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Abstract. In their tubelike phase, nanowire-adsorbed polymers exhibit strong struc-
tural similarities to morphologies known from single-walled carbon (hexagonal) and
boron (triangular) nanotubes. Since boron/boron nitride tubes require some disorder
for stability the triangular polymer tubes provide a closer analog to the carbon tubes.
By means of computer simulations of both two and three dimensional versions of
a coarse-grained bead-spring model for the polymers, we investigate their structural
properties and make a detailed comparison with structures of carbon nanotubes.
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1 Introduction

In a recent computational study, it could be shown that flexible polymers interacting with
a wirelike substrate possess a barrellike phase [1]. Optimally packed, the monomers form
a cylindrical polymer tube, reminiscent of a triangular lattice which wraps around the
wire. Depending on the competition between steric constraints and monomer-substrate
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attraction, other structural phases can also form. These phases were also found in previ-
ous, related studies of polymers interacting with nanocylinders [2, 3].

Tubelike structures formed by atoms or molecules possess interesting physical prop-
erties such as amazing mechanical stability, which make them potential candidates for
nanotechnological applications. Recently, tin nanowires have been coated with atomic
nanotube structures in order to stabilize them for conducting superconductivity exper-
iments, i.e., protect them from shape fragmentation as well as from oxidation [4]. The
understanding of the wetting behavior of atomic nanotubes with polymeric materials
has been claimed to be the key to carbon nanotube-polymer composites [5]. Biological
cells require a stable cytoskeleton which consists of tubelike myosin fibers.

The most prominent examples of tubes on atomistic scales are carbon nanotubes [6,7]
which can be thought of as “rolled-up” and “zipped” sheets of graphene, sharing its
hexagonal honeycomb lattice structure and sp2 hybridized atoms [8–11]. Specifically,
single-walled carbon nanotubes (SWCNTs) have been extensively studied on different
levels of approximation. While nanotube models are typically based on continuum ap-
proximations, it has recently been shown that their atomistic nature is crucial for correct
estimation of nanotube parameters [12, 13].

As well as carbon nanotubes, boron and boron nitride tubes have also been cre-
ated [14] and modeled. A review of boron tube modeling is given in [15]. The salient
differences between boron and carbon tubes are that the boron tubes form a triangular
lattice structure (as do the polymer tubes) but the boron tubes appear to require either
puckering, substitution with nitrogen or regular vacant sites for stability, unlike both
polymer and carbon tubes. Thus the polymer tubes share one feature – the underly-
ing lattice – with single-walled boron nanotubes (SWBNTs) and another – non-buckled,
translationally invariant surfaces – with the carbon tubes.

From a formal point of view the hexagonal nanotube atomic lattice is dual [16] to
the triangular lattice, suggesting there may be a deeper connection. This has been ex-
tensively explored for idealized single-walled boron nanotubes [15], but the buckling or
regular vacancies in real boron tube structures complicate a precise modeling. The poly-
mer tubes we investigate in this study are complete, unbuckled triangulations of single-
walled tubes and thus we can directly adopt the theory introduced in [15] for idealized
boron tubes to link our results for polymer tubes with known atomic boron and carbon
nanotube structures.

This paper is structured as follows. The description of the hybrid polymer-wire model
leading to monolayer polymer tube conformations for certain parameters, and a sum-
mary of our previous findings on those systems, is given in Section 2. In Section 3 we
present details of typical nanotube configurations and quantify their characterization.
Since the correct treatment of discrete tube structures is indispensable for our discussion
and was introduced quite recently, we also review the polyhedral model for the descrip-
tion of ideal nanotubes in detail. In Sections 4 and 5 we will present a detailed discussion
of our mappings and simulations based on Monte Carlo simulations in the full three di-
mensional space (Section 5.1). These simulations indicate that it is indeed adequate to
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restrict the investigation to polymers on cylindrical surfaces (Section 5.2) in order to in-
troduce a precise classification of polymer tubes. We show that while certain crucial dif-
ferences are present, there is a deep similarity between atomistic nanotubes and polymer
tubes. A summary of observations and conclusions will complete the paper.

2 Structural properties of polymer tubes

2.1 Polymer-wire model

For our study of polymer tubes, we employ a coarse-grained hybrid model of a flexible,
elastic polymer interacting with an attractive stringlike nanowire. We found recently that
such a system possesses a conformational phase, in which tubelike monolayer structures
spontaneously form [1]. In our model, pairs of monomers interact via a truncated and
shifted Lennard-Jones (LJ) potential

Vmod
LJ (rij)=VLJ(min(rij,rc))−VLJ(rc) (2.1)

with the standard form of the LJ potential

VLJ(rij)=4ǫ[(σ/rij)
12−(σ/rij)

6], (2.2)

where rij denotes the distance between the ith and jth monomer. We set the respective

intrinsic energy and length scales to ǫ= 1 and σ = 2−1/6r0 with the minimum-potential
distance r0=1. The cutoff is chosen to be rc=2.5σ. Covalently bonded adjacent monomers
in the linear polymer chain interact via the finitely extensible nonlinear elastic (FENE)
potential, which has the form [17, 18]

VFENE(rii+1)=−K

2
R2 ln

{

1−[(rii+1−r0)/R]2
}

. (2.3)

Its minimum coincides, by construction, with r0 and diverges for r→r0±R. We set R=0.3
and K=40.

