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Abstract
The simulation of biomolecular structural transitions such as folding and aggregation does not
only require adequate models that reflect the key aspects of the cooperative transition
behaviour. It is likewise important to employ thermodynamically correct simulation methods
and to perform an accurate subsequent statistical analysis of the data obtained in the
simulation. The efficient combination of methodology and analysis can be quite sophisticated,
but also very instructive in their feedback to a better understanding of the physics of the
underlying cooperative processes that drive the conformational transition. We here show that
the density of states, which is the central result of multicanonical sampling and any other
generalized-ensemble simulation, serves as the optimal basis for the microcanonical statistical
analysis of transitions. The microcanonical inflection-point analysis method, which has been
introduced for this purpose recently, is a perfect tool for a precise, unique identification and
classification of all structural transitions.

PACS numbers: 05.10.−a, 05.20.Gg, 82.35.Lr, 83.10.Tv, 87.10.−e

(Some figures may appear in colour only in the online journal)

1. Introduction

The investigation of complex systems on mesoscopic scales is
so difficult that only experimental and computational studies
can help gain deeper insights into the physical mechanisms
that guide cooperative, qualitative changes of the system’s
macrostate. For biomolecular systems, folding, aggregation
and substrate-adhesion transitions are certainly among the
most relevant processes. Successful medical treatment of
epidemic diseases that have a microbiological origin, such
as Alzheimer’s disease, are unthinkable without a thorough
understanding of the molecular behaviour in a diverse
environment. Whereas experimental techniques cannot yet
track structural transitions in sufficiently high resolution,
computer simulations suffer from a variety of problems,
among which the lack of precise models and the failure of
molecular dynamics methods to simulate nonlocal structural
changes in a thermodynamically correct way [1] are most
prominent. However, also the statistical analysis of the data
obtained in simulation is intricate, because finite-size effects

affect thermodynamic response quantities such as fluctuations
of energy (specific heat) and structural order parameters in a
different way, yielding somewhat diffuse information about
transition points or ‘transition ranges’.

The currently most efficient simulation methods are
based on Monte Carlo sampling in generalized ensembles.
This includes simulated [2, 3] and parallel tempering [4–6],
as well as multicanonical [7–10] and Wang–Landau
sampling [11].

The most popular among these methods, and most
frequently used in biomolecular simulations, is probably
parallel tempering, also known as replica-exchange Monte
Carlo. In this method, conventional simulations like
Metropolis Monte Carlo or Langevin molecular dynamics
are performed independently of each other at different
temperatures in parallel threads until an exchange of
replicas (conformations) in neighbouring threads is attempted.
This method can easily be parallelized on conventional
computers or even on more specialized architectures
designed for parallel operation, such as graphics processing
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units [12]. Nonetheless, the method has a major drawback
and this is the problem of stochastic tunnelling through
entropic transition barriers, which are characteristic for
first-order-like transitions. In these cases, two (or more)
different phases coexist, but the pathways between these
phases are suppressed entropically. In the free-energy
landscape picture, this entropic gap corresponds to a barrier.
Since the replica-exchange step is based on a simple
Metropolis criterion in an extended (actually two-fold)
ensemble represented by the threads affected by the exchange,
‘climbing’ the free-energy barrier is a local process (in energy
space), i.e., the barrier has to be taken step by step. This
results in a slowdown of the simulation at the transition
point, or, in the worst case, in a reflection at the barrier.
If the latter happens, the numerical results of the entire
simulation are questionable because of inadequate sampling
at the transition point. Although the principal problem is
known, the actual origin of the barrier is typically not,
because it is highly system-specific. Therefore, although many
attempts have been undertaken to improve the sampling
efficiency near the transition point or ‘to work around
it’, this problem is an intrinsic feature of the method
and generally cannot be resolved, because, in effect, one
still simulates individual canonical ensembles. Thanks to
the multiple-histogram reweighting method [13, 14], the
fragments of the density of states, obtained in the individual
threads, can be assembled. This yields an estimate for
this fundamental quantity which is extremely useful for
the analysis of structural transitions [15–18] and scaling
properties of phase transitions [19].

Much more powerful in this regard are, however,
flat-histogram methods, where sampling is nonlocal and
effectively enables the system to tunnel through barriers. The
most frequently used methodologies are multicanonical and
Wang–Landau sampling, or the combination of both. The
reason why these methods perform so much better is that the
algorithms directly aim at the estimation of the density of
states.

In this paper, we will review the multicanonical recursion
in detail and then discuss the central role of its major results,
the accurately estimated density of states and the inverse
microcanonical temperature, for the unique identification and
classification of structural transitions.

