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Quantum statistics of hydrogen in strong magnetic fields
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Abstract

By an extension of the Feynman–Kleinert variational approach, we calculate the temperature-dependent effective classical
potential governing the quantum statistical properties of a hydrogen atom in a uniform magnetic field. In the zero-temperature
limit, we obtain ground state energies which are accurate for all magnetic field strengths from weak to strong fields. 2001
Elsevier Science B.V. All rights reserved.

1. Introduction

The recent discovery of magnetars has renewed
interest in the behavior of charged particle systems
in the presence of extremely strong external magnetic
fields [1]. In this new type of neutron stars, electrons
and protons from decaying neutrons produce magnetic
fieldsB reaching up to 1015 G, much larger than those
in neutron stars and white dwarfs, whereB is of order
1010–1012 and 106–108 G, respectively.

Analytic treatments of the strong-field properties
of an atomic system are difficult, even in the zero-
temperature limit. The reason is the logarithmic as-
ymptotic behavior of the ground state energy [2,3].
In the weak-field limit, perturbative approaches [4]
yield well-known series expansions in powers ofB2.
These are useful, however, only forB� B0, whereB0
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is the atomic magnetic field strengthB0= e3M2/h̄3≈
2.35× 105 T= 2.35× 109 G.

So far, the most reliable values for strong uniform
fields were obtained by numerical calculations [5].
An analytic mapping procedure was introduced in
Ref. [3] to interpolate between the weak- and strong-
field behavior, and a variational approximation was
given in Ref. [6], both with quite good results.

In this Letter, we use an extension of the Feynman–
Kleinert variational approach [7] to find asingle
approximationto the effective classical potential of
the system forall temperatures and magnetic field
strengths. From this, the quantum statistical partition
function can be obtained by a simple configuration
space integral over a classical-looking Boltzmann
factor. In the zero-temperature limit, the effective
classical potential is the ground state energy of the
system.

2. Effective classical potential

The Hamiltonian of the electron in a hydrogen atom
in the presence of a uniform external magnetic field
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pointing along the positivez-axis is

(2.1)

H(p,x)= 1

2M
p2−ωBlz(p,x)+ 1

2
ω2
Bx2− e2

|x| ,

whereωB = eB/2Mc is half the Landau frequency,
ωB = ωc/2. Here we have used the symmetric gauge
A(x) = (B/2)(−y, x,0), and denoted thez-compo-
nent of the orbital angular momentum bylz(p,x) =
(x×p)z. The quantum statistical partition function can
always be expressed as a classical-looking configura-
tion space integral [7]

(2.2)Z =
∫
d3x0

λ3
th

exp
[−βVeff(x0)

]
,

whereλth =
√

2πh̄2β/M is the thermal wavelength,
β = 1/kBT is the inverse temperature, andVeff(x0) is
the effective classical potentialVeff(x0). Generalizing
the development in Ref. [7], this is defined by the
phase space path integral

exp
[−βVeff(x0)

]
≡ λ3

th

∫
d3p0

∮
D3xD3p δ

(
x0− x(τ )

)
(2.3)× δ(p0− p(τ )

)
e−A[p,x]/h̄,

whereA[p,x] is the Euclidean action

(2.4)

A[p,x] =
h̄β∫
0

dτ
[−ip(τ )ẋ(τ )+H (p(τ ),x(τ ))],

and x(τ ) = ∫ h̄β0 dτ x(τ )/h̄β and p(τ ) = ∫ h̄β
0 dτ ×

p(τ )/h̄β are the temporal averages of position and
momentum. The special treatment ofx0 and p0 is
necessary, since the classical harmonic fluctuation
widths 〈x2〉cl and 〈p2〉cl are proportional to the tem-
peratureT (Dulong–Petit law). Thus they diverge for
T →∞ and their fluctuations cannot be treated pertur-
batively. In contrast, the fluctuation widths〈(x−x0)

2〉,
〈(p−p0)

2〉 aroundx0 andp0 go to zero for largeT and
are limited down toT = 0, thus allowing for a treat-
ment by variational perturbation theory [8]. For this
we rewrite action (2.4) as