The interaction of the polymer with the wire is modeled by the potential

Vstring(r⊥;i)=πaǫ f

(

63

64

σ12
f

r11
⊥;i

− 3

2

σ6
f

r5
⊥;i

)

, (2.4)

where σf and ǫ f are the monomer-wire interaction parameters and r⊥;i is the distance of
the ith monomer perpendicular to the wire. We scale the potential such that its minimum
value is −1 at rmin

⊥ for ǫ f =1 and σf =1, in which case a≈0.528; see also [19]. The effective

thickness of the string, σf , is related to the minimum distance rmin
⊥ of the monomer-wire

potential via

rmin
⊥ (σf )=(693/480)1/6

σf ≈1.06σf . (2.5)
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Eventually, the total energy of the polymer interacting with the wire is given by

E=
N

∑
i, j=i+1

Vmod
LJ (rij)+

N−1

∑
i=1

VFENE(rii+1)+
N

∑
i

Vstring(r⊥;i). (2.6)

In order to identify structural properties of low-energy adsorbed polymer conformations,
we employed stochastic minimization techniques based on generalized-ensemble Monte
Carlo sampling strategies such as the energy-landscape paving method [20], multicanon-
ical sampling [21], and the Wang-Landau method [22].

2.2 Structural phases of the polymer-wire system

In close analogy to a recent study of a bead-stick polymer interacting with a nanowire [1],
the full spectrum of structural phases can be revealed. Depending on the wire attraction
strength ǫ f and its effective thickness σf , spherically globular or rather extended confor-
mations dominate. Although in this paper we are interested in the tubelike structural
phase of the polymer-wire system only, let us briefly review all phases identified. In
Fig. 1, representative examples of low-energy conformations in the different phases are
depicted.

If the value of ǫ f is small enough that monomer-monomer contacts are energetically
more favorable than contacts with the substrate, the lowest-energy conformations are
compact spherical globules. Since the wire is always attractive, the number of monomer-
substrate contacts is also maximized, such that the globular structures inclose the wire
[phase “Gi” (globular inclosed), see Fig. 1(c)]. If, on the other hand, the length scale

Figure 1: Exemplified images of representative low-energy conformations in the four structural phases (see
text) of a polymer with 200 monomers interacting with an attractive nanowire. The parameter settings are:
(a) ǫ f =5.0, σf =1.5 (in structural phase B), (b) ǫ f =3.5, σf =2.5 (C), (c) ǫ f =2.0, σf =0.5 (Gi), (d) ǫ f =1.0,

σf =1.5 (Ge).
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of the monomer-wire interaction exceeds the length scale of the pairwise LJ-interaction
among two monomers, the wire is pushed outward and the globule is simply attached
to the wire [this phase is called “Ge” (globular excluded), see Fig. 1(d)]. Starting from
phase Ge and increasing the energy scale of the attraction to the wire, the morphology of
conformations changes. The wire-attached spherically symmetric globules “melt” along
the wire axis and reach what is called the “clamshell phase” C, see Fig. 1(b). The spher-
ical morphology is broken and the polymer starts wrapping around the wire in order to
increase the energetically favored contacts with the substrate.

If the string thickness is reduced below the corresponding threshold value, the clam-
shells turn to “barrels” and the structural phase B is reached. The same scenario occurs,
when approaching from the Gi phase and passing the transition point, where the energy
scale of the monomer-substrate attraction is sufficiently large compared to the intrinsic
polymer energy scale of nonbonded LJ-interactions to allow for an increase of monomer-
substrate contacts at the expense of monomer-monomer contacts. Since additional con-
tacts with the wire can only be formed along the wire axis, the polymer forms compact
tubelike structures in this phase, see Fig. 1(a).

For our discussion of similarities of the polymer-wire system with carbon nanotubes,
we will refer below only to the monolayer polymer tube structures formed in phase B.
Before embarking on the comparison of polymer tubes and carbon nanotubes, we briefly
review relevant geometrical properties of SWCNTs.

3 Single-walled nanotubes

Nanotubes are typically considered as rolled-up planar atomic sheets. A single-walled
carbon nanotube (SWCNT) is commonly pictured as a zipped monolayer graphene sheet
(although, more detailed approaches exist [23]), crystallized on a hexagonal (honeycomb)
lattice. All carbon atoms have the same distance from the tube axis and thus reside on a
cylinder surface. In the original, conventional model, the SWCNT lattice was supposed to
entirely cover a cylinder, thereby assuming curved hexagonal plates and bonds, neglect-
ing the discrete nature of the lattice [11]. In a more realistic polyhedral decomposition
approach, this is corrected by formulating constraints regarding C-C bond lengths and
angles between them [15, 24].

