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Effects of the interaction range on structural phases of flexible polymers
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We systematically investigate how the range of interaction between non-bonded monomers influ-

ences the formation of structural phases of elastic, flexible polymers. Massively parallel replica-

exchange simulations of a generic, coarse-grained model, performed partly on graphics processing

units and in multiple-Gaussian modified ensembles, pave the way for the construction of the struc-

tural phase diagram, parametrized by interaction range and temperature. Conformational transitions

between gas-like, liquid, and diverse solid (pseudo) phases are identified by microcanonical statis-

tical inflection-point analysis. We find evidence for finite-size effects that cause the crossover of

“collapse” and “freezing” transitions for very short interaction ranges. © 2013 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4790615]

I. INTRODUCTION

The necessity for a better understanding of dynamical

and structural properties of polymers has initiated many di-

rections of interdisciplinary research, because structure and

function of biopolymers and synthetic variants govern biolog-

ical processes and technological applications. Nevertheless,

over many decades, most of the scientific work has aimed at

macroscopic systems such as single polymers with high poly-

merization degree or polymer melts. This was mainly due to

the fact that on one side the experimental equipment was not

capable of revealing finer structural details on smaller scales.

On the other hand, the theoretical treatment of even very sim-

ple polymer models was only possible in limits, where coop-

erative effects on mesoscopic scales could be neglected. Only

computational methods were found to enable investigations

of systems, which are governed by finite-size effects on com-

paratively small scales. The most striking class of polymers

is the set of biologically relevant polymers that, in particular,

includes the proteins.

However, also computational approaches have always

been restricted by available resources and, therefore, many

problems have remained unsolved. In recent years, computer

simulations have contributed substantially to a better under-

standing of phase transitions in general, including thermo-

dynamic transitions in polymer systems which require mu-

tual interaction of non-bonded monomers (such as collapse,

aggregation, and adsorption at substrates). Many of these

studies were done in the conventional way of thinking that

phase transitions only occur in very large systems close to

the thermodynamic limit. This brought up the idea of finite-

size scaling; a concept which has also successfully been ap-

plied to polymer systems.1,2 However, it has also turned out

to be quite difficult to use this approach for transitions based
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on nucleation processes, where local effects, including com-

peting effects of monomer arrangement inside the nucleus

and at the surface govern the whole nucleation process. That

means, before crystallization can be perceived as a condensa-

tion process on macroscopic scales, the system has to pass

a series of “subphase” transitions,3 which depend on mi-

croscopic details and do not necessarily systematically scale

with system size. This has been extensively studied for small

atomic clusters4–6 and, more recently, for polymers of finite

length.7–12 The simulation and analysis of such transitions

is demanding and requires computational methodologies and

resources that have only recently become available. These

methods, with generalized-ensemble Monte Carlo (MC) al-

gorithms in the lead, even enable a different way of statistical

analysis on the basis of the density of states or microcanonical

entropy,13 which, although already having been known since

the foundation of statistical mechanics, has widely been ne-

glected in the long period of analytic studies (because the den-

sity of states is hardly accessible analytically). A systematic

method to analyze structural transitions by means of the in-

flection points of the inverse microcanonical temperature has

been introduced recently.10

In this paper, we will investigate how structure forma-

tion of a single elastic, flexible polymer depends on the range

of mutual interaction between non-bonded monomers. The

goal is to construct a phase diagram that separates poten-

tial structural phases for all classes of flexible polymers un-

der the influence of a thermal environment. In recent years,

much work has been dedicated to the identification of struc-

tural phases of flexible polymers by using standard represen-

tations of generic coarse-grained lattice and off-lattice models

for polymers. However, as recent studies of discrete models

have shown,7,14, 15 it is also important to understand to what

extent the formation of these structural phases is affected by

the effective range of the attractive non-bonded interactions

competing with excluded-volume effects. One of the most in-

teresting features found in these studies was that, for suffi-

ciently short interaction range, collapse and nucleation are not
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separate transitions anymore, and a liquid phase does not ex-

ist. It is also known that geometric properties of atomic clus-

ters sensitively depend on the range of interaction.4–6,16

We present here the results of extensive generalized-

ensemble Monte Carlo simulations of a generic Lennard-

Jones model for elastic, flexible polymers in continuum in

order to reveal the interaction-range dependent phase struc-

ture under the influence of finite-size effects. Since the lat-

ter essentially affects the behavior in the regime where coil-

globule and freezing transitions meet, we also thoroughly

compare conventional canonical and more detailed micro-

canonical analyses of this multiple transition point.