(2.5)A[p,x] =Ap0,x0
� [p,x] +Aint[p,x],

with a harmonic trial action

Ap0,x0
� [p,x] =

h̄β∫
0

dτ

{
−i[p(τ )− p0

] · ẋ(τ )
+ 1

2M

[
p(τ )− p0

]2
−ΩBlz

(
p(τ )− p0,x(τ )− x0

)
+ 1

2
MΩ2⊥

[
x⊥(τ )− x⊥0

]2
(2.6)+ 1

2
MΩ2‖

[
z(τ )− z0

]2}
,

in which x⊥ = (x, y) denotes the transverse part
of x and Ω⊥ > ΩB , for stability. The frequencies
� = (ΩB,Ω⊥,Ω‖) are arbitrary for the moment.
Inserting decomposition (2.5) into (2.3), we expand
the exponential of the interaction, exp{−Aint[p,x]/h̄},
yielding a series of expectation values of powers of the
interaction〈
Anint[p,x]

〉p0,x0
�
= (2πh̄)

3

Z
p0,x0
�

∮
D3xD3pAnint[p,x]

× δ(x0− x(τ )
)
δ
(
p0− p(τ )

)
(2.7)× e−Ap0,x0

� [p,x]/h̄.
The path integral over the Boltzmann factor involving
the harmonic action (2.6) is exactly solvable and yields
the restricted partition function

Z
p0,x0
� = h̄βΩ+/2

sinhh̄βΩ+/2
h̄βΩ−/2

sinhh̄βΩ−/2
h̄βΩ‖/2

sinhh̄βΩ‖/2

(2.8)≡ e−βF p0,x0
� ,

whereΩ± ≡ Ω⊥ ± ΩB . Rewriting the perturbation
series as a cumulant expansion, evaluating the ex-
pectation values, and integrating out the momenta
on the right-hand side of Eq. (2.3) leads to a se-
ries representation for the effective classical poten-
tial Veff(x0). Since it is impossible to sum up the se-
ries, the perturbation expansion must be truncated,
leading to anN th-order approximationW(N)

� (x0) for
the effective classical potential. Since the parameters
� are arbitrary,W(N)

� (x0) should dependminimally
on�. This determines the optimal values�(N)(x0)=
(Ω

(N)
B (x0),Ω

(N)
⊥ (x0),Ω

(N)
‖ (x0)) of N th order. Rein-

serting these intoW(N)
� (x0) yields the optimal approx-

imationW(N)(x0)≡W(N)

�(N)
(x0).



M. Bachmann et al. / Physics Letters A 279 (2001) 23–28 25

The first-order approximation to the effective clas-
sical potential is

W
(1)
� (x0)= F p0,x0

� −MΩB(ωB −ΩB)b2⊥(x0)

+M(ω2
B −Ω2⊥

)
a2⊥(x0)

(2.9)− 1

2
MΩ2‖a2‖(x0)−

〈
e2

|x|
〉p0,x0

�

,

where the quantitiesa2⊥(x0), b2⊥(x0), anda2‖(x0) are
the transverse and longitudinal fluctuation widths

a2⊥(x0)=
〈
x2(τ )

〉p0,x0
�

, a2‖(x0)=
〈
z2(τ )

〉p0,x0
�

,

(2.10)b2⊥(x0)= 2

MΩB

〈
x(τ)py(τ )

〉p0,x0
�

.

The expectation value of the Coulomb potential on
the right-hand side of Eq. (2.9) has the integral rep-
resentation

−
〈
e2

|x|
〉p0,x0

�

=−e2

√
2

π
a2‖(x0)

1∫
0

dξ

f (ξ,x0)

(2.11)

× exp

{
−ξ

2

2

(
x2

0 + y2
0

f (ξ,x0)
+ z2

0

a2‖(x0)

)}

with

(2.12)f (ξ,x0)= a2‖(x0)+ ξ2[a2⊥(x0)− a2‖(x0)
]
.

From now on we set̄h= e2= kB = c=M = 1. Thus,
energies are measured in units ofε0 = Me4/h̄2 ≡
2 Ryd≈ 27.21 eV, temperatures inε0/kB ≈ 3.16×
105 K, distances in Bohr radiiaB = h̄2/Me2 ≈
0.53× 10−8 cm, and magnetic field strengths inB0=
e3M2/h̄3≈ 2.35× 105 T= 2.35× 109 G. The varia-
tional energy (2.9) is minimized at eachx0, and the
resultingW(N)(x0) is displayed for a low tempera-
ture and different magnetic fields in Fig. 1. The curves
W(1)(x0) are plotted to show their anisotropy with re-
spect to the magnetic field direction. The anisotropy
grows when lowering the temperature and increasing
the field strength. Far away from the proton at the
origin, the potential becomes isotropic, due to the in-
creasing influence of the thermal fluctuations. Analyt-
ically, this is seen by going to the limitsρ0→∞ or
z0→∞, where the expectation value of the Coulomb
potential (2.11) tends to zero, leaving an effective clas-