Single-walled boron nanotubes (SWBNTs) possess an underlying triangular lattice
structure and have also been described by cylindrical mappings [15, 25]. Energetically
favored tube structures possess holes or are puckered, in which case the atoms do not lie
on a surface of a single cylinder [26, 27]. Other, non-regular structures, have also been
considered in theoretical studies of SWBNTs [28].

The triangular single-walled polymer tube (SWPT) structures we find in the barrel
phase of a polymer adsorbed at a nanowire exhibit strong similarities with ideal cylin-
drical SWBNTs. Thus, for its geometrical description the ideal polyhedral model for
SWBNTs with equal bond lengths [25] can easily be adopted. Since the polymers tend
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to form highly regular tube structures, they are interesting candidates for carbon nano-
composites of polymers and SWCNTs. For these reasons, it is instructive to discuss the
relationship of SWCNTs and SWPTs in the following.

3.1 The conventional view on carbon nanotubes

In the unzipped, conventional representation, the chiral or wrapping vector Ch point-
ing from any lattice site to its next copy (see Fig. 2) uniquely characterizes any SWCNT
structure. The wrapping vector and the translational vector T, perpendicular to Ch, span
the unit cell. It is convenient to introduce lattice vectors a1 and a2 (see Fig. 2), such that
Ch=na1+ma2 and T=[(n+2m)/d]a1−[(2n+m)/d]a2 , where d is the greatest common
divisor of n+2m and 2n+m. Hence, the two integers n and m≤n, usually written in the
vector form (n,m), are sufficient to differentiate between SWCNT structures.

The wrapping orientation is defined by the characteristic wrapping or chiral angle θ

between a1 and Ch, i.e.,

cosθ
(n,m)
conv =(2n+m)/2

√

n2+m2+nm. (3.1)

(a) (b) (c)

Ch
Ch

Ch

T

T

T

a1 a1

a1

a2 a2

a2

Figure 2: Examples of carbon nanotube structures: (a) zigzag (6,0), (b) chiral (6,2), and (c) armchair (6,6)
conformation. In the top row, unzipped and unrolled planar representations are shown, the middle row illustrates
the zipping and at the bottom, the actual tube structures are visualized.
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Hence, θ can take values between 0 and 30◦. The corresponding limiting tube conforma-
tions for a given value of n are usually called zigzag (for m=0) or armchair conformation
(for m=n). In Fig. 2, different visualizations of (6,m) zigzag, chiral, and armchair carbon
nanotube structures are shown.

In this conventional approach [11], SWCNTs were assumed to be planar sheets of the
(n,m) unit cell wrapped around a cylinder and continued along the central axis. Then,

the length of Ch corresponds to the circumference L
(n,m)
conv of this cylinder. Since

|Ch|= L
(n,m)
conv =

√
3lCC

√

n2+m2+nm, (3.2)

where lCC≈1.42Å corresponds to the C–C bond length, the radius of the zipped SWCNT
is given by

r
(n,m)
conv = L

(n,m)
conv /2π . (3.3)

In this simple cylindrical mapping, the bond length is not conserved and discrete curva-
ture effects are not correctly taken into account. However, the flatter the surface, i.e., the
larger n, the more accurate this estimate is.

For structural investigations of realistic SWCNTs, this difference is not of particular
relevance. However, for our subsequent comparison and discussion of the relationship
between triangular SWPTs and hexagonal SWCNT shapes, the (typically small) devia-
tions must be taken into consideration, because the structural characterization on the
basis of the (n,m) vector depends sensitively on this.

Assuming that the SWCNT forms under the constraints of conserved C–C bond
lengths, which are not necessarily all equal [29], a discrete SWCNT model can be de-
rived. The obtained geometric tube structures are in good correspondence with ab initio
predictions and molecular dynamics relaxation [15, 30]. This model is also applicable to
ultra-small nanotubes which resemble nanowires [31].

3.2 Polymer tubes and the polyhedral model for nanotubes

In the tube phase, polymers attracted by a thin wire form compact conformations. Be-
cause of the elasticity and flexibility of the polymer model considered here, monomers
are optimally packed in a triangular arrangement. Unzipping such a polymer tube yields
a regular triangular lattice, whose lattice vectors are identical with a1 and a2 introduced
earlier for the definition of the wrapping vector Ch of the SWCNTs. Consequently, the
(n,m) notation for the characterization of SWCNTs can also be implemented to charac-
terize the SWPTs.

