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Abstract

We investigate the influence of the interaction range of non-bonded monomers in an elastic, flexible polymer

upon formation of structural phases. Massively parallel replica-exchange simulations of a generic, coarse-grained

polymer model enable the construction of the structural phase diagram by means of microcanonical statistical analysis.

Multiple solid phases, a liquid phase, and a gas-like phase can be identified. We find evidence for finite-size effects

that cause the crossover of “collapse” and “freezing” transitions for very short interaction ranges.
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Introduction and Model

The biological function of proteins is often connected to their three-dimensional geometric structure and mis-

foldings can be the cause of severe illnesses. Therefore, the study of biopolymers and their dynamical and structural

properties is a major topic of interdisciplinary research. Experimental and computational approaches to understand the

folding process of proteins and polymers have advanced over the last decades, but many questions still remain unan-

swered. Even with today’s computing resources all-atom simulations of polymer systems remain a big challenge.

Hence, coarse-grained models were developed to capture the essential properties of classes of polymers. Employing a

simplified model for flexible, elastic polymers, we recently have investigated how the monomer-monomer interaction

range influences structural phases [1]. Although phase transitions only occur in macroscopic systems, local effects,

such as the monomer arrangement in the core, competing with surface effects, do play an important role in the nucle-

ation process. That means that macroscopic effects such as condensation, have to pass a series of smaller “subphase”

transitions on the microscopic level [2]. These smaller structural transitions do not necessarily scale with the size

of the system, see, e.g., Refs. [3–5] for evidence in small atomic clusters and Refs. [6–11] for polymers with finite

length. Here, we discuss aspects of the formation of structural phases of flexible polymers by focusing on the range of

interaction between the non-bonded monomers. Recent studies of a discrete model [12, 13] indicate that the structure

formation is affected by the effective interaction range of non-bonded monomers competing with excluded volume

effects. Such insights in the different structural pseudo-phases can only be gained by means of computer simulations.

For our study, we applied generalized-ensemble Monte Carlo methods to obtain precise estimates of the density of

states, which is the basic quantity for the subsequent microcanonical statistical analysis.

We employ a model for elastic and flexible homopolymers, where the bonds are represented by an finitely exten-

sible nonlinear elastic (FENE) potential [14]

UFENE(rii+1) = −K
2

R2 log

[
1 −
( rii+1 − r0

R

)2]
. (1)
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In addition, the shifted and truncated Lennard-Jones potential

Umod
LJ (ri j) = ULJ(ri j) − ULJ(rc) (2)

describes the interaction between all monomers. It carries an additional parameter rs to adjust the effective width of

the potential:

ULJ(ri j) = 4ε

⎡⎢⎢⎢⎢⎢⎣
(
σ

ri j − rs

)12

−
(
σ

ri j − rs

)6⎤⎥⎥⎥⎥⎥⎦ . (3)

The total energy of a conformation C = (�r1, . . . ,�rN) for an N-mer is given by

E(C) =

N∑
i< j

Umod
LJ (ri j) +

N−1∑
i

UFENE(rii+1). (4)

Details of the parametrization are given in Ref. [1]. We introduce a parameter δ to define the width of the Lennard-

Jones potential, such that δ = r2 − r1 = λ(r0 − rs), where r1 and r2 are the two radii where Umod

LJ
(r1) = Umod

LJ
(r2) = −εsq =

− (0.5ε + ULJ(rc)), see Fig. 1. The maximum value of δ is determined by the unmodified Lennard-Jones potential,
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Figure 1: (Color online) The potential width δ is defined by the width of a square well potential of depth; it is the difference of the two distances r1

and r2, where the Lennard-Jones potential equals −εsq.

i.e., at rs = 0, and it is found to be δmax = λr0 ≈ 0.218667 with λ ≈ 0.312382 [1]. The simulations were carried

out by employing the replica-exchange Monte Carlo algorithm, better known as parallel-tempering [15–17]. In this

method, n copies of the system are simulated at different temperatures. Each replica of the polymer is updated by

proposing a random local displacement of one monomer. This proposal is accepted with the probability given by

the Metropolis criterion [18]: p = min(1, exp[−β(Enew − Eold)]), where β = 1/kBT is the inverse thermal energy,

and Eold and Enew are the energies of the conformations before and after the proposal. After a fixed number of

independent Metropolis updates of each replica has been performed, an exchange between neighboring copies i and

j with inverse temperatures βi and β j, respectively, is suggested. The probability of accepting the replica exchange is

p = min(1, exp[(Ei−E j)(βi−β j)]). This procedure enables each copy of the system to heat up and cool down over the

whole simulated temperature interval and introduces a global update to the system. The replica-exchange algorithm

is pleasingly parallel and can be efficiently implemented on massively parallel hardware such as graphics processing

units (GPUs). In addition, we parallelized the energy calculation of the pairwise potentials, necessary at each Monte

Carlo step. The benefits of this approach are discussed in detail in Ref. [19].