2. The multicanonical recursion

The multicanonical simulation method [7–9] is entirely based
on microcanonical statistical mechanics. This method does
not only aim at the estimation of the density of states as most
generalized-ensemble methods do. Multicanonical sampling
dynamics is actually based on entropic sampling governed
by the density of states. The (canonical) temperature is not
considered a relevant parameter of the simulation anymore.
In multicanonical simulations the state space is continuously
integrated over the (microcanonical) temperature. This close
relationship between the fundamental quantities of statistical
mechanics and the decoupling of multicanonical sampling
from individual canonical ensembles makes it possible to scan
the whole phase space within a single simulation with very
high accuracy, even if first-order transitions occur.

The principle Boltzmann energy distribution
pcan(E; T ) ∝ g(E)e−βE is deformed in such a way that
the sampling rates of the entropically strongly suppressed
energetic coexistence regimes in first-order-like transitions
and of lowest-energy conformations are artificially enhanced
and the modified, multicanonical ensemble possesses a
flat energy distribution. Hence, the multicanonical weight
Wmuca(E; T ) is introduced in the following way:

pcan(E; T )Wmuca(E; T ) ∼ hmuca(E) = constE;T . (1)

Ideally, the multicanonical histogram hmuca(E) is flat and
thus a constant in energy and temperature space. By
this construction, the multicanonical simulation performs a
random walk in energy space which leads to a rapid decrease
of the autocorrelation time in entropically suppressed
regions. Recalling that the simulation temperature T does
not possess any meaning in the multicanonical ensemble
as, according to equation (1), the energy distribution is
always constant, independently of temperature. Actually,
it is convenient to set it to infinity. As we will see in
the following, the multicanonical recursion starts with an
ordinary Metropolis run. Therefore, the performance of the
multicanonical simulation in the initial recursions can be
improved substantially by setting the simulation temperature
to a finite value, such that the most interesting energy regions
are sampled right from the beginning of the simulation.
Otherwise, it can take several recursions before the random
walker has dug through and reached the most interesting
regions of energy space. At infinite temperature, it starts in the
purely random phase, where the density of states is largest,
which is energetically typically far away from transition
points.

In the infinite-temperature limit, limT →∞ pcan(E; T )

∼ g(E) and thus limT →∞Wmuca(E; T ) ∼ g−1(E). Then, the
acceptance probability for a conformational change X → X′

is governed by

w(X → X′) = min(1, Wmuca(E(X′))/Wmuca(E(X)))

= min(1, g(E(X))/g(E(X′))). (2)

The weight function can suitably be parameterized as (in the
following we set kB ≡ 1)

Wmuca(E) ∼ exp[−S(E)] = exp{−β(E)[E − F(E)]}, (3)

where S(E) is the microcanonical entropy

S(E) = ln g(E). (4)

Since
β(E) = dS(E)/dE (5)

is the inverse microcanonical temperature β(E) = 1/T (E),
the microcanonical free-energy scale f (E) = β(E)F(E) and
β(E) are related to each other by the differential equation

d f (E)

dE
=

dβ(E)

dE
E . (6)

Since β(E) and f (E) are unknown in the beginning of the
simulation, this relation must be solved recursively [8, 9]. If
not already being discrete by the model definition, the energy
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spectrum must be discretized, i.e. neighbouring energy bins
have an energetic width 1E . Thus, for the estimation of β(E)

and f (E), the following system of difference equations needs
to be solved recursively. The starting point is equation (1) with
pcan(E; T ) ∼ g(E) for an infinite simulation temperature.
Since the simulated histogram will not be perfectly flat, the
estimate for the density of states after the nth recursion will
read ĝ(n)(E) ∼ h(n)

muca(E)/W (n)
muca(E) such that the entropy can

be written as

S(n)(E) = ln ĝ(n)(E) = ln h(n)
muca(E) − ln W (n)

muca(E) + c, (7)

where c is an unimportant constant. Then, the discrete
recursive scheme to solve the above set of continuous
equations for β, f , S and finally Wmuca iteratively looks like
this

β(n+1)(E)= [S(n)(E)−S(n)(E−1E)]/1E

= β(n)(E) + [ln h(n)
muca(E) − ln h(n)

muca(E−1E)]/1E,

(8)

f (n+1)(E) = f (n+1)(E − 1E)

+ [β(n+1)(E) − β(n+1)(E − 1E)](E − 1E), (9)

S(n+1)(E) = β(n+1)(E)E − f (n+1)(E), (10)

