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Abstract. We review recent developments in the conceptual approach to a consistent
systematic understanding of cooperative thermodynamic activity. The microcanonical statistical
analysis is a powerful tool that is particularly useful for the investigation of analogs of phase
transitions in finite systems, but it applies also in the extrapolation toward the thermodynamic
limit. Whereas Maxwell construction in the coexistence region in the inverse caloric temperature
space is a reasonable method for individual first-order-like transitions that are well-separated
from other energetic regions of thermal activity, microcanonical inflection-point analysis is a
systematic method that enables both the identification and classification of transitions of first
and higher orders.

1. Introduction

Since the earliest observations that any physical system can exist in different thermodynamic
phases, there has been a substantial interest in understanding the reasons for the qualitative
changes that a macroscopic system is capable to experience while passing a transition point in the
space of environmental parameters [1]. Conventional thermodynamics cannot explain the large-
scale fluctuations and correlations that accompany a phase transition, but provides the basis
for an adequate description that culminated in Ehrenfest’s classification of phase transitions
by locating discontinuities and divergences in thermodynamic variables (e.g., entropy, volume)
and response quantities (specific heat, susceptibility, etc.), respectively. These quantities can
be represented by distinct derivatives of appropriate thermodynamic potentials. For example,
for a closed system of particles at constant temperature, pressure, and particle number,
the thermodynamic potential is the Gibbs enthalpy G(T, p,N). If we generally denote any
thermodynamic potential that represents the thermodynamic system by P (A), where A is the
vector of independent external thermodynamic variables (such as T , p, and N in the example
above), then a phase transition is observed at a point A0, if any of the derivatives of P with
respect to any component of A, (

∂(n)P

∂A
(n)
i

)
A0

(1)

is discontinuous or divergent at A0. The order of the transition is given by the lowest derivative
n0 that exhibits catastrophic behavior at the transition point. In most cases, only transitions
of first (n0 = 1) and second order (n0 = 2) are distinguished. Each of the derivatives in Eq. (1)
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can be understood as a response quantity. In our example, the response of G to a change of
temperature is the entropy, S(T, p,N) = −(∂G/∂T )p,N , and a discontinuity at a temperature
T0 signals a first-order phase transition. The second derivative of G with respect to T is related
to the heat capacity at constant pressure, Cp(T, p,N) = T (∂S/∂T )p,N = −T (∂2G/∂T 2)p,N ,
which quantifies the response of the entropy to a change in temperature. A discontinuity or
divergence of Cp at a critical temperature Tc indicates a second-order phase transition, provided
the entropy is continuous at the transition point. Similar relations hold for responses to changes
in the other natural thermodynamic variables of G.

However, Ehrenfest’s theorem applies only in the thermodynamic limit, i.e., for very large
systems, because thermodynamic quantities that describe the macrostate of finite systems do not
exhibit any discontinuities or divergences. The interest in the understanding of thermodynamic
activity in small or at least finite systems – with its extreme variant cooperativity – has
rapidly grown recently. The sizes of nanotechnological applications and biological systems are
microscopic or mesoscopic, i.e., surface effects affect the system’s behavior to such an extent that
the hypothetic extrapolation toward the thermodynamic limit is not helpful for the analysis of
transitions in these systems. Therefore Ehrenfest’s idea needs to be generalized.

The currently most promising approach is the so-called microcanonical analysis. Initially
limited to first-order-like transitions by employing Maxwell’s construction, the theory has
recently been generalized in a systematic way that does not only allow for a unique identification
of the transitions; it also enables the classification of the transitions similar to Ehrenfest’s
approach for large systems. This idea is based on the analysis of inflection points of the inverse
microcanonical temperature.

In the following, we review the original idea of Maxwell’s construction in the thermodynamic
limit, its microcanonical version [1–10], and finally we discuss the basic features of the
microcanonical inflection-point analysis [1, 11, 12].

