 −g4/g0
...

...
...

. . .
... . . .

0 0 0 · · · 1 −gn/g0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (17)

Then the zeros of P are obtained directly by diagonalization
of C and given by

xk = 1

λk

. (18)

This method is more time consuming but also more robust than
the previous one.
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FIG. 2. (Color online) Complex plane map of the partition function zeros for chain size: (a) L = 35, (b) L = 55, (c) L = 90, and
(d) L = 300. The leading zeros are highlighted as follows: From x = 0 to 1 green squares denote “solid-solid” transitions, magenta diamonds
denote “liquid-solid” transitions, and blue circles denote “gas-liquid” transitions.

We employed both methods for the estimation of the
partition function zeros (3).

3. Microcanonical inflection-point analysis

An alternative approach to unravel transition properties of
finite-size systems is the direct microcanonical analysis [19] of
caloric quantities derived from the entropy S(E) = kB ln g(E).
The basic idea is that the interplay of energy and entropy
and, in particular, changes of it, signal cooperative system
behavior that can be interpreted as a transition (and in the
thermodynamic limit as a phase transition) of the system.
Then first and higher derivatives of S(E) reveal the transition
points of the system in energy space. However, since the first
derivative is the reciprocal microcanonical temperature,

β(E) ≡ T −1(E) =
(

∂S(E)

∂E

)
N,V

, (19)

energetic transition points can also be associated with transi-
tion temperatures. Transitions occur if β(E) responds least

sensitively to changes in the energy. The slope of the
corresponding inflection points can be used to distinguish first-
and second-order transitions systematically. If

γ (E) =
(

∂β(E)

∂E

)
N,V

=
(

∂2S(E)

∂E2

)
N,V

(20)

exhibits a positive-valued peak at the inflection point, the tran-
sition resembles a first-order transition, whereas a negative-
valued peak indicates a second-order transition. This method
is called microcanonical inflection-point analysis [1]. In the
following, we will compare the transition temperatures ob-
tained from the leading zeros with microcanonical estimates.

III. RESULTS AND DISCUSSION

Based on the density of states estimates obtained in mul-
ticanonical simulations, we calculated the partition function
zeros for the elastic flexible polymer model for chain lengths
L ranging from 13 to 309 monomers. The structural transition
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behavior was investigated previously by conventional canon-
ical statistical analysis of “peaks” and “shoulders” of fluctu-
ating energetic and structural quantities as functions of the
canonical temperature [16,17]. Subsequently, the densities of
states of this set of polymers were analyzed systematically by
means of microcanonical inflection-point analysis, with partic-
ular focus on the typically hardly accessible low-temperature
transition behavior (freezing, solid-solid transitions) [1]. The
microcanonical analysis is based on estimates of the micro-
canonical entropy and its derivatives and therefore requires
highly accurate data. Therefore, it is not only interesting from
the statistical physics point of view to study the partition
function zeros, but also for practical purposes. The major
information about structural transitions is already encoded in
the corresponding leading zeros, which are rather simple to
identify. The partition function zero method thus turns out to
be a robust method for the identification of transition points. It
is, therefore, highly interesting to verify whether this method
is capable of finding indications for the same transitions that
have already been identified by means of microcanonical
inflection-point analysis.

Figure 2 shows the distributions of the zeros identified from
the discretized densities of states for specific chain lengths
L = 35,55,90, and 300 and using the energy bin sizes ε =
0.07,0.11,0.20, and 0.29, respectively. It is worth noting that
the zeros, and thus their distribution, do generally depend on
the choice of ε, but the transition temperature estimates remain
widely unaffected if ε is changed. Moreover, since the data
series used for the estimation of the density of states are finite,
different simulation runs yield different values of the zeros.

Note that we plot the zeros differently than Ref. [14]. In our
case they are strictly confined within a circle with radius 1 (the
boundary at 1 corresponds to infinite temperature). We also
define the transition temperature differently for a finite system.
Reference [14] considers only the real part of the leading zero,
whereas we prefer the absolute value, motivated by the fact
that at first-order transitions the zeros lie on a circle whose
radius is a unique estimator for the transition temperature.