The paper is structured as follows. The flexible poly-

mer model, the multiple-Gaussian modified ensemble replica-

exchange Monte Carlo method,18 and the microcanonical sta-

tistical analysis are described in Sec. II. Results including the

structural phase diagram are presented in Sec. III. The con-

clusions of our study are summarized in Sec. IV.

II. MODEL AND METHODS

A. Model

For our study, we employ a generic model of a sin-

gle elastic, flexible homopolymer chain. The bonds between

neighboring monomers are modeled using the anharmonic

FENE (finitely extensible nonlinear elastic) potential19,20

UFENE(rii+1) = −
K

2
R2 log

�

1 −

�

rii+1 − r0

R

�2
�

. (1)

We locate its minimum at r0 = 0.7, set R = 0.3, and choose K

= 40.8 In addition to the FENE bonds all monomers, bonded

and non-bonded, interact via a truncated, shifted Lennard-

Jones potential

Umod
LJ (rij ) = ULJ(rij ) − ULJ(rc), (2)

with

ULJ(rij ) = 4�

�

−

�

σ

rij − rs

�6

+

�

σ

rij − rs

�12
�

, (3)

where the energy and length scales are set to � = 1 and

σ = (r0 − rs)/2
1/6, respectively. We choose a cut-off radius

rc = 2.5σ + rs such that Umod
LJ (rij ) ≡ 0 for rij > rc and

ULJ(rc) = (−3 983 616/244 140 625)� ≈ −0.016317�. The

total energy of a conformation C = (�r1, · · · , �rN ) for a chain

with N monomers is then given by

E(C) =

N
�

i<j

Umod
LJ (rij ) +

N−1
�

i

UFENE(rii+1). (4)

Within our simulations, the parameter rs is used to control the

width of the potential. The qualitative behavior of the influ-

ence of rs on the shape of the potential is shown in Fig. 1.

While it is convenient to use rs in the definition of the poten-

tial, it is more useful for the subsequent analysis to introduce

the potential width δ as a new parameter. For this purpose
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FIG. 1. Behavior of the modified Lennard-Jones potential for different val-

ues of rs.

only, we define a square well potential

Usq(r) =











∞ if r ≤ r1

−�sq if r1 < r < r2

0 if r ≥ r2

, (5)

with the constant �sq = �/2 + ULJ(rc) such that �sq
= (236 173 393/488 281 250)� ≈ 0.483683� and r1 and

r2 being the radii where Umod
LJ (r1) = Umod

LJ (r2) = −�sq,

independently of rs (see Fig. 2).

The relationship between the simulation parameter rs and

the potential width δ is linear

δ = r2 − r1 = λ(r0 − rs), (6)

with

λ = 21/6





�

1 +

�

1

2

�1/6

−

�

1 −

�

1

2

�1/6




≈ 0.312382. (7)

The maximum value of δ is determined by the unmodified

Lennard-Jones term, i.e., for rs = 0, and reads δmax = λr0
≈ 0.218667.
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FIG. 2. The potential width δ is defined by the width of a square well po-

tential of depth −�sq, which is the difference of the two distances r1 and r2
where the Lennard-Jones potential equals −�sq.
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B. Simulation method