W (n+1)
muca (E) = exp[−S(n+1)(E)]. (11)

If no better initial guess is available, one typically sets
W (0)

muca(E) = 1 in the beginning. The zeroth iteration thus
corresponds to a Metropolis run at infinite temperature, which
generates the histogram h(0)

muca(E) = hcan(E) =: ĝ(0)(E).
Thus, the histogram is already an estimate for the density
of states ĝ(0)(E) such that S(0)(E) = ln ĝ(0)(E). The
recursion (8)–(11) then yields the first estimate for the
multicanonical weight function W (1)

muca(E), which is used to
initiate the second recursion, etc. The recursion procedure
can be stopped after I recursions, if the weight function has
sufficiently converged to a stationary distribution. The number
of necessary recursions and also the number of sweeps to
be performed within each recursion is model dependent.
Since the sampled energy space increases from recursion to
recursion and the effective statistics of the histogram in each
energy bin depends on the number of sweeps, it is a good idea
to increase the number of sweeps successively from recursion
to recursion. Since the energy histogram should be ‘flat’ after
the simulation run at a certain recursion level, an alternative
way to control the length of the run is based on a flatness
criterion. If, for example, minimum and maximum value of
the histogram deviate from the mean histogram value by less
than 20%, the run is stopped.

The recursive scheme (8)–(11) clearly shows how
the multicanonical weights are naturally connected
to microcanonical thermodynamic quantities such as
temperature, entropy and free energy as functions of energy.
For the implementation of the multicanonical method,
however, one typically makes direct use of equation (3),

which reduces the scheme by establishing a direct connection
between W (n+1)

muca (E) and β [8]. We simply consider the ratio

W (n+1)
muca (E)

W (n+1)
muca (E − 1E)

= e−[S(n+1)(E)−S(n+1)(E−1E)]
= e−β(n+1)(E)1E

(12)
and immediately obtain by using equation (8)

W (n+1)
muca (E)

W (n+1)
muca (E − 1E)

=
W (n)

muca(E)

W (n)
muca(E − 1E)

h(n)
muca(E − 1E)

h(n)
muca(E)

.

(13)
This recursion formula for the multicanonical weights avoids
the intermediate calculations in the scheme above.

The quality of the (n + 1)th estimator for β in equation (8)
can be substantially improved, if the statistics gained in the
n previous recursions is also considered and an optimized
estimator βopt is introduced. Rewriting equation (8) as

β(n+1)(E) = β
(n)
opt (E)+[ln h(n)

muca(E) − ln h(n)
muca(E − 1E)]/1E,

(14)
the optimized estimator is obtained by error-weighted
superposition of β

(n)
opt and β(n+1):

β
(n+1)
opt (E) = α(n)(E)β(n+1)(E) + (1 − α(n)(E))β

(n)
opt (E) (15)

= β
(n)
opt (E) + α(n)[ln h(n)

muca(E)

− ln h(n)
muca(E − 1E)]/1E . (16)

A recursive histogram error analysis (for details see [8, 9])
yields

α(n)(E) =
wn(E)∑n
i=0 wi (E)

(17)

with error weights

wi (E) =
h(i)

muca(E)h(i)
muca(E − 1E)

h(i)
muca(E) + h(i)

muca(E − 1E)
. (18)

Then, the optimized weights are given by

W (n+1)
muca (E)

W (n+1)
muca (E − 1E)

=
W (n)

muca(E)

W (n)
muca(E−1E)

(
h(n)

muca(E−1E)

h(n)
muca(E)

)α(n)(E)

.

(19)
Finally, after the best possible estimate for the multicanonical
weight function is obtained, a long multicanonical production
run is performed, including all measurements of quantities
of interest. From the multicanonical trajectory, the estimate
of the canonical expectation value of a quantity O is then
obtained at any (canonical) temperature T by

OT =

∑
t O(Xt )W −1

muca(E(Xt )e−E(Xt )/kBT∑
t W −1

muca(E(Xt )e−E(Xt )/kBT
. (20)

Since the accuracy of multicanonical sampling is independent
of the canonical temperature and represents a random
walk in the entire energy space, the application of
reweighting procedures is lossless. This is a great advantage
of the multicanonical method, compared with Metropolis
Monte Carlo simulations. A multicanonical simulation
virtually samples the system behaviour at all temperatures
simultaneously. In other words, the direct estimation
of the density of states is another advantage, because
multiple-histogram reweighting is not needed for this (in
contrast to replica-exchange methods).
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3. Microcanonical inflection-point analysis

System energy E and microcanonical entropy S are the
driving forces of any transition. Therefore, it is simple to
build up a systematic analysis tool for phase transitions
of any system on this basis. The density of states
g(E) and the microcanonical entropy S(E) are related
to each other, according to equation (4). The basic set
of fundamental statistical quantities is complete with the
inverse microcanonical temperature β(E) = dS(E)/dE . The
production run n = I of the multicanonical method yields, as
we have discussed in the previous section, a direct estimate
β̂ for the inverse temperature, which is, in accordance with
equation (8), given by

β̂(E) = β
(I )
opt (E) + ln(h(I )

muca(E)/h(I )
muca(E − 1E)])/1E .