Fig. 1. Effective classical potential plotted along along two direc-

tions: once as a function of the coordinateρ0 =
√
x2

0 + y2
0 perpen-

dicular to the field lines atz0 = 0 (solid curves), and once parallel
to the magnetic field as a function ofz0 at ρ0 = 0 (dashed curves).
The inverse temperature is fixed atβ = 100, and the strengths of the
magnetic fieldB are varied (all in natural units).

sical potential

W
(1)
� (x0)→ F

p0,x0
� −ΩB(ωB −ΩB)b2⊥

(2.13)+ (ω2
B −Ω2⊥

)
a2⊥ −

1

2
Ω2‖a2‖.

This is x0-independent, and optimization yields the
constantsΩ(1)

B = Ω
(1)
⊥ = ωB and Ω(1)

‖ = 0, with

the asymptotic energyW(1)(x0)→−(1/β) ln(βωB/
sinhβωB). TheB = 0 curves are, of course, identical
with those obtained from variational perturbation the-
ory for the hydrogen atom [9].

For large temperatures, the anisotropy decreases
since the violent thermal fluctuations have a smaller
preference of thez-direction.

3. Zero-temperature limit

At zero-temperature, the first-order effective clas-
sical potential (2.9) at the origin yields an approxi-
mation for the ground state energy of the hydrogen
atom in a uniform magnetic field —E(1)� = limβ→∞
W
(1)
� (0):

(3.1)E
(1)
� (B)= 1

2Ω⊥
(
Ω2⊥ +ω2

B

)+ Ω‖
4
−
〈

1

|x|
〉0
�

,
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with the expectation value for the Coulomb potential〈
1

|x|
〉0
�

=
√
Ω‖
π

1√
1−Ω‖/Ω⊥

(3.2)× ln
1−√1−Ω‖/Ω⊥
1+√1−Ω‖/Ω⊥

.

Eqs. (3.1) and (3.2) are independent of the frequency
parameterΩB , such that optimization of the ground
state energy (3.1) is ensured by minimizingΩ⊥ and
Ω‖ only. Reinserting the extremalΩ(1)

⊥ andΩ(1)
‖ into

Eq. (3.1) yields the first-order approximation to the
ground state energyE(1)(B). In the absence of the
Coulomb interaction the optimization with respect to
Ω⊥ yields Ω(1)

⊥ = ωB , rendering the ground state
energyE(1)(B) = ωB = ωc/2, which is the zeroth
Landau level in this special case. The trial frequency
Ω‖ must be set equal to zero to preserve translational
symmetry along thez-axis.

In the opposite limit of a vanishing magnetic field,
Eq. (3.1) coincides with the first-order variational
result for the ground state energy of the hydro-
gen atom, whose optimization gaveE(1)(B = 0) =
−4/3π ≈ −0.4244 [2 Ryd] obtained in Refs. [7,8].
In Ref. [9], the B = 0 system was treated up to
third order leading to the much more accurate result
E(3)(B = 0) ≈ −0.490 [2 Ryd], very near the exact
valueEex(B = 0)=−0.5 [2 Ryd].

Let us investigate the asymptotics in the strong-
field limit B→∞. TheB-dependence of the binding
energyε(B)= B/2−E is plotted in Fig. 2, where it is
compared with the results of Ref. [3], with satisfactory
agreement. Our results are of similar accuracy as those
of other first-order calculations, for example, those
from the operator optimization method in first order
of Ref. [6]. The advantage of variational perturbation
theory is that it yields good results for all magnetic
field strengths. From our experience with the fast
convergence of the method ([8], Chapters 5 and 9),
higher orders of variational perturbation theory will
push the approximations rapidly towards the exact
value.

3.1. Weak-field behavior

The calculations of the binding energy for weak
magnetic fields show that the ratioη ≡ Ω‖/Ω⊥ is

Fig. 2. First-order variational result for the binding energy as a
function of the strength of the magnetic field. The dots indicate
the values of Ref. [3]. The dashed curve shows the simple estimate
0.5 ln2B of Landau–Lifschitz [2].

always smaller than one ifB 6= 0. SettingΩ ≡ Ω⊥,
we rewrite the binding energy as a function ofΩ
andη:

ε
(1)
η,Ω(B)≈

B

2
− Ω

2

(
1+ η

2

)
− B2

8Ω

(3.3)−
√
ηΩ

π

1√
1− η ln

1−√1− η
1+√1− η .