The polymer tubes we find in the monolayer barrel phase of our polymer-nanowire
adsorption model can be well described by the ideal boron nanotube model [15, 25],
where all bonds are considered to have an identical length lBB. This assumption corre-
sponds well to the definitions of the length scales of bonded and nonbonded interactions
in the FENE polymer model used in our study. Thus, the systems can easily be mapped
onto each other by the replacement lBB ↔ r0. The polymers form monolayer tubes, if the
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adsorption strength overcompensates optimal three-dimensional nearest-neighbor pack-
ing of the monomers. If the adsorption strength is reduced to the extent that intrinsic
attraction becomes competitive, the topologically two-dimensional monolayer is given
up in favor of a double-layer structure extending into the third dimension. The polymer
undergoes a topological transition, but keeps a barrellike form [1]. In the following, we
only consider monolayer polymer tubes, as only in this conformational phase the analogy
to carbon and (idealized) boron nanotubes is apparent.

Adopting the equations from the idealized boron nanotube model [25] and the chiral
notation (n,m) from atomic nanotubes, the radius of an (n,m) polymer tube is given by

r
(n,m)
poly,△=

r0

2

cosθ(n,m)

sinψ(n,m)
, (3.4)

where r0 is the equilibrium monomer-monomer distance [32] and the corrected wrapping
angle θ(n,m) is given by

cos2θ(n,m)=
n(n+2m)sin2 ψ(n,m)

(n+m)2sin2ψ(n,m)−m2sin2(ψ(n,m)+ξ(n,m))
. (3.5)

The angles ψ(n,m) and ξ(n,m)=(nψ(n,m)−π)/m are defined by projections of atom positions
upon a circular slice perpendicular to the tube axis [25]. They are obtained by solving the
transcendental equation

0=(n2−m2)sin2
(

ψ(n,m)+ξ(n,m)
)

−n(n+2m)sin2ξ(n,m)+m(2n+m)sin2 ψ(n,m) . (3.6)

See also Fig. 3 for definition of the angles ψ and θ.

Figure 3: Definitions of the angles ψ and θ, shown exemplarily using a part of a (4,4) SWPT. 2ψ=∠(AMB′);
θ=∠(BAB′).

Analogously one can formulate equations for θ(n,m) and r
(n,m)
poly,7 for the polyhedral

model for carbon nanotubes with fixed bond lengths, crystallized in a curved honey-
comb lattice structure. In fact, the wrapping angle θ(n,m) for SWCNTs is identical to that
of SWPTs and SWBNTs, respectively, as the base vectors a1,2 in the SWCNT structure
correspond to the bond vectors in triangular tubes.
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The calculation of the polyhedral radius is more challenging, as the honeycomb cell is
not immune to shearing or tilting, as is a triangular lattice. Indeed, the curvature induced
by the wrapping deforms the simple hexagonal cells, in contrast to triangular cells. The
first-order correction of the polyhedral radius for SWCNTs is [30]:

r
(n,m)
poly,7= r

(n,m)
conv +

√
3π lCC

[

4(n2+nm+m2)3−9n2m2(n+m)2
]

64(n2+nm+m2)7/2
+O(1/n3). (3.7)

For a concrete description of the limiting behavior of this model, we start with the obser-

vation that θ(n,m)=θ
(n,m)
conv (cf. Eqs. (3.1) and (3.5)) for the two special cases n=m and m=0,

i.e., for (n,n)- and (n,0)-tubes, the conventionally calculated wrapping angles of θ=30◦

and θ = 0◦ are valid also in the polyhedral model. This leads to an intuitive interpreta-
tion for the radius of triangular (n,0)-tubes. From the vanishing wrapping angle follows
that there are bonds forming regular polygons with n edges in planes perpendicular to
the tube orientation. Hence, the corresponding tube radius is the circumradius of such
a polygon:

r
(n,0)
poly,△=

r0

2sin(π/n)
. (3.8)

Analogously, the radius of triangular (n,n)-tubes can be directly calculated.
In this case, continuations of a1 or a2, projected onto the wrapping vector (or, in the

tube, the slice plane perpendicular to the tube axis), will form a regular polygon with
2n edges. Since the angle between the original vectors a1,2 and their projections, i.e., the
wrapping vector θ, is π/6, the lengths of the projected vectors are shortened by the factor
cos(π/6)=

√
3/2. For the on-tube calculation of the bond length between two monomers,

we make use of the fact that the projection angle in a triangular lattice does not change
when zipping the planar sheet to a tube:

r
(n,n)
poly,△=

√
3r0

4sin(π/2n)
. (3.9)

Both, Eqs. (3.8) and (3.9), are of course covered by Eq. (3.4), as Eq. (3.6) implies ψ=π/2n
and ψ=π/n for (n,0) and (n,n) tubes, respectively.