2. Maxwell construction in thermodynamics

Transitions with phase coexistence, typically referred to as first-order phase transitions, are
traditionally analyzed by means of Maxwell’s construction. This method is necessary to remove
the unphysical backbending branch that occurs for real gases described by the van der Waals
equation in the pressure (p) versus volume (V ) phase diagram for isotherms below the critical
temperature Tcrit. Since (∂p/∂V )T<Tcrit

> 0 in this region, the compressibility is negative in the
transition regime. The consequence would be a catastrophic instability of matter, although it is
supposed to be in an equilibrium state. This is unphysical behavior and needs to be corrected.
Figure 1(a) shows three van der Waals isotherms at temperatures above, at, and below the
critical temperature.

It can be shown that in the thermodynamic limit the Gibbs free energies of the two coexisting
phases (liquid, gas) must be identical for each macrostate in the transition region, Glg = Gl = Gg.
The unphysical behavior of the van der Waals equation can only be avoided if the pressure in the
transition region remains constant. The value of this pressure, plg, is determined by the following
consideration. Along the isotherm (dT = 0), dG = V dp. Hence, if the Gibbs free energies in
both phases would not be identical, the gradient (V = (∂G/∂p)T ) would spontaneously drive
the system into one of the phases. This does not occur in a real gas-liquid mixture. The stable
equilibrium liquid-gas phase coexistence can be observed. Additional work, as can be expressed
by the change of free energy dF = −pdV , is necessary to change the macrostate (actually only
V , because p and T are constant) within the transition region. Therefore, the total transition
free energy released in the evaporation process is given by

Flg ≡ −

∫ Vg

Vl

p(V )dV = −plg(Vg − Vl). (2)
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Figure 1. (a) Isotherms of the van der Waals gas p(V ) for temperatures T below, at, and
above the critical temperature Tcrit, and Maxwell line at p = plg. (b) Free energy F (V ), Gibbs
construction for the free energy F(V ) and Gibbs free energy G(V ) and its Gibbs hull G(V ) at
pressure p = plg for the isotherm in (a) at T < Tcrit.

where Vl and Vg denote the volumes at the respective phase boundaries, satisfying(
∂F

∂V

)
Vl

=

(
∂F

∂V

)
Vg

= −plg = const (3)

in the interval V ∈ [Vl, Vg]. The area under the original curve p(V ) in this volume interval and
the area bounded by plg are identical. The free energy as a function of the volume, F (V ), is
shown in Fig. 1(b). Note the concavity 0 > (∂2F/∂V 2)T<Tcrit

= −(∂p/∂V )T<Tcrit
= 1/V κ of this

function in the transition interval. Since neither V nor the compressibility κ can be negative,
this behavior of F is unphysical.

The Maxwell construction for the subcritical isotherm corresponds to a Gibbs construction for
the free energy: F(V ) = F (Vl)−plg(V −Vl) ∀V ∈ [Vl, Vg], i.e., the slope of this double tangent of
F (V ) is −plg. Since F(V ) < F (V ) ∀V ∈ [Vl, Vg], the macrostates (plg, Vlg ∈ [Vl, Vg], Tlg < Tcrit)
then indeed represent the stable and physical equilibrium states in the liquid-gas transition
region. The hull of the Gibbs free energy, G(V ) = F(V ) + plgV , is constant and minimal in
the coexistence regime, as required. Thus, it replaces G(V ) = F (V ) + plgV as the appropriate
thermodynamic potential for the van der Waals gas in the first-order transition region [see
Fig. 1(b)]. As we have seen, the Maxwell construction is necessary for a physically consistent
thermodynamic description of this model. It shall be noted that the problem lies in the equation
of state. A statistical mechanics analysis of a microscopic model would not require to use
Maxwell’s construction method to “repair” unphysical behavior; the Maxwell line would establish
itself in the thermodynamic limit.
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3. Microcanonical analysis by Maxwell construction for first-order-like transitions

in finite systems

For the statistical analysis of finite systems that experience transitions that exhibit clear
signatures of a first-order transition, a Maxwell construction can be rewarding, although it
is not required for thermodynamic consistency.

The most fundamental statistical property and the fingerprint of any given physical system
is the microcanonical entropy S(E) = kB ln g(E), where g(E) is the density of the states of the
system. Typically, S(E) is a concave function, except in a region of the energetic space, in which
the number of energetic microstates is suppressed to such an extent that the entropy curve loses
its concave monotony and becomes convex. Since in this depletion region the entropy has an
energetic width ΔQ > 0 and connects energetic spaces which are associated with different phases
of reduced thermodynamic activity, the extended region in-between accommodates macrostates,
in which both phases coexist. It is therefore common to interpret ΔQ as the latent heat and
to associate the entropic suppression in this region with a first-order transition, in analogy to
thermodynamic first-order phase transitions in the thermodynamic limit.