For very short interaction ranges, the first-order character of the freezing transition becomes so distinct that an-

other algorithmic improvement becomes necessary. Simulating multiple Gaussian modified ensembles (MGME) [20]
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Figure 2: (Color online) Specific heats for the 90-mer for seven values of δ.

enables us to sample entropically suppressed conformations in the phase coexistence transition region. The principal

idea of MGME is to flatten all bimodal Boltzmann probability distributions by multiplying these by appropriate Gaus-

sian forms. Thus, with a Gaussian form centered around the minimum energy EG,i in the well between the peaks of

the canonical distribution in the i-th ensemble, the probability for a state with energy E in the modified ensemble be-

comes PMGME,i(E) ∼ exp
(
S (E) − βiE − [(E − EG,i)/(ΔEG)

]2)
. The Gaussian form is a counter-term to S (E) = ln g(E)

the microcanonical entropy, with g(E) being the density of states, see [1, 20] for details.

Results

The goal of our investigation is to derive a structural phase diagram parametrized by the potential width δ and

temperature T . Typically, one analyzes the peak position of thermodynamic quantities like the specific heat or the

thermal fluctuations of geometrical parameters like the radius of gyration. For the simulated 90-mer the specific heat

curves for seven exemplary potential widths δ are shown in Fig. 2. With decreasing interaction range we see large

shifts of the “collapse” transition, to lower temperatures, characterized by the shoulders in the plots. The freezing

transition, signaled by the pronounced peak at lower temperatures, shifts to slightly higher temperature as we lower

the potential width. For very narrow potentials the freezing temperature becomes lower again. The maximum values

of those peaks, however, increase proportionally with δ over the whole range, indicating that the freezing transitions

becomes stronger. While, in principle it is possible to identify all transition points by looking at canonical quantities

such as the specific heat, some transitions are difficult to locate and one has to refer to different quantities to uncover

the precise location of a transition.

An alternative way of identifying conformational transitions is a thorough analysis of the density of states and

its derivatives [8, 21–23]. All information about the system is encoded into the density of states, including phase or

structural transitions. Some transitions, such as the solid-solid transition, can be identified much easier by micro-

canonical analysis [9, 13, 21]. We convinced ourselves that both approaches yield the same qualitative answers. The

phase diagram of a 90-mer, as shown in Fig. 3, is constructed using microcanonical analysis, and it is parametrized

by the interaction range δ and the temperature T . At high temperatures and short interaction ranges, in the “gas”

phase G, the polymers most likely will form extended coils. Lowering the temperature in the gas phase, we approach

the Θ-transition, marked by the line with the symbol × in the phase diagram. The expanded polymer coils collapse

into globular structures that have no crystalline internal structure. This “liquid”-phase L only appears for interaction

ranges δ � 0.02. The freezing transition is marked by the line with + symbols. The “liquid” polymer crystallizes

at low temperatures. For very short attraction range, we see a direct transition from gas to solid, as the temperature

interval of the liquid phase gets smaller and smaller with decreasing potential width. Microcanonically, we observe

a crossover of the transition temperature for collapse and freezing transition, as shown in the inset of Fig. 3. We
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Figure 3: (Color online) Phase diagram for the 90-mer, obtained by microcanonical analysis. The inset shows the crossover of the transition

temperatures for collapse and freezing transition.

identify multiple solid phases below the freezing transition line. For the unmodified Lennard-Jones potential, i.e., for

δ = δmax, and values δ � 0.12, we find two icosahedral-like solid structures. Sico−aM is a solid phase with one or

more icosahedral cores and an incomplete anti-Mackay like (hcp) outer shell. Reducing the temperature further, we

cross the solid-solid transition line, where the crystalline structure is changed into Mackay-type fcc layers, i.e., in

phase Sico−M, (cp. Ref. [7]). For interaction ranges below δ ≈ 0.15, the icosahedral core is energetically less favorable

over the decahedral packaging of monomers that now dominates the solid phase Sfcc/deca. This behavior has already

been observed in atomic cluster models earlier [3–5]. A systematic analysis of the properties of solid polymer phases

has been performed in Ref. [1] for the exemplified 55-mer. The 55-mer is known to form a perfect icosahedron with

a Mackay-like overlayer for δ = δmax. It exhibits a transition from icosahedral to fcc via decahedral intermediate

structures, see Refs. [1, 4].

Summary

We have investigated the influence of the potential width of non-bonded monomer-monomer interaction on the

structure formation of flexible polymers by means of replica-exchange Monte Carlo simulations. We constructed the

structural phase-diagram for classes of flexible, elastic polymers with 90 monomers, parametrized by temperature

and interaction range. This was achieved by both, canonical and microcanonical statistical analysis. A “gas”-phase,

a “liquid”-phase, and multiple solid phases as well as the transitions between these phases were identified. Similar

to atomic clusters, the polymer crystals undergo transitions from icosahedral to decahedral and fcc structures with

decreasing potential widths.
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