Note that it is not possible to apply similar arguments to calculate the correct radii of
(n,0) and (n,n) SWCNTs, because the hexagon is not rigid, as the triangle is. Thus dis-
tances between the atoms in the hexagon change when bending. Indeed, for hexagonal
honeycomb tubes (SWCNTs) one finds, when projecting bonds to planes perpendicular
to the tube orientation, polygons with 3n and 2n edges for armchair and zigzag-tubes,
respectively. But these polygons are not regular anymore, in the armchair case, and the
lengths of the projections cannot be calculated in such a straightforward way, due to mini-
mal deformations caused by the curvature. However, applying such approximations and
corresponding generalizations to (n,m) tubes lead to the same qualitative results, such as
the (n,m) sequence for increasing radii, as shown below, for example. Quantitative devi-
ations from results of the polyhedral model are in the low per-mille range (not shown).
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Generally, although the numerical differences of r
(n,m)
conv (Eq. (3.3), with the respective

scale) and r
(n,m)
poly (Eqs. (3.4) and (3.7)) do not seem to be particularly striking, and may not

be distinguished in practice, in particular at finite temperatures due to fluctuations of the
bond lengths and the tube itself, the physical consequences are actually important to no-
tice. Consider, for example, (7,0) and (5,3) SWCNTs. Using Eq. (3.3), both would share

the same radius r
(7,0)
conv = r

(5,3)
conv =

√
3lCC

√
7/2π and could not be distinguished using this

quantity. However, the structures of the corresponding tubes are completely different,
and in consequence, physical, i.e., nanoelectronic, nanooptic and other material proper-

ties [11,33–35], are in general different as well. Hence, r
(n,m)
conv is not suitable to parametrize

SWCNTs, whereas r
(n,m)
poly can uniquely be associated to any SWCNT structure. A more de-

tailed numerical analysis of the deviations between the conventional and the polyhedral
approach is given in [36].

However, for the following discussion of similarities of SWCNTs and SWPTs, sig-
nificant precision is required and therefore it is necessary to take into account these
differences.

4 Mapping between carbon nanotubes and polymer tubes

Since the triangular lattice formed by an unzipped SWPT is obtained from a Voronoi con-
struction of the hexagonal lattice formed by the carbon atoms in an unzipped SWCNT,
it is appealing to investigate the mapping between these different systems. This is not
only mathematically interesting, but might also have technological consequences for the
design of particularly stable polymer coated carbon nanotubes or other nanohybrid struc-
tures including SWCNTs and complex molecules [3, 5, 37–42].

However, as we have discussed in the previous section, it is necessary to examine
geometrical considerations on the tube itself and not on its unzipped form. This is not
trivial due to the curvature and discrete nature of those systems, which affects, for ex-
ample, the bending angles between the respective carbon atoms or monomers such that
they generally differ in the unzipped planar shape and in the tube structure.

Exemplified for (4,m) tubes, Fig. 4 shows in various types of visualization the general
construction principle of triangular polymer tubes out of honeycomb SWCNT structures.
A monomer of the polymer chain is placed in the center of each “hexagonal” plaquette
on the tube, i.e., at the position of the vertices of the associated Voronoi graph of the
hexagonal lattice points in flat (unzipped) space, and then the monomer is shifted along

the axis perpendicular to the tube axis to the correct distance r
(n,m)
poly,7 from the tube axis.

Fig. 4 (b) and (c) enable one to sense the generally non-trivial geometrical structure of
SWCNTs. In Fig. 4 (d) the helical aspect of the corresponding triangular tubes, to which
we will return later, is emphasized.

The length scale in the triangular tube is obviously different from that in the SWCNT.
The resulting scaling of bond lengths is of particular interest. Equivalently, one can ask
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Figure 4: Different visualizations of (4,m) nanotubes with (l. to r.) 0 ≤ m ≤ 4. Hexagonal SWCNT (red
online) and the corresponding ideal triangular tubes (yellow online) are shown from different viewpoints and
combinations of lattice points (atomic positions) and edges (bonds). The data is the same for each column (m
value) with all lattice points always shown, but edges only in some cases specifically (a) both, (b), (c) and (d)
bonds of SWCNTs only and (e) bonds of triangular tubes only.

for the radius of an (n,m) polymer tube, with a monomer-monomer bond length scale
r0 equal to lCC. As known, the scaling factor in the conventional planar representation is
aconv=

√
3 independently of n or m, which is hence the limiting case for n→∞ in the tube

geometry. For small n and m,

a
(n,m)
poly√

3
:=

r
(n,m)
poly,7(lCC)

√
3r

(n,m)
poly,△(r0= lCC)

n→∞−→ 1

is plotted in Fig. 5 (solid line, “+” symbols, left scale).

The influence of the first correction term to r
(n,m)
conv in Eq. (3.7) is connected to this

scaling. The term is also plotted in Fig. 5 (dashed line, “×” symbols, right scale) and
can be considered to be an estimate of the error made by applying Eq. (3.3) for the calcu-
lation of the SWCNT radius. This error can be bigger than the differences between radii
of two SWCNTs of different type [36].
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Figure 5: Solid graph, left scale: Normalized scaling of lengths in SWCNTs compared to SWPTs in the

polyhedral model. The upper bound of the plot corresponds to the limiting value of a
(n,m)
poly /

√
3 for n →∞.

Dashed graph, right (logarithmic) scale: numerical value of the first order correction term to r
(n,m)
conv in Eq. (3.7)

for SWCNTs in the polyhedral model. The x axis is ordered with respect to increasing n and m, i.e., between
two tics marked (n,0) and (n+1,0) tubes, all (n,m) tubes with increasing 0<m≤n are located.