Figure 2(a) shows a typical example for an entropic curve with a convex region. The depletion
zone is bounded by the limiting energies of the ordered phase, Eo, and the disordered phase, Ed.
The width of the entropic depletion zone is ΔQ = Ed − Eo. Also shown is the double-tangent
(Gibbs hull), which corresponds to a Maxwell construction in the (inverse) temperature curve
β(E) = 1/T (E), as plotted in Figure 2(b). It enables the definition of a unique transition
temperature βtr. The unique identification of transition points is a notorious problem in
conventional, typically canonical, analyses for finite systems [13]. The boundaries Eo and Ed

are defined by the points, where the Gibbs hull

H(E) = S(Eo) + βtr(E − Eo) = S(Ed) + βtr(E − Ed) (4)

touches S(E): H(Eo,d) = S(Eo,d). The total entropy change during the transition ΔStr =
S(Ed)− S(Eo) = H(Ed)−H(Eo) can then be expressed in two ways:

ΔStr =

Ed∫
Eo

dE β(E) = βtr(Ed − Eo). (5)

As Fig. 2(b) also shows, the β curve resembles a third-order polynomial with a “backbending”
region. For that reason, the Maxwell line βtr possesses a third intersection point with β(E),
denoted by Etr. It can be considered as the separation point, where the entropic weight of
each of the both phases in the coexistence region is identical. In this formalism, it defines the
transition state. The total entropy change in the order-dominated coexistence regime is

ΔSo =

Etr∫
Eo

dE β(E) = S(Etr)− S(Eo) = βtr(Etr − Eo)− so (6)

and for the disordered part

ΔSd =

Ed∫
Etr

dE β(E) = S(Ed)− S(Etr) = βtr(Ed − Etr) + sd, (7)

where the right-hand side expressions are simply obtained by adding the areas according to
the definitions in Fig. 2(b). To resolve the meaning of so and sd, and their relationship in
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Figure 2. Microcanonical analysis by Maxwell construction: (a) Microcanonical entropy S(E)
and Gibbs construction H(E) as functions of energy E; (b) Inverse thermal energy β(E) and
Maxwell line at the first-order transition point βtr. The first-order-like transition behavior is
characterized by the “backbending” effect between Eo and Ed. The Maxwell line intersects β(E)
at energies Eo, Etr, and Ed. It is defined by the equality of the areas so and sd which correspond
to the surface entropy. These results were obtained by simulations of heteropolymer aggregation.
Note the slight deformation of β(E) right below Ed that indicates a subphase transition within
the Maxwell regime, which cannot be considered separately in a microcanonical analysis based
on Maxwell’s construction.

correspondence with the Maxwell construction, we calculate the difference of the value of the
Gibbs hull and the entropy,

ΔS(E) = H(E)− S(E), (8)

at the separation point Etr:

ΔS(Etr) = S(Eo) + βtr(Etr − Eo)− S(Etr) = S(Ed) + βtr(Etr − Ed)− S(Etr), (9)

where we made use of the two parametrizations of the Gibbs tangent given in Eq. (4). Since
ΔS(Etr) �= 0 is characteristic for first-order-like transitions in finite systems, where surface
effects are not negligible, it is often called surface entropy, ΔSsurf ≡ ΔS(Etr). Compared to
the bulk of topological dimension D, the conformational entropic freedom at the surface of
such systems is smaller, because of the reduced dimension D − 1. This has the effect that
particles prefer to be part of the interior volume and not of the surface layer of the system. This
results in shapes with minimal surfaces (e.g., spherical or globular conformations in an isotropic
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Figure 3. Canonical energy histogram at Ttr = (kBβtr)
−1 of the same transition as identified

in Fig. 2. Note that it is common to define β ≡ 1/kBT in the canonical analysis, whereas
β(E) ≡ 1/T (E) in the microcanonical theory.

medium). The “surface entropy” ΔSsurf is actually the amount of entropy suppression by the
formation of surfaces. If the effective attractive interactions between the particles have a finite
range, surface effects decrease with increasing system size (number of particles N) and such does
ΔSsurf . For such systems, in the thermodynamic limit, limN→∞ΔSsurf = 0. Thus, in this limit,
the entropy cannot be convex and thermodynamic first-order phase transitions do not exhibit
this “backbending” feature that we discuss here in this section.