This is minimized with respect to the new variational
parametersη andΩ by expandingη(B) andΩ(B)
in powers of B2 with unknown coefficients, and
inserting these expansions into extremality equations.
The expansion coefficients are then determined order
by order. The optimal expansions are inserted into
(3.3), yielding the optimized binding energyε(1)(B)
as a power seriesε(1)(B)= B/2−∑∞n=0 εnB

2n. The
coefficientsεn are listed in Table 1 and compared
with the exact ones of Ref. [4]. Of course, the
higher-order coefficients of this first-order variational
approximation become rapidly inaccurate, but the
results can be improved, if desired, by going to higher
orders in variational perturbation theory as in Ref. [8],
Chapters 5 and 9.

3.2. Strong-field behavior

In the discussion of the pure magnetic field we
have mentioned that the variational calculation for
the ground state energy, which is associated with the
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Table 1
Perturbation coefficients up to orderB6 for the weak-field expan-
sion of the binding energy in comparison to the exact ones of
Ref. [4]

n 0 1 2 3

εn −0.4244 0.2209 −0.1355 0.2435

εn [4] −0.5 0.25 −0.2760 1.2112

zeroth Landau level, yields a frequencyΩ⊥ ∝ B,
while Ω‖ = 0. We therefore use the assumptions
Ω⊥ � Ω‖ andΩ‖ � B for an analytic study of the
strong-field behavior of the ground state energy (3.1).
We expand the last expression of the expectation value
(3.2) in terms ofΩ‖/Ω⊥, and reinsert this expansion
into (3.1). Then we omit all terms proportional to
C/Ω⊥, whereC stands for any expression with a value
much smaller than the field strengthB. We thus
obtain the strong-field approximation for the first-
order binding energy

ε
(1)
Ω⊥,Ω‖ =

B

2
−
(
Ω⊥
2
+ B2

8Ω⊥
+ Ω‖

4

(3.4)+
√
Ω‖
π

ln
Ω‖

4Ω⊥

)
.

DeterminingΩ⊥, Ω‖ by minimization, we obtain the
optimized binding energy up to the order ln−2B:

ε(1)(B)= 1

π

{
ln2B − 4 lnB ln lnB + 4 ln2 lnB

− 4b ln lnB + 2(b+ 2) lnB + b2

− 1

lnB

[
8 ln2 lnB − 8b ln lnB + 2b2]}

(3.5)+O(ln−2B
)
,

with the abbreviationsa = 2− ln2≈ 1.307 andb =
ln(π/2) − 2 ≈ −1.548. Note that the prefactor 1/π
of the leading ln2B term differs from a value 1/2
obtained by Landau and Lifschitz [2]. Our value is
a consequence of the harmonic trial system. The
calculation of higher orders in variational perturbation
theory should drive our value towards 1/2.

The convergence of expansion (3.5) is quite slow.
At a magnetic field strengthB = 105B0, which corre-
sponds to 2.35× 1010 T= 2.35× 1014 G, the contri-
bution from the first six terms is(42.19− 35.82+
7.60+ 4.82+ 3.31+ 0.76) [2 Ryd] = 22.86 [2 Ryd].

Note the important negative contribution of the next-
to-leading term. The next three terms suppressed by
a factor ln−1B contribute−2.29 [2 Ryd], while an es-
timate for the ln−2B terms yields nearly−0.3 [2 Ryd].
Thus we findε(1)(105)= 20.57± 0.3 [2 Ryd]. This is
in very good agreement with the value 20.60 [2 Ryd]
obtained from the full treatment.

In Fig. 2, we have plotted the expressionεL(B) =
(1/2) ln2B of Landau and Lifschitz [2] to illustrate
that it gives far too large binding energies even at very
large magnetic fields, e.g., at 2000B0 ∝ 1012 G. Ob-
viously, the nonleading terms in Eq. (3.5) give impor-
tant contributions to the asymptotic behavior even at
such large magnetic fields. As an peculiar property
of the asymptotic behavior, the absolute value of the
difference between the Landau expressionεL(B) and
our approximation (3.5) diverges with increasing mag-
netic field strengthsB. Only the relative difference de-
creases.

4. Summary

We have calculated the effective classical poten-
tial for the hydrogen atom in constant magnetic field,
which governs the statistical mechanics of the sys-
tem at all temperatures. At zero temperature, we find
a rather accurate ground state energy which interpo-
lates very well between weak and strong fields. More
details are published in Ref. [10].
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