(21)
This single expression contains everything needed to identify
and classify a thermodynamic phase transition. The reason is
that any such transition is accompanied by strong energetic
fluctuations while the temperature hardly changes. This
empirical observation is made manifest by the fact that the
specific heat possesses a maximum or a ‘shoulder’ at the
transition temperature. Thus, the (system) energy E can
generally be considered as a kind of generic ‘order parameter’.
The inverse microcanonical temperature β, as equation (5)
tells us, describes the change of entropy S with respect to
energy. If we define phase transitions, or more carefully
qualitative changes of macrostates (pseudo-phase transitions),
as points in β–E space, where β variations are minimal, we
hold in our hands the key for a systematic approach to classify
all kinds of transitions with this characteristics [18]. This
is a variant of the variational principle of least sensitivity.
What we have to look for are those inflection points of the
β(E) curve, whose derivatives are maximal. Depending on
whether the value of this maximum is positive or negative, we
discriminate first- and second-order transitions. Thus, if we
introduce

γ (E) =
dβ(E)

dE
(22)

the order of the transition is determined by

γmax

{
> 0 : first-order transition,

< 0 : second-order transition.
(23)

The function γ (E) describes the variation of the inverse
temperature with respect to energy at a given energy value.
As such it is related with the microcanonical heat capacity via
CV (E) = [dT (E)/dE]−1

= −β2(E)/γ (E).
In very small systems, it can occur that first- and

second-order derivatives are not sufficiently sensitive to
help identify a conformational transition. In such cases
it is necessary to analyse the monotony of higher-order
derivatives to locate transition points. The identification
scheme represented by (23) is unique and it is independent of
the thermodynamic limit. Therefore, it applies to any system
of any size. In the thermodynamic limit, the thus identified
transition points coincide with those determined by scaling
analyses. For a second-order transition, γmax approaches zero
in this limit. First-order transitions separate into an infinite
number of hierarchical subphase transitions, which extend
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Figure 1. Specific heat cV (T ) and fluctuations of radius of gyration
rV (T ) for a flexible elastic polymer with 20 monomers. Statistical
errors were calculated by using the jackknife method.

over a finite transition range in energy space. This range
corresponds to the latent heat [15].

As an example, we will discuss the transitions of
an elastic, flexible polymer with N = 20 monomers. The
polymer is modelled by a coarse-grained approach, in which
monomers interact via a truncated–shifted Lennard-Jones
potential, Emod

LJ (ri j ) = ELJ(min(ri j , rc)) − ELJ(rc) with
ELJ(ri j ) = 4ε[(σ/ri j )

12
− (σ/ri j )

6], where ri j is the
distance between two monomers located at ri and r j

(i, j = 1, . . . , N ), and ε = 1 and σ = 2−1/6r0, with the
potential minimum at r0 = 1.0 and the cutoff at rc = 2.5σ .
Adjacent monomers are connected by finitely extensible
nonlinear elastic (FENE) anharmonic bonds [20–22],
EFENE(ri i+1) = −K R2ln{1 − [(ri i+1 − r0)/R]2

}
1/2. The

FENE potential minimum is located at r0 and diverges
for r → r0 ± R (in our simulations R = 3/7). The
spring constant K is set to 98/5. The total energy of a
polymer conformation X = (r1, . . . , rN ) is given by E(X) =∑N

i=1

∑N
j=i+1 Emod

LJ (ri j ) +
∑N−1

i=1 EFENE(ri i+1). Simulations of
this model were performed using the multicanonical sampling
method as described above.