We eliminate S(Etr) in Eq. (9) by employing Eqs. (6) and (7) and eventually find that

ΔSsurf = so = sd. (10)

Thus, the Gibbs construction H(E) that corresponds to Maxwell’s line at βtr, automatically
leads to identical areas so and sd and requires these areas to be identical to the surface entropy
ΔSsurf . This is a remarkable result, as it shows that the surface entropy corresponds to the
maximum deviation of the Gibbs tangent from the original S(E) curve, located at Etr. The
transition point between the ordered and the disordered phase is well-defined by βtr. Thus,
the microcanonical analysis by Maxwell construction does not possess any ambiguity in the
definition of transition points for finite systems, in contrast to the canonical analysis of peak
positions and “shoulders” of fluctuations of typically not well-defined order parameters [1, 13].

The energy is considered here as an order parameter. It is not very specific (we do not
learn much about the physical properties of the transition), but it allows us to clearly separate
the phases. This is particularly apparent when falling back to the canonical interpretation
of these features. Figure 3 shows the canonical histogram (unnormalized probability density
distribution) h(E) = g(E)e−E/kBTcan at the transition temperature Tcan = Ttr identified by
Maxwell construction. This distribution has a characteristic bimodal form, with peaks at
energies Eo and Ed, separated by the latent heat ΔQ. The minimum between the peaks is
located at the separation point Etr. Note that this approach defines the transition point at Ttr,
where h(Eo) = h(Ed). This is, as we have seen before, a direct consequence of the microcanonical
analysis. The areas under the peaks in the ordered and in the coexisting disordered phase, Ao

and Ad, respectively, are not necessarily identical.
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Figure 4. Free-energy profiles F (E) for temperatures below, at, and above the transition point
Tcan = Ttr.

The histogram h(E) represents the restricted partition sum of the system in energetic space,

h(E) ≡ Zres
can(E) =

∫
dE′δ(E − E′)g(E′)e−E′/kBTcan , (11)

and Tcan is a constant parameter representing the canonical temperature. Then, the free-energy
landscape in energy space is parametrized by

F (E) = −kBTcan ln h(E) = E − TcanS(E). (12)

Thermodynamically, only global minima in the free-energy landscape represent stable
equilibrium states. The extremum condition (dF/dE)E=Eext

= 0 thus yields

T (Eext) = Tcan (13)

and connects the microcanonical and canonical pictures. Extrema in h(E) at Tcan are thus
mirrored by extremal points in the F (E) landscape, too. Because of the Maxwell construction,
the transition point is defined by T (E) = Ttr. This is only satisfied at energies Eo, Etr, and
Ed, which, according to the condition (13) are also the locations of extremal points in the free-
energy landscape at the transition point. In this interpretation, F (Eo) = Feq and F (Ed) = Feq

represent the degenerate macrostates of the coexisting phases, and F (Etr) = Feq+ΔF is the free
energy of the transition barrier. The height of the barrier, ΔF can be interpreted kinetically.
Figure 4 shows free-energy profiles for temperatures below the transition point Tcan < Ttr, where
the system is in the ordered phase, at the microcanonically defined transition point Tcan = Ttr,
where the ordered and the disordered phases coexist, and above the transition temperature
(Tcan > Ttr). In the latter case, the free energy minimum lies beyond Ed, i.e., the system resides
in the disordered phase.