5 Computer simulations of polymer tube structures

In the following, we present and discuss results from Monte Carlo minimizations of the
bead-spring polymer-wire system introduced in Section 2 for strong wire attraction, such
that the ground states form SWPTs. Compared to the model used in [1], we introduced
extendible bonds and adjusted the equilibrium distance of the Lennard-Jones interactions
such, that it coincides with the equilibrium length of the FENE bond potential. This sim-
plifies the simulations and the bond-length flexibility limits, at this point, the occurrence
of defects.

5.1 Simulation in the full conformational space

We perform simulations using generalized-ensemble Monte Carlo techniques [20–22] to
search for low-energy configurations. We propose new structures through local updates
of the Cartesian monomer coordinates, global spherical-cap updates [43], slithering snake
moves, and bond-exchange moves [44].

The results of simulations with polymers of the length N = 32 are summarized in
Table 1. In all our simulations, we set ǫ f = 5.0, i.e., we simulate structures in the mono-
layer barrel region ’B’ [1]. The input to the simulation is σf , i.e., the effective thickness
of the wire, is given in the first column. In the following columns, average values of
measured local observables are shown. The tube radius r is, for example, measured as
r=∑

N
i=1ri/N, with ri being the perpendicular distance of the ith monomer from the center

of the string. The small variance indicates that the monomers are located on a cylinder
surface, in fact. Definitions of the characteristic angles ψ and θ, which are also measured
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Table 1: Characteristics of polymer tubes formed by FENE-polymers adsorbed to a string in the polymer-
wire model. The measured quantities are average values from local measurements at single monomers in the
lowest-energy structures, see the text for details.

input measured from lowest-energy state calculated using polyhedral model

σf r 2ψ in ◦ θ in ◦ (n,m) r
(n,m)
poly,△ 2ψ

(n,m)
poly,△ in ◦ θ

(n,m)
poly,△ in ◦

0.47 0.504±0.002 131.9±2.6 19.1±0.7 (2,1) 0.51962 131.8 18.43
0.53 0.566±0.002 120.0±0.8 0.0±0.4 (3,0) 0.57735 120.0 0.00
0.56 0.597±0.002 89.9±0.8 30.7±0.5 (2,2) 0.61237 90.0 30.0
0.61 0.646±0.002 98.0±0.9 13.3±0.6 (3,1) 0.64526 97.7 13.6
0.65 0.692±0.002 90.0±0.4 0.0±0.3 (4,0) 0.70711 90.0 0.00
0.69 0.732±0.003 76.5±0.6 23.5±0.3 (3,2) 0.74313 76.3 23.3
0.74 0.783±0.003 77.4±0.5 10.6±0.4 (4,1) 0.78561 77.4 10.7
0.78 0.831±0.003 72.1±0.6 0.0±0.4 (5,0) 0.85065 72.0 0.00
0.81 0.858±0.003 60.0±0.3 30.1±0.5 (3,3) 0.86603 60.0 30.0
0.83 0.880±0.004 64.7±0.4 19.0±0.4 (4,2) 0.88462 64.6 19.0
0.88 0.932±0.004 64.0±0.3 8.8±0.4 (5,1) 0.93259 64.0 8.84

locally at each monomer and then averaged, are given in Fig. 3. We convinced ourself
by simulating all structures at different chain lengths that the results are independent of
the actual choice of N. By applying the polyhedral model for triangular tubes, an (n,m)
tube code, given in the fifth column, can uniquely be assigned to each pair (ψ,θ). Finally,
in the last three columns, the corresponding calculated geometric observables using the
polyhedral model are given, which agree perfectly with the measured ones. The radius
does not match exactly though, which is due to the fact that we did not use the calculated
values from the model as input for the simulations, but σf in steps of 0.01 to avoid any
potential bias. However, the flexibility of the bonds allows the compensation of these
small deviations without causing defects in the ground-state structures. We will com-
ment on that in more detail in the next section. After all, we find, that the polyhedral
model for boron nanotubes [15] is suitable to describe the completely adsorbed polymer
ground-state structures of a simple polymer-wire model. Some example structures are
visualized in Fig. 6.

Figure 6: Low-energy tube structures of the simulated polymer-wire model. The structures were found for
different σf (cp. Table 1): (a) σf =0.47. Slightly excited state, two monomers do not belong to the monolayer

around the wire. The monomers in that closest layer form a (2,1) tube. (b) σf = 0.61. Putative ground-state

forming a (3,1) tube around the wire. (c) σf = 0.83. Putative ground-state forming a (4,2) tube. All shown
polymers consist of N=48 monomers.
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5.2 Simulations on a cylinder surface

Since we find in the perfect monolayer tube conformations all monomers at the same
distance from the tube axis, i.e., fluctuations of the local radius of the monolayer tubes
were in fact vanishing, it is useful to directly simulate the polymer on a cylinder sur-
face with fixed radius r. Following this idea, we randomly initialize conformations in
such a way that each monomer has the same distance r from the string. We propose
new structures by local updates and slithering snake moves in cylindrical coordinates
keeping r untouched. This reduces the conformational space significantly and will al-
low us to refine our results shown above and determine, for example, intervals of radii
with stable ground-state conformations. Furthermore, longer chains and hence larger
tube radii could be studied. Finally, as an outlook to subsequent work, defects can be
investigated in detail. See Section 5.3 below, for an example.