The section of the map for L = 35 shown in Fig. 3 contains
sets of zeros obtained in two independent simulations (circles
and triangles). By standard jackknife error analysis [44–48],
the statistical error of the components of the complex zeros
was estimated from 10 independent simulations and error bars
are shown for the leading zeros (squares) only (if larger than
symbol size). Thus, for the analysis of transitions, the method
is sufficiently robust and enables the identification of transition
points.

We only analyze here the zero maps for L = 35,55,90,

and 300, because these system sizes are representative for
the various transition behaviors that have been systematically
and uniquely identified for polymer chains with lengths
in the above mentioned interval in canonical [16–18] and
microcanonical analyses [1]. From these studies it is known
that in this model polymers with “magic” length L =
13,55,147,309, . . . possess a second-order-like collapse (“gas-
liquid”) transition and a very strong first-order-like freezing
or “liquid-solid” transition from the compact, globular liquid
phase into an almost perfect icosahedral Mackay structure
[49], where the facets are arranged as fcc overlayers. For inter-
mediate chain lengths, the optimal packing in the solid phase
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FIG. 3. (Color online) Zoom into the zeros map for L = 35.
Black circles and red triangles represent the zeros obtained in two
different simulations. Whereas the positions of nonleading zeros
vary, the leading zeros are very close to each other and the overall
distribution pattern is very similar. The blue squares represent the
average values of the leading zeros over ten different simulations.
Error bars are shown for the leading zero that corresponds to the
liquid-solid transition; in the other cases the error is smaller than the
symbol size.

can be Mackay or anti-Mackay (hcp overlayers), depending
on the system size and the temperature. In other words, for
certain groups of chain lengths, an additional “solid-solid”
transition can be found, in which anti-Mackay overlayers
turn into energetically more preferred Mackay facets at very
low temperatures [1,16–18]. This behavior of finite particle
systems is also well known from atomic clusters [50–53].

For the systems explicitly discussed here, this means
that we expect to find three transitions for L = 35 and 90,
whereas the solid-solid transition is absent for L = 55. For
L = 300, the liquid-solid and the solid-solid transition merge
and occur at about the same temperature. These transitions
can be distinguished microcanonically, but not canonically.
Therefore, we do not expect to find indications of separate
transitions in the analysis of the leading zeros.

As earlier analyses revealed [1,16], the liquid-solid and
solid-solid transitions for system sizes 31 � L � 54 have
peculiar characteristics. Except for the special case L = 38 that
forms a truncated fcc octahedron, these polymers crystallize
in two different ways by cooling down from the liquid
phase [16]. With high probability, more than one icosahedral
nucleus crystallizes out of the liquid by forming anti-Mackay
overlayers and by an additional solid-solid transition turns into
a single icosahedral nucleus with 13 monomers and a Mackay
overlayer formed by the remaining ones. Alternatively, with
lower probability, the anti-Mackay multicore structure can
also form out of the liquid via an intermediate unstable phase
dominated by a single-core structure with Mackay overlayer.
Therefore, the anti-Mackay solid phase is a mixed phase that
also contains Mackay morphologies. As a result the liquid-
solid transition for these system sizes does not exhibit the same
characteristic as for larger polymers and is actually second-
order-like [1]. To conclude, all three structural transitions
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for L = 35 are second-order-like. The corresponding zero
maps shown in Figs. 2(a) and 3 indeed reveal three separate
pairs of leading zeros that represent these transitions.

The polymer chain containing 55 monomers is “magic.”
For this reason, it exhibits a particularly strong liquid-solid
transition at T ≈ 0.33 into a perfect icosahedral conformation
[16] with complete Mackay overlayer. A stable anti-Mackay
phase does not exist, and, therefore, no solid-solid transition
occurs. Consequently, the zero map shown in Fig. 2(b) reveals
only two sets of leading zeros representing the 	 collapse
and the nucleation transition. The most striking feature is the
observation that there is an increased accumulation of zeros on
a circle that contains the pair of the leading zeros associated
with the liquid-solid transition. The circular distribution has
to be attributed to the self-reciprocity of the partition function
polynomial [54] at a phase transition with coexisting phases
in which case the energetic canonical distribution is bimodal
and virtually symmetric. Therefore, the circular pattern can be
interpreted as the signature of first-order-like transitions in the
map of Fisher partition function zeros.