Note that if one replaces in Eq. (12) the entropy S(E) by its Gibbs hull in the transition
regime,

F (E) = E − TtrH(E) = Eo − TtrS(Eo) = Ed − TtrS(Ed) (14)

= Feq = const. ∀E ∈ [Eo, Ed]. (15)
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This is how the Maxwell construction affects the free-energy behavior: Each macrostate in the
coexistence regime possesses the same free energy. This resembles the behavior of the Gibbs free
energy in the liquid-gas coexistence regime of the van der Waals gas [see Fig. 1(b)]. Remember
that in the latter case, the Maxwell construction was a physical necessity in the thermodynamic
limit. In the microcanonical analysis for finite systems, we only made use of it to determine
the transition point. We can therefore argue that the transition barrier ΔF > 0 for the finite
system is physical reality, but it disappears in the thermodynamic limit and the F (E) curve
converges to the Maxwell line. It is worth noting at this point, that the kinetics of processes
such as protein folding is strongly affected by the existence of a transition barrier. Nonetheless,
it is only a finite-size effect because of its surface-entropic origin.

The general disadvantage of the microcanonical analysis based on Gibbs/Maxwell
construction is that it is only applicable to transitions with a clear, single signature, the
“backbending effect”. Often, this is actually not the case. First-order transitions typically
exhibit hierarchies of individual subphase transitions [1, 14]. A first indication can already be
noticed in the example shown in Fig. 2(b), where an additional mini-backbending effect [6] can
be observed between Etr and Ed. In a systematic microcanonical analysis, such signals shall
not be ignored. However, since this transition lies within the Maxwell coexistence regime, it
cannot be resolved by this kind of analysis. Transitions without backbending feature, which
we will later define as transitions of higher than first order, cannot be analyzed by Maxwell
construction as well. In order to enable a thorough and systematic microcanonical analysis that
includes hierarchies in first-order transitions and the identification of higher-order transitions, a
revised theory is needed. A straightforward approach will be discussed in the following.

4. Systematic approach to the unique identification and classification of

transitions in finite systems

As shown, the Maxwell construction can successfully be employed for the analysis of strong first-
order transitions. Geometrically, the backbending region in the transition regime of the energetic
temperature curve in Fig. 2 is replaced by an entirely flat segment. We also know that the
backbending effect is due to surface effects that become negligible for very large systems, where
volume properties are dominant. Thus, this flattening of the β(E) curve is a physical property
of this transition. It means that, in the transition region, the (volume part of the) system is not
very sensitive to energetic changes. Macrostate changes require more energy (latent heat) while
temperature changes decrease. The kinetics of macrostate changes is affected by the transition
barrier. However, the Maxwell construction only applies to individual transitions of first order.

To include other transition types in the microcanonical analysis as well, it is attractive to
extend the of idea of a “flat” energetic region by replacing the Maxwell construction by a more
general principle, the principle of least sensitivity, which dates back to the early days of classical
mechanics. This is a weaker condition, but it allows us to investigate first- and higher-order
transitions by a microcanonical analysis more systematically and in much more detail [1, 11].

This approach takes into account that all qualitative changes in the interplay of entropy
and energy as signaled by alterations in the curvature of the microcanonical entropy S(E), are
indicators of cooperative behavior in the system. Since the complete phase behavior is already
encoded in S(E), the inverse microcanonical temperature β(E) is considered to be the only
unique parameter to identify transition points. The monotony of β(E), as expressed by its
derivative with respect to energy,

γ(E) = dβ(E)/dE = d2S/dE2. (16)

allows for the introduction of a systematic classification scheme of transitions in finite
systems [11], but it can also be used for scaling analyses towards the thermodynamic limit.
The function γ(E) describes the variation of the inverse temperature with respect to energy
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Figure 5. Inflection-point analysis of the inverse temperature β(E) and its derivative γ(E)
as functions of energy E for a system exhibiting a first- and a second-order transition. The
maxima of γ(E) indicate transitions between the phases A and B at EAB

tr and B and C at EBC
tr .

The associated points β(EAB
tr ) = βAB

tr and β(EBC
tr ) = βBC

tr define the transition temperatures
TAB
tr = (βAB

tr )−1 and TBC
tr = (βBC

tr )−1. According to the classification scheme of inflection-point
analysis, the transition between A and B is of second order, since the slope of the inflection
point is negative. On the other hand, B↔C is a first-order transition as the respective slope
at β(EBC

tr ) is positive. The non-monotonic “backbending” is a characteristic signal of phase
coexistence. The latent heat ΔQBC is defined as the energetic width of this transition region.

at a given energy value E. As such it is related with the microcanonical heat capacity via
CV (E) = [dT (E)/dE]−1 = −β2(E)/γ(E).