Simulations were now performed for different r values in the range r∈[0.425,··· ,1.424]
independently, with a step width of about 0.01. The lengths of the simulated polymer
chains ranged from N = 32 to 200. The results presented below also did not depend on
the actual number of monomers N.

As mentioned above, we are looking for ground states in order to find a classification
scheme for polymer nanotubes that depends on their radius, analogously to that of the
carbon nanotubes. Indeed, this can be reduced to the measurement of the characteristic
angles ψ and θ of such lowest-energy polymer tubes, which we measure as described
above, depending on the given radius. For defect-free conformations, this can then be
related to known observables of SWCNTs.

Table 2 summarizes results from this part of our computational study, and in Fig. 7 we
visualize some of the putative ground-state structures we found that belong to different
chirality classes. The illustrated structures are marked in Table 2 with an asterisk. The

Figure 7: Putative ground-state structures of the polymer model restricted to a cylinder surface. The structures
were found at different tube radii and belong to different chirality classes. (a) Double-helix; (b) Triple-helix,
(2,1) tube; (c) (3,0) tube; (d) (2,2) tube; (e) 5-helix, (4,1) tube. Every picture shows a single polymer, whereas
just the monomer positions are shown and not the bonds between consecutive monomers. Different colors were
used to mark imaginary helical strands. The top row shows a perspective view on the structures, the bottom
row a top view.
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Table 2: Characteristics of lowest-energy states of simulated extendible polymers on cylindrical surfaces with
radius r. The given angles are, as before, average values based on local measurements. See text for a detailed
description. Structure types marked with an “∗” are visualized in Fig. 7.

Calculated polyhedral Simulation on Cylinder surface (“2D”) Corresponding
polymer tube input output (Lowest-energy state) SWCNT

(n,m) r
(n,m)
poly,△ 2ψ in ◦ r type 2ψ in ◦ θ in ◦ θ in ◦ type

(1,1) 0.425 (1,1) 181±6 30.4±0.5 30.00 (1,1)
0.436. . . 0.447 Double-helix∗ (29.2. . . 27.6)±0.7

(2,0) 0.457. . . 0.466 (2,0) 180±2 0.0±1.2 0.00 (2,0)
(2,1) 0.51962 131.810 0.477. . . 0.532 Triple-helix∗ 132±2 (20.8. . . 17.5)±1.0 18.43 (2,1)
(3,0) 0.57735 120.000 0.553. . . 0.574 (3,0)∗ 120±0.8 0.0±0.5 0.00 (3,0)
(2,2) 0.61237 90.0000 0.585. . . 0.617 (2,2)∗ 90±1 (31.3. . . 29.6)±0.3 30.00 (2,2)
(3,1) 0.64526 97.7431 0.627. . . 0.670 4-helix 98±1 (13.9. . . 12.6)±0.7 13.57 (3,1)
(4,0) 0.70711 90.0000 0.680. . . 0.712 (4,0) 90.0±0.7 0.0±0.5 0.00 (4,0)
(3,2) 0.74313 76.3120 0.723. . . 0.755 5-helix 76.4±0.7 (23.8. . . 22.7)±0.4 23.33 (3,2)
(4,1) 0.78561 77.4148 0.765. . . 0.808 5-helix∗ 77.5±0.7 (11.0. . . 10.2)±0.6 10.72 (4,1)
(5,0) 0.85065 72.0000 0.819. . . 0.851 (5,0) 72.0±0.7 0.0±0.6 0.00 (5,0)
(3,3) 0.86603 60.0000 0.861 (3,3) 60.0±0.5 29.9±0.4 30.00 (3,3)
(4,2) 0.88462 64.6055 0.872. . . 0.904 6-helix 64.7±0.9 (19.2. . . 18.3)±0.5 19.01 (4,2)
(5,1) 0.93259 63.9796 0.914. . . 0.957 6-helix 64.0±0.8 (9.0. . . 8.4)±0.6 8.84 (5,1)
(6,0) 1.00000 60.0000 0.967. . . (6,0) 60.0±0.6 0.0±0.5 0.00 (6,0)
(4,3) 1.00188 53.6574 . . . 1.021 7-helix 53.8±0.6 26.2±0.7 25.26 (4,3)
(5,2) 1.03116 55.5587 1.031. . . 1.052 7-helix 55.5±0.6 (15.9. . . 15.5)±0.6 16.02 (5,2)
(6,1) 1.08319 54.4683 1.063. . . 1.106 7-helix 54.5±0.6 (7.6. . . 7.2)±0.5 7.52 (6,1)
(4,4) 1.13152 45.0000 1.106. . . 1.127 (4,4) 45.0±0.5 (30.3. . . 30.0)±0.5 30.00 (4,4)
(5,3) 1.14441 47.8827 1.138 8-helix 47.9±0.3 21.7±0.4 21.75 (5,3)
(7,0) 1.15238 51.4286 1.148. . . 1.169 (7,0) 51.4±0.4 0.0±0.6 0.00 (7,0)
(6,2) 1.18076 48.5578 1.169. . . 1.201 8-helix 48.6±0.5 (13.9. . . 13.4)±0.5 13.83 (6,2)
(7,1) 1.23600 47.3936 1.212. . . 1.254 8-helix 47.4±0.4 (6.7. . . 6.4)±0.5 6.54 (7,1)
(5,4) 1.26887 41.3657 1.244. . . 1.276 9-helix 41.3±0.3 (26.8. . . 26.0)±0.6 26.32 (5,4)
(6,3) 1.29090 42.9481 1.286 9-helix 42.9±0.3 19.0±0.5 19.07 (6,3)
(8,0) 1.30656 45.0000 1.297. . . 1.318 (8,0) 45.0±0.4 0.0±0.6 0.00 (8,0)
(7,2) 1.33242 43.0405 1.318. . . 1.361 9-helix 43.0±0.5 (12.2. . . 11.8)±0.6 12.17 (7,2)
(8,1) 1.39027 41.9316 1.371. . . 1.424 9-helix 41.9±0.5 (5.8. . . 5.6)±0.8 5.79 (8,1)