For the polymer with L = 90 monomers, the structural
transitions can clearly be identified in the corresponding
zeros map [Fig. 2(c)]. The liquid-solid transition into the
anti-Mackay solid phase is represented by a circular zeros dis-
tribution, but neither the collapse transition nor the solid-solid
crossover to icosahedral Mackay structures exhibit obvious
features in the zero distribution other than prominent locations
of the leading zeros. In correspondence with the previous
microcanonical analysis, these transitions are classified as of
second order. It is worth mentioning that the chain length
L = 90 is close to the threshold length (L ≈ 110), at which
in the canonical interpretation the liquid turns directly to
solid Mackay structures at the liquid-solid transition point and
liquid-solid and solid-solid transitions merge.

No separate solid-solid transition occurs for chain lengths
L > 110 until the next “magic” limit L = 147 is reached
[1,17]; i.e., the Mackay phase is the only stable solid phase.
Microcanonically speaking, the solid-solid transition lies
energetically within the latent heat interval of the first-order
liquid-solid transition and can no longer be resolved in
the canonical analysis (the specific heat exhibits only one
sharp peak in these cases [17]). The zeros map shown in
Fig. 2(c) reveals a very pronounced circular distribution,
and the projected intersection point with the positive x axis
corresponds indeed to the liquid-solid transition temperature.

While L = 90 is a length below the anti-Mackay–Mackay
threshold, our last example, L = 300, is above the correspond-
ing threshold in the following segment of chain lengths that
lies between two magic lengths, 147 < L � 309 (L = 309 is
the next “magic” chain length). The most surprising feature
is that in temperature space liquid-solid and solid-solid transi-
tions merge, whereas energetically both can be distinguished
clearly as first-order-like transitions [1]. The trend is that
the solid-solid transition will shift to higher microcanonical
temperatures than the liquid-solid transition when increasing L

towards L = 309. This microcanonical crossover behavior has
already been known in other systems and is a pure finite-size
effect [26]. The corresponding root map shown in Fig. 2(d)
displays only the general canonical behavior; therefore, only
one circle represents this first-order-like double-transition.

TABLE I. Comparison of transition temperatures for solid-solid
(ss), liquid-solid (ls), and gas-liquid (gl) transitions for L = 35,55,90,

and 300 as obtained by the partition function zero method (Tz) and
by microcanonical inflection-point analysis (Tm). These estimates are
compared to peak positions of the heat-capacity curves (T ss,ls

cV
) and

fluctuations of the radius of gyration (T gl
d〈R〉/dT ), respectively. The

maximum 1σ tolerance of all estimates is ±1 in the last digit. There
is no solid-solid transition for the 55-mer. The solid-solid transition of
the 300-mer can only be distinguished from the liquid-solid transition
in the microcanonical inflection-point analysis.

Solid-solid Liquid-solid Gas-liquid

L T ss
z T ss

m T ss
CV

T ls
z T ls

m T ls
CV

T
gl

z T
gl

m T
gl
d〈R〉/dT

35 0.15 0.14 0.14 0.39 0.39 0.38 1.39 1.39 1.35
55 N/A N/A N/A 0.33 0.33 0.33 1.53 1.51 1.53
90 0.26 0.26 0.27 0.33 0.33 0.33 1.68 1.65 1.67
300 N/A 0.44 N/A 0.43 0.43 0.43 1.97 1.88 1.97

For the explicit estimation of the transition temperatures
from the Fisher zeros according to Eq. (8), there is the
ambiguity to use either the absolute values of the complex
zeros or their real parts only:

Ttr = − 2ε

kB ln
(
a2

j + b2
j

) ≈ − ε

kB ln aj

. (21)

Both values differ for finite systems, but converge in the
thermodynamic limit. Since we already know that distributions
of zeros for first-order-like transitions are circular, we chose to
define transition points by means of the absolute values (corre-
sponding to the radius of the circle). For the four examples that
we discuss here in more detail, the corresponding values are
listed in Table I. These estimates are in very good agreement
with the transition temperatures obtained by microcanonical
analysis. Since the 	 transition is only represented by a weak
shoulder in the heat capacity curves shown in Fig. 4, we
consider in these cases the corresponding peak positions of the
fluctuations of the radius of gyration, d〈Rgyr〉/dT , as a more
appropriate indicator of these transitions. This is a general
problem of the canonical analysis of fluctuating quantities
and the major reason for the introduction of methods that
enable a unique identification of transition points even for
finite systems.