As a first result, figure 1 shows the specific heat
cV (T ) = N−1d〈E〉/dT and the fluctuations of the radius
of gyration, rV (T ) = N−1d〈Rgyr〉/dT , as functions of the
canonical temperature T . Both curves exhibit a peak at T can

ls ≈

0.33, which signals the liquid–solid nucleation transition
from globular to crystalline structures. The other transition is
clearly indicated by the peak of rV at T can

2 ≈ 1.13. However,
the specific heat has only a shoulder in this region that renders
a precise location of the transition point complicated. This
diffuse transition is the coil–globule transition that separates
random structures (‘vapour’) from compact, but unstructured
globules (‘liquid’). In fact, from a canonical statistical
perspective, finite systems do not possess unique transition
points but rather span transition regions in temperature space.
The collapse of fluctuations occurs only in the thermodynamic
limit; the transition region shrinks to a transition point only in
that limit. These transitions are generic for any kind of single
polymer, including proteins [23]. Depending on size and
interaction range, both transitions can be close to each other or
even fall together [24–26]. Additional transitions are possible
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Figure 2. Microcanonical inflection-point analysis. Inverse
microcanonical temperature β(E) and its derivative
γ (E) = dβ(E)/dE as functions of system energy E .

and can be classified as solid–solid transitions [18, 27]. No
solid–solid transition is experienced by the system we discuss
here.

The major results of the microcanonical inflection-point
analysis are shown in figure 2. The inverse microcanonical
temperature β(E), obtained from equation (21) as a direct
result of the multicanonical simulation, possesses two
inflection points. Comparing its derivative, γ (E), with the
γ = 0 line, we find that the maximum values of γ at these
inflection points are negative. Hence, both transitions have
to be classified as second-order transitions. This is not
particularly surprising; apart from a few exceptional cases,
structural transitions of small flexible, elastic polymers tend
to be second-order-like [18]. This is due to the small energetic
regions, in which transitions can occur only. A first-order
transition requires an extended energetic region (typically
bridged by the Maxwell line that allows for the definition of
the latent heat), which is only available if the energetic space
is large enough. This is not the case in the example considered
here. Although the inflection point at low energies signals the
nucleation transition, it is of second order. It shall be noted
here that the character of the same transition can be different
in larger systems, where more energetic states are available.
Phases might energetically be more separate, thereby creating
an entropic depletion zone, which turns a second- into a
first-order-like transition. The effect can also be converse,
if entropically suppressed zones are filled with additionally
available states, in which case a first-order transition changes
to second order. In the thermodynamic limit, order–disorder
transitions such as liquid–solid transitions, are typically
first-order phase transitions.

From figure 2, we read off that the low-energy transition
occurs at E ≈ −60.3, which, following the line towards the
β curve, is associated with a microcanonical temperature
βls ≈ 3.0. Thus, the microcanonically identified liquid–solid
transition temperature is Tls ≈ 0.33. This perfectly agrees
with the earlier canonical estimate T can

ls , obtained from the
peak positions of specific heat and from the fluctuations of
the radius of gyration. The second γ peak in figure 2 at
E ≈ −22.5 signals the 2 transition and corresponds to the
inverse temperature β2 ≈ 0.81, or T2 ≈ 1.23, which is close

Figure 3. Lowest-energy conformation of the 20 mer
(Emin ≈ −73.9) found in the simulation. The density of states at this
energy is by a factor 1080 smaller than in the random-coil phase.
Note that it does not possesses a rotational symmetry (not even if
the bonds are ignored).

to, but slightly larger than, the canonical estimate for the 2

temperature obtained from rV . Whereas the microcanonical
estimate is unique and does not leave any space for ambiguity,
the canonical estimates depend on the fluctuating quantity
chosen and are multivalued.

The precise estimation of the density of states is the main
challenge in this combination of multicanonical simulation
and subsequent microcanonical analysis. Even in the simple
example discussed here, the density of states spans 80 orders
of magnitude between the random states (at high energy) and
the energetic states resembling the ground state or global
energy minimum. The conformation with the lowest energy
found in the simulation is shown in figure 3.

4. Summary

We have shown that the multicanonical Monte Carlo
method and the microcanonical statistical analysis are closely
intertwined in a natural way. Multicanonical sampling is based
on the density of states and aims at a direct estimate of
this quantity and its advanced version, the multicanonical
recursion, intrinsically calculates the first derivative of the
microcanonical entropy with respect to energy. The enormous
importance of this quantity—the inverse microcanonical
temperature—lies in the fact that all qualitative changes of
the system are encoded in it. By systematic analysis of
its inflection points, all phase transitions can be uniquely
identified and even classified. We have demonstrated the
power of this method for a simple homopolymer example
which exhibited the usual coil–globule transition and a
condensation transition towards a crystalline state. However,
microcanonical inflection-point analysis can be applied
to any system, independently of whether it is small or
large. Therefore, this method is particularly useful for the
unique identification of structural transitions in biomolecular
systems.
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