For our simulations, we employed the replica-exchange

Monte Carlo method known as parallel tempering.22–24 In this

method, nr replicas of the system are simulated at different

temperatures. In a single MC update, the conformation of

each replica is altered by random local displacements of sin-

gle monomers. For an inverse thermal energy β = 1/kBT, with

kB ≡ 1 in our simulations, the probability of accepting such

an update is given by the Metropolis criterion25

p = min(1, exp[−β(Enew − Eold)]), (8)

where Eold and Enew are the energies before and after the pro-

posed update. An exchange of the conformations of replicas

i and i + 1, with inverse temperatures β i and β i + 1, respec-

tively, is proposed after a fixed number (in this case 1000) of

MC steps. This exchange is accepted with the following prob-

ability:

p = min(1, exp[(Ei − Ei+1)(βi − βi+1)]). (9)

In principle, this method allows each copy of the system to

heat up and cool down over the entire simulated temperature

range. One set of simulations was performed on graphics pro-

cessing units (GPUs) using either nr = 112 or 128 replicas.

The calculation of the energy was carried out in parallel by

using 128 threads per replica. Consequently, there were up

to 16 384 threads running concurrently on the graphic cards.

The advantages of utilizing graphic cards for parallel temper-

ing simulations of polymers are discussed in more detail in

Ref. 17. This simple scheme can be applied for values of δ as

small as about 0.06. For smaller values, the freezing transition

barrier becomes so strong that an algorithmic improvement is

necessary.

Such is made possible by multiple Gaussian modified

ensembles (MGME).18 This Monte Carlo method retains all

advantages of parallel tempering, in that it facilitates effi-

cient implementation on parallel computers. At the same time,

the sampling of entropically suppressed conformations is in-

creased. The method allows to simulate strong first-order

polymer crystallization for chain lengths up to N = 147 at

very small interaction width δ ≈ 0.030 and for the 90-mer

down to δ ≈ 0.015. A simulation of all structural phases of

these polymers with standard parallel tempering is virtually

impossible. We performed MGME simulations on a parallel

computer cluster using the message passing interface (MPI).

The basic idea of MGME simulations is to multiply the

Boltzmann factor of single canonical ensemble by a Gaus-

sian form centered around some central energy value EG, i and

a width �EG, such that P B
MGME,i ∼ e−βiE−[(E−EG,i )/�EG]

2

. In

consequence, the probability for a state with energy E to oc-

cur in the ith modified ensemble becomes

PMGME,i(E) ∼ eS(E)−βiE−[(E−EG,i )/(�EG)]
2

, (10)

where S(E) = ln g(E) is the microcanonical entropy and g(E)

is the density of states. In case of first-order-like transitions,

S(E) becomes convex with d2S(E)/d2E > 0 in a certain fi-

nite energy interval, limited by two distinct energies E+ and

E− with d2S(E)/dE2(E = E+) = d2S(E)/dE2(E = E−) = 0.

In this case, the energy distribution is bimodal. In MGME
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FIG. 3. Accumulated multi-histogram Hmulti(E) from MGME simulations

for N = 90 and δ ≈ 0.030 (upper curve). The parallel tempering partition

consists of nr = 80 single Gaussian ensembles (replicas). Some histograms

for single Gaussian ensemble are also displayed. They are all of unimodal

shape.

simulations, the counter term to S(E) in Eq. (10) of the form

−(E/�EG)
2 shifts positive d2S(E)/d2E values to negative, pro-

vided that �EG is small enough. Thus, energy distribution

functions within the single Gaussian ensembles PMGME,i(E)

have strictly unimodal shape. This absence of double-peaked

distributions improves the Monte Carlo sampling problem of

entropically suppressed regions of state space, while a proper

choice of the remaining parameters EG, i and β i ensures a suf-

ficient overlap between neighboring parallel tempering parti-

tions at i and i + 1. Possible algorithmic approaches to the

parameter choice are described in Ref. 18. For illustration, in

Fig. 3 we show a combined energy histogram obtained in ac-

tual MGME simulations, the multi-histogram

Hmulti(E) =

nr
�

i=1

HMGME,i(E), (11)

where HMGME,i is a single histogram in the MGME. The sim-

ulation covers the entire energy interval of interest for a N

= 90 polymer at δ ≈ 0.030. In addition, neighboring single

energy histograms in-between i and i + 1, as displayed in

the figure, have sufficiently large overlap to facilitate swap-

updates with reasonable acceptance rates. For the given exam-

ple, the overlap Oi =
�

min[PMGME,i(E), PMGME,i+1(E)]dE

in-between neighboring probability distributions of the par-

allel tempering partition was tuned to a value Oi ≈ 0.6 ∀i.
This particular value results in acceptance rates Pacc ≈ 0.5

for swap updates. We remark that less optimal parallel tem-

pering partitions for MGME simulations can easily be found,

and as long as Oi > 0.1 are still considered to be efficient.