In this scheme, a transition between phases is defined to be of first order if the slope of the
corresponding inflection point of β(E) at E = Etr is positive,

γtr = γ(Etr) > 0 : first-order transition. (17)

Only in this case is the temperature curve non-monotonic and there is no unique mapping
between β and E. As it has been discussed in the context of the Maxwell construction, this is the
regime where both phases coexist. The overall energetic width of the undercooling, backbending,
and overheating regions is identical to the latent heat. Thus, for a first-order transition, ΔQ > 0.
Note that the inflection point is not necessarily identical with the separation point obtained by
Maxwell construction. A noticeable deviation between these energetic separation points is a
strong indication that a subphase transition in one of the coexisting phases occurs. Such a
transition cannot be detected by Maxwell construction only.

In the case that the inflection point has a negative slope, the phases cannot coexist and the
latent heat is zero, ΔQ = 0. In complete analogy to phase transitions in the thermodynamic
limit, such transitions are classified as of second order :

γtr = γ(Etr) < 0 : second-order transition. (18)

Since the inflection points of β(E) correspond to maxima in γ(E), it is therefore sufficient to
analyze the peak structure of γ(E) in order to identify the transition energies and temperatures.
The sign of the peak values classifies the transition. This very simple and general classification
scheme applies to all physical systems.
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Figure 5 illustrates the procedure for the identification of the transitions by means of
inflection-point analysis. Plotted are the inverse temperature β(E) and its energetic derivative
γ(E). There are two regions, where the weak-sensitivity condition applies to β(E). One is
located around the inflection point at EAB

tr and the other is the backbending regime surrounding
the central inflection point at EBC

tr . The latter exhibits the already well-described features of
a first-order transition: γBC

tr is positive and the intersection points of the inverse transition
temperature βBC

tr with the β(E) curve define the coexistence region. The width is interpreted as
the latent heat, which is obviously nonzero: ΔQBC > 0. The behavior is qualitatively different
at EAB

tr , where γAB
tr < 0. There is no phase coexistence so that the latent heat is zero. The

A↔B transition is consequently classified as a second-order transition. The transition point is
given by the inverse temperature βAB

tr .
In cases, where it is difficult to find first- or second-order traces of “hidden” finite-size effects

in β(E), the weak-sensitivity criterion can be extended by allowing higher-than-second-order
transitions. This can be done by analyzing the inflection points of γ(E), or if necessary, of even
higher derivatives of β(E). Therefore, our hierarchical analysis is an analog to the previously
discussed Ehrenfest scheme in thermodynamics.

There is another issue worth being remarked. The consistency of the hierarchy S →

β = dS/dE → γ = d2/dE2 → . . . tells us that, in principle, the inverse temperature β is
more fundamental than the temperature T . This is not a trivial statement. Second-order
transition points cannot easily be identified as inflection points of T (E). The introduction of the
temperature T (or, more precisely, kBT ) as a “measure” for thermal energy had merely occurred
as a historical accident, but there were no substantial physical reasons to favor it. Microcanonical
analysis based on the close relationship between entropy and inverse temperature suggests to
consider β as the more appropriate thermodynamic variable.

5. Conclusion

As a general principle, one can conclude that cooperative behavior is encoded in the curvature
of an appropriate “thermodynamic potential”. In the thermodynamic limit, one might want to
choose to analyze phase transitions by means of canonical statistical analysis on the basis of
the free energy. In the microcanonical analysis of small systems, it is the entropy as a function
of energy that is considered to be the appropriate quantity. In the hierarchical inflection-point
analysis, the variational principle standing behind the weak-sensitivity criterion tells us that
first-order transitions are visible in the first derivative of S(E) (backbending effect or Maxwell
construction), second-order transitions are characterized by specific inflection points of S(E),
i.e., second-order derivatives are needed for their characterization, and higher-order transitions
require higher-order derivatives to be identified. Inflection-point analysis is a simple but effective
tool for a thorough and unique identification and classification of transitions in any physical
system on all scales, from very small to very large.
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