For this reason both the zeros method and the microcanon-
ical inflection-point analysis are more useful for the definition
of unique transition temperatures than the conventional ap-
proach of the quantitative analysis of fluctuating quantities.
Furthermore, the analysis of zero distributions or microcanon-
ical inflection points allow the discrimination between first-
and second-order-like transitions. This information is not
easily accessible from ordinary canonical statistical analysis.
In Figs. 4(a)–4(d), vertical lines are located at the positions of
the transition transitions obtained by the analysis of the Fisher
zeros.

Figure 5 summarizes our results of the Fisher zero analysis
for all chain lengths in the interval 13 � L � 309. For
comparison, the data from the microcanonical inflection-point
analysis are also shown. Although basically founded on the
conventional canonical understanding of temperature, the
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FIG. 4. (Color online) Heat capacity curves for chain sizes: (a) L = 35, (b) L = 55, (c) L = 90, and (d) L = 300. Plotted are the curves
obtained from the zeros of the partition function and, for comparison, by direct calculation from the density of states. The inset shows the relative
differences between them. The small deviations make it evident that all zeros were identified correctly. The vertical lines are located at the
transition temperatures calculated from the leading zeros. Dashed and solid lines represent first- and second-order-like transitions, respectively.

zeros method captures surprisingly many details of transi-
tion behavior in finite polymer systems that were formerly
accessible only by microcanonical analysis. Note that the
temperature axis represents the microcanonical transition
temperatures in the case of the microcanonical analysis,
whereas it scales canonical transition temperatures obtained by
the zeros method. These temperature estimates do not typically
coincide, and this is why larger deviations in the estimates of
transition temperatures seem to occur, particularly for small
systems. Furthermore, in those cases the indicators for the
transitions are very weak (which means that the transitions
are also very weak) in both methods. This explains why the
numerical error of the transition temperatures is larger for
small systems than it is for larger ones (L � 55) that exhibit
more stable structural phases.

IV. SUMMARY

We calculated Fisher partition function zeros for a generic
model of flexible, elastic polymers on the basis of accurate

estimates of the densities of states for chain lengths 13 � L �
309. For the entire range of chain lengths, we estimated tran-
sition temperatures systematically by analyzing the leading
zeros and their distributions. We identified the gas-liquid and
liquid-solid transition points, as well as the notoriously difficult
to find solid-solid transitions, which are only surface effects
but nonetheless relevant for finite systems. Our estimates
of transition temperatures are in very good agreement with
formerly obtained results by microcanonical inflection-point
analysis for the same model [1]. By comparison with the
microcanonical classification scheme, we found numerical
evidence for the circular pattern of the zeros associated with
coexisting states in first-order-like transitions. Because the
zeros method is capable of revealing these signals, we conclude
on the basis of the results of our study that this method can
be used for the identification of transitions in small systems
as well; otherwise it would have had to be abandoned for this
purpose.

We find that both the microcanonical inflection-point
analysis and the Fisher zeros method enable a quantitative
analysis of all “transitions” of a finite system. Both methods
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FIG. 5. (Color online) Transition temperatures of conforma-
tional transitions for elastic, flexible polymers with chain lengths
ranging from L = 13 to 309. The black dots represent the transition
temperatures obtained from the leading zeros of the partition
function. For comparison, the transition temperatures obtained
by microcanonical inflection-point analysis are also shown (red
triangles).

strongly outperform the conventional canonical approach of
analyzing the “peak-and-shoulder” characteristics of thermo-

dynamic quantities such as the specific heat or canonical
fluctuations of order parameters as functions of the heat bath
temperature. Whereas microcanonical analysis enables a more
fine-tuned understanding of an individual transition (such as
the composition of subphase transitions), the zeros method is
very robust and the leading zeros are less sensitive to numerical
errors. This remarkable robustness can be attributed to the
fact that the leading zeros alone govern in all thermodynamic
quantities the ultimate approach to the transition point in
the scale-free, universal regime. Numerical errors can be
interpreted as perturbations of the model, but such effective
model details have hardly any impact on the thermodynamic
behavior of the system near a transition point, even for
relatively small systems. This is not the case within the phases,
where the location of the zeros depends more sensitively on
details.
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