In our early simulations, we actually employed the simple

displacement updates for all Cartesian monomer coordinates.

For these, we measure the tunneling auto-correlation time

τtunnel in units of sweeps, which counts the time in-between

the assignment of a specific conformation (on the parallel

tempering partition) to i = 1, then to i = nr and finally to i

= 1 again. Figure 4 displays these times (triangles) for the N

= 90 polymer as a function of δ. We observe rapidly increas-

ing values for short ranged potentials, which renders simula-

tions of short ranged potentials hard. In typical parallel tem-

pering simulations, we performO(109) sweeps for each of the
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FIG. 4. Tunneling auto-correlation time as explained in the text as a func-

tion of δ at N = 90 for simple displacement updates (triangles), improved by

slithering snake and crankshaft moves (circles). Dotted lines are guides to the

eye to illustrate the exponential decay of the tunneling time.

nr copies. Including slithering snake and crankshaft updates

(circles) reduces the time scale substantially.

C. Microcanonical analysis

For the microcanonical analysis of our data, we use

the inflection-point method proposed in Ref. 10. Since all

simulations were done using the parallel tempering method,

we obtain the energy histograms Hi(E) (i = 1, . . . , nr).

Each histogram is an estimate for the density of states

gi(E)∝Hi(E)exp (β iE) up to an unknown constant, which is

different for each β i. For the analysis of the microcanonical

entropy and its derivatives, it is convenient to continue work-

ing with the ratio gi(E + �E)/gi(E). Entropic differences can

then be written as21

�Si(E) = Si(E + �E) − Si(E)

= ln[gi(E + �E)/gi(E)]

= ln[Hi(E + �E)] − ln[Hi(E)] + βiE. (12)

Introducing the following weight:

wi(E) =
Hi(E + �E) · Hi(E)

Hi(E + �E) + Hi(E)
, (13)

which is reciprocally proportional to the variance of �Si(E),

yields the weighted average over all histograms

�S(E) =

�

i �Si(E)wi(E)
�

i wi(E)
. (14)

This result can be used for an approximation of the inverse

microcanonical temperature, defined as

β(E) ≡ T −1(E) =

�

dS

dE

�

N,V

≈
�S(E)

�E
. (15)

Inflection-point analysis of β(E)10 allows us not only to lo-

cate, but also to classify transitions in the system. In this

scheme, a transition is of first order, if the derivative of β(E) at

the inflection point has a positive peak value γ (E)= dβ(E)/dE

> 0. Consequently, an inflection point with a negative peak

value corresponds to a second-order-like transition.

In the example illustrated in Fig. 5, β(E) has an inflec-

tion point at E ≈ −350 and the corresponding peak in γ (E)
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FIG. 5. Comparison of transition signals in β and γ . The peak in γ (E) at

E ≈ −350 corresponds to a first-order-like transition. Another peak in γ at

E ≈ −375 marks a second-order-like transition. Both transitions show up as

inflection points in β(E) at the respective energies. If the peak value of γ (E)

for a given transition is positive, we classify the transition as of “first order.”

In line with this, a “second-order” transition is classified by a negative value

for the γ -peak.

is positive. The associated transition is, therefore, first-order-

like. Another inflection point of β(E) is found at E ≈ −375.

The peak in γ (E) for this energy is below zero, indicating a

second-order-like transition.

III. RESULTS

A. Comparison with previous work and
microcanonical interpretation

In a recent study, Taylor et al.15 investigated a flexible

homopolymer chain, where the non-bonded monomers inter-

act via a square-well potential with variable width. Construct-

ing a phase diagram as a function of temperature and poten-

tial width they identified three phases for sufficiently large

interaction ranges: expanded coils for high temperatures and

crystalline structures for very low temperatures, separated by

a collapsed-globule phase for intermediate temperatures. The

collapse transition was found to be pre-emptied by the freez-

ing transition for narrow potentials. While in a canonical anal-

ysis approach the signals for the collapse transition vanish, the

microcanonical approach is still able to locate the positions of

all transitions.

Since the collapse transition point is included in the

Maxwell regime of the liquid-solid transition, Taylor et al.15

concluded that what remains is a first-order-like transition

from coil to crystal. This argumentation is fully consistent

with the assumption that liquid-solid and coil-globule tran-

sitions become indistinguishable in the thermodynamic limit.

For the continuum model we used in our study, we can clearly

confirm these findings. Figure 6 shows how the inflection

point associated with the second-order collapse transition en-

ters the Maxwell regime of the liquid-solid transition (dashed

lines), if δ is decreased below a threshold value.

However, this argumentation is not sufficiently conse-

quent in light of the microcanonical interpretation of the re-

sults obtained for a finite system. First, the Maxwell con-

struction is adapted from the theory of real gases, where it

is necessary to get rid of unphysical behavior in the infinite
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FIG. 6. Comparison of the microcanonical inverse temperature β(E) for

three values of δ. The triangles mark the corresponding peak position in the

derivative of β(E) for the freezing transition. The circles correspond to the

maxima in γ (E) marking the collapse transition. The dotted lines are located

at β-values obtained by Maxwell constructions. Areas A1 and A2 enclosed by

β curves and Maxwell line coincide.

system. Here, this is not necessary. The “back-bending effect”

smoothly disappears for large systems. Therefore, a Maxwell

construction is not needed at all. The analysis of inflection

points is sufficient to uniquely identify and classify transi-

tions. Second, in contrast to the canonical “heat bath” tem-

perature, the inverse microcanonical temperature is a well-

defined quantity on fundamental statistical grounds. Taking

this into account, both transitions remain separate, but micro-

canonically they cross over. This is a pure finite-size effect.

Both transition temperatures will converge to the same transi-

tion point in the thermodynamic limit.

In Fig. 6, the microcanonical temperature curves are

shown for three potential widths, δ ≈ 0.06, 0.03, and 0.015.

Circles mark the transition points for the�-collapse and trian-

gles the freezing transition. In addition to the results from the

inflection-point analysis, the Maxwell line associated with the

freezing transition is also included. While for rather broad po-

tentials, i.e., δ � 0.1 the temperatures obtained by inflection-

point analysis and Maxwell construction match, these def-

initions of the transition temperature differ for narrower

potentials.

B. δ dependency

In the following, we will investigate how the interaction

range δ of the potential influences transition points in the sys-

tem. We have plotted the first and second derivatives of the

microcanonical entropy for the 90-mer in Fig. 7 as well as

specific heat curves and thermal fluctuations of the radius of

gyration in Fig. 8. In Fig. 7 (top), the inverse microcanon-

ical temperature is shown as a function of energy. The un-

modified and largest interaction range δ = δmax ≈ 0.22 cor-

responds to the leftmost temperature curve. Two effects can

be observed as the potential width δ is reduced: The freez-

ing transition marked by the non-monotonic region, also re-

ferred to as “back-bending” or “convex intruder,”13 is shifted

to higher energies. It also gets more pronounced for narrower

potentials. Another effect of narrowing the interaction length

is that the collapse transition, indicated by the shoulders in the
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FIG. 7. (Top) The microcanonical inverse temperature as a function of en-

ergy for the 90-mer at different values for the potential width δ. All inflection

points of the inverse temperature are marked by a circle. (Bottom) Derivative

of the inverse temperature β(E) as a function of energy.

curves, shifts to lower temperatures. The difference in transi-

tion temperatures becomes smaller and smaller for shorter in-

teractions range. In the bottom part of Fig. 7, we show the sec-

ond derivative of the entropy. With decreasing potential width

the freezing transition, signaled by the peak of positive value,

shifts to higher energies. The first four curves also show a

peak with negative value below the freezing transition, mark-

ing the solid-solid transition from anti-Mackay to Mackay

overlayers in the incomplete outer shell of the icosahedron

in the core. Note that the solid-solid transitions are second-

order-like and occur only for δ > 0.12. At higher energies,

above the freezing transition, the curves exhibit a maximum

marking the collapse transition. This maximum is shifted to

lower energies, as δ decreases.

We also looked at two canonical quantities to identify

transitions in the system. A typical quantity that gives in-

sight into the thermodynamic behavior of the system is the

specific heat, as shown in Fig. 8(a). With decreasing poten-

tial width, the signal for the freezing transition, i.e., the pro-

nounced peak at low temperatures, shifts to slightly higher

temperatures. For smaller values of the interaction length, the

freezing temperature drops again. The maxima of the peaks

increase with decreasing δ. The solid-solid transition is just

visible as a small shoulder below the freezing peak. While the

freezing temperature changes only slightly, the collapse tem-

perature undergoes more significant changes. The shoulders

indicating the collapse transitions become narrower with de-

creasing potential width. In this case, it is often more advanta-

geous to investigate structural quantities, such as the radius of
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FIG. 8. (a) Specific heat and (b) thermal fluctuation of the radius of gyration

for the 90-mer parametrized by δ. The color code for δ is given above in

Fig. 7.

gyration rgyr, which is a measure for the spatial extension of

the polymer. Let us discuss the thermal fluctuations of rgyr as

shown in Fig. 8(b). For each δ, there are two prominent peaks.

The low-temperature peaks belong to the liquid-solid transi-

tion and their locations agree well with those of the respective

specific heat peaks. At higher temperatures, we find very pro-

nounced peaks that indicate the collapse transition. Again, we

can see that with smaller δ the difference between gas-liquid

and liquid-solid transition temperatures is getting smaller. The

�-collapse moves to lower temperatures for short interaction

ranges. To compare different approaches for transition tem-

peratures, we show the behavior of three definitions for the

freezing temperature in Fig. 9. While specific heat peaks and

Maxwell construction agree over the entire δ-range, the values

obtained via microcanonical analysis visibly deviate for δ �

0.1. This is not surprising, because in the case of the specific

heat and Maxwell indicators freezing and collapse signals

mix, whereas the inflection points purely indicate the freez-

ing transition only. Therefore, we will construct the structural

phase diagram in the following entirely by means of the mi-

crocanonical inflection points of the inverse temperature.

C. Phase diagram

With all the transition temperatures acquired from the mi-

crocanonical analysis, we can construct the structural phase

diagram for the 90-mer, parametrized by temperature T

and interaction range δ. There are three major phases, see

Fig. 10. In the “gas” phase G at high temperatures and short-

range interaction, polymer conformations are dominated by

FIG. 9. Comparison of three different definitions for the freezing transition

temperature. The crosses are transition temperatures indicated by the respec-

tive peaks in the first derivative of the microcanonical entropy. Peak positions

of the specific heat are represented by triangles. The circles are the transition

points obtained by Maxwell construction.

expanded coils. For interaction ranges δ � 0.02, the “liquid”

phase L separates the gas phase from distinct solid phases.

The red curve in Fig. 10 is the �-transition line, where the

expanded coil collapses into disordered, but compact globu-

lar states. Reducing the temperature, the polymer structures

change from globular to crystalline at the freezing transi-

tion line indicated by the green line. With decreasing poten-

tial width the liquid phase region becomes smaller, as the

collapse transition shifts to lower temperatures. The inset in

Fig. 10 shows the crossover of collapse and freezing at very

small interaction ranges. In the microcanonical analysis, it is

still possible to single out both transition temperatures. At

about δ = 0.12 the solid-solid transition (blue line) merges

with the freezing transition. The solid phase Sico−aM is dom-

inated by structures with at least one icosahedral core and

an incomplete outer shell of anti-Mackay type (hcp), see

Figs. 1 and 2 in Ref. 8. By reducing the temperature fur-

ther and passing the solid-solid transition line, the pack-

ing is optimized and a Mackay-type fcc layer forms (phase

Sico−M). However, the icosahedral interior becomes energet-

ically less optimal for δ < 0.15, and it is replaced by a dec-

ahedral arrangement of monomers. These structures can also

possess extended fcc-packed fractions (Sfcc/deca). Following

former studies of atomic cluster models with short-ranged

interactions,4–6 one might expect a separate fcc phase to be

present at extremely small δ-values and temperatures. We will

discuss this crossover in more detail for a simpler example in

the following.

D. Analysis of low-temperature structures

The characterization of the solid phases in the structural

phase diagram is challenging and almost completely deter-

mined by surface effects. It is instructive to investigate the

low-temperature crystal structures of flexible polymers at dif-

ferent ranges δ of the monomer–monomer interaction po-

tential. As an example, we choose the 55-mer, which forms

a perfectly shaped icosahedron for δ = δmax ≈ 0.220.8 In

contrast to the 90-mer, its geometric phases are more stable

and can be identified clearly. The qualitative behavior how-

ever, is similar for longer chains.
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FIG. 10. (Top) Phase diagram for the 90-mer, obtained by pure microcanon-

ical analysis. The inset shows the crossover of the transition temperatures for

collapse and freezing transition. (Bottom) Probability for zero (nic = 0) and

nonzero (nic ≥ 1) number of icosahedral cores in low temperature structures,

cf. Ref. 8.

As a first step, we pick 106 independent conforma-

tions from the lowest-temperature partition of the multiple

Gaussian modified ensemble for every 0.030 ≤ δ ≤ 0.220 in

steps of �δ ≈ 0.015. The inverse microcanonical tempera-

tures of those conformations are in the range 4 ≤ β ≤ 5. For

the identification of the solid phases, it is useful to measure

the integrated radial distribution function with respect to the

particle closest to its center of mass (com), i.e., the total num-

ber of monomers inside a sphere of radius r around the center

monomer icom

N s
icom

(r) =
�

i �=icom

�(r − ri,icom ) , (16)

where ri,icom is the distance between monomer i and the cen-

ter monomer, and �(r) is the Heaviside function. The results

are shown in Fig. 11, where each individual curve is the aver-

age over the data measured for each of the 106 conformations.

One can clearly differentiate two types of curves for N s
icom

(r).

For δ = δmax ≈ 0.220, we know that the monomer positions

correspond to the vertices in two icosahedral layers with radii

of circumscribed spheres of 0.67 and 1.33, containing 13 and

55 monomers, respectively. That fact is clearly supported by

the corresponding jumps in N s
icom

(r) marked by grid lines at

the bottom scale. For decreasing interaction range, starting at

δ < 0.12, the shape of N s
icom

(r) changes qualitatively, indicat-

ing that the low-energy states are not icosahedral anymore,

which is consistent with Fig. 10 (bottom). The function now

shows jumps at radii corresponding to nth nearest neighbor

distances in the fcc lattice (upper scale and grid lines). We em-

phasize that this crossover picture is very stable, even though

we measure at temperatures well above T = 0.

In order to unravel the structural details, we now look

at the putative ground-state structures and measure their

(binned) pair distribution function

g(r) =
�

j

�

N s
j (r + 0.5�r) − N s

j (r − 0.5�r)
�

, (17)

0.09 ≥ δ ≥ 0.03

0.21 ≥ δ ≥ 0.12

r

N
i

(r
)

FIG. 11. Averaged integrated radial distribution functions N s
icom

(r) for the N

= 55-mer at different values of δ. Data were obtained from many indepen-

dent low-energy configurations at inverse microcanonical temperatures 4 ≤ β

≤ 5. Curves are plotted for different values of δ in steps of �δ ≈ 0.015. Grid

lines and values at top scale correspond to nth nearest neighbor (1 ≤ n ≤ 5)

positions in the fcc-lattice with lattice constant r0. Grid lines and values at

bottom scale correspond to radii of circumscribed spheres of icosahedra with

edge lengths r0 and 2r0, cf. Eq. (1).

where we set �r ≤ 10−2. In other words, we measure dis-

tances between all pairs of monomers in the configuration,

rather than only the distance of all monomers from a single

center monomer as above, and count them in a histogram.

We can clearly differentiate three different structural types

in different regions of the interaction length. We plot g(r) in

Fig. 12 for three representative values of δ and visualize the

corresponding conformations in Fig. 13. The peaks of the red

curves (open squares) in Fig. 12 correspond to icosahedral

structures, which have been discussed above. For very small

δ (blue peaks, filled diamonds), i.e., for very short ranged po-

tentials, we find that all peaks coincide with nearest neigh-

bor positions in the fcc lattice. In Fig. 12, the values at the

δ ≈ 0.030

δ ≈ 0.110

δ = δmax

r

g(r)

FIG. 12. Pair distribution function for ground states found at δ = δmax (open

squares), δ ≈ 0.110 (filled circles) and δ ≈ 0.03 (filled diamonds). Grid lines

and values at top scale correspond to nth nearest neighbor (1 ≤ n ≤ 19)

positions in the fcc-lattice with lattice constant r0, cf. Eq. (1).
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FIG. 13. Visualizations of ground-state structures corresponding to data

plotted in Fig. 12. (a) Icosahedron at δ = δmax, cf. Ref. 8; (b) δ ≈ 0.110,

cf. decahedral structure 55C in Ref. 5; (c) δ ≈ 0.030, all monomers occupy

atomic positions at the fcc lattice.

top scale and the grid lines correspond to the nth-to-nearest

neighbor distances (1 ≤ n ≤ 19) in the fcc lattice. All peaks

of g(r) of the ground state at δ ≈ 0.030 agree very well with

these values. However, there are structures in-between (green

peaks, filled squares), which are neither icosahedral nor com-

pletely fcc structures. Those structures resemble ground states

found for atomic, range-dependent Morse clusters.4, 5 In fact,

the ground state at δ = 0.110 corresponds to the decahedral

structure “55C” found in Ref. 5 (cf. Fig. 13 (b) and Fig. 7 in

Ref. 5). For other values of δ close to 0.110, we also find the

defective decahedral structures described there.

IV. SUMMARY

We have studied the influence of the interaction length

of a Lennard-Jones potential on the structural behavior of

an elastic flexible polymer. We applied advanced simula-

tion methods by using replica-exchange parallel tempering

on graphics cards and multiple Gaussian modified ensembles

to tackle the strong first-order-like behavior of the freezing

transition. We employed the microcanonical inflection-point

analysis method10 that made it possible to construct a struc-

tural phase diagram for an elastic flexible polymer with 90

monomers. This analysis of the microcanonical entropy al-

lows to resolve the positions of structural transitions, which

are much more uncertain in canonical analyses. We are able to

precisely locate and also classify transitions by investigating

the first and second derivative of the entropy. Both derivatives

can be evaluated easily. We find that the liquid phase, sepa-

rating the extended coil “gas”-like phase from the crystalline

solid phases, becomes smaller for shorter interaction ranges.

For sufficiently small interaction range, we eventually observe

a crossover of transition lines. The crossover point marks the

triple point in the thermodynamic limit and thus the direct

transition from gas to solid. According to the microcanonical

signals, both transitions remain separate for finitely long poly-

mers. Summarizing the structural analysis of the solid phases,

we find that the icosahedral ground-state structures identified

for the standard Lennard-Jones potential8 do not survive at

smaller interaction ranges. In analogy to former studies of

atomic Morse clusters,4–6 we find transitions from icosahe-

dral to decahedral and fcc structures for decreasing interac-

tion range. These transitions are strongly influenced by the

repulsive part of the potential as they are mainly triggered by

released stresses in the conformation.
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