first column shows an (n,m) tube code, the second and third column the corresponding
calculated radius r

(n,m)
poly,△ and the angle ψ in the polyhedral model for triangular nano-

tubes (cf. Eqs. (3.4) and (3.6)). The rows are ordered with respect to increasing values of
r
(n,m)
poly,△. In the fourth column, the input radius is given. Since transitions between different

chiralities are not continuous, we give an interval of radii, for which the lowest-energy
structures of the polymer fall into the same chirality class, which is given in the fifth
column. By (n+m)-helix we denote structures which can be considered to be composed
of n+m virtual, interwoven chains of monomers with a helical wrapping, see Fig. 7 for
further clarification. The average values of the angles ψ and θ measured in the lowest-
energy conformations are listed next to them. In the last two columns, known wrapping
angles from SWCNTs could be uniquely assigned to the results from our SWPT simula-
tions along with the corresponding SWCNT types.



1260 T. Vogel et al. / Commun. Comput. Phys., 13 (2013), pp. 1245-1264

5.3 Reproducing SWCNT sequences of chirality

If one sorts SWCNTs with respect to their radii, a specific sequence of chiralities is found.
This sequence is exactly reproduced by polymer monolayer tubes, i.e., we can confirm
the assumed correlation between SWCNTs and SWPTs [1]. In Table 2, we also compare
the radii of (n,m) polymer tubes inserted into the simulations (column 4) with the exact
values obtained from Eq. (3.4) (column 2), as well as with the characteristic angles ψ

and θ (columns 3 vs. 6 and 7 vs. 8). Our simulation results agree perfectly with the
predictions from the respective polyhedral model [25] and the high accuracy allow for
the identification of the chiralities of the polymer tubes. Nonetheless, there are certain
regions of radii, where the difference of radii between different tube types is extremely
small. Within these regions, it is particularly challenging to resolve explicitly different
chiralities (see the “plateaus” in Fig. 5 in [36]). In Table 2, results for (6,0) and (4,3) tubes
are therefore listed in the same row. Their radii in the polyhedral model differs by less
than 0.2%, which is reflected accordingly in our results. Regarding the wrapping angles,
we could hence reproduce exactly the characteristic sequence for SWCNTs. Together with
the considerations about the scaling of lengths between SWCNTs (cf. Fig. 5) this is the
link between ideal SWCNTs and SWPTs.

We would like to emphasize that this accuracy is essential as one would not have
been able to draw these detailed conclusions using the conventional approach (Eq. (3.3))
for the radius calculation. The polymer model with slightly different parameters that
was used in [1] already yielded the correct trends of the present results, but only the
flexible bond-length model allowed us to study the details precisely and quantitatively
correct. In this case, we find transitions at the interfaces between two structural regions.
We observe in the ensemble of low-energy states “competing” conformations, i.e., dif-
ferent tube types with very similar ground state energies and tubes with defects or in-
ternal interfaces between regions belonging to different chirality classes, see Fig. 8 for
examples.

Figure 8: Low energy state with a defect and two regions with different wrappings. The radius of the tube
is rinput ≈ 1.11, the competing substructures correspond to (6,1)- and (5,3)-tubes. In (b) the conformation is
shown in an unzipped view for clarity.
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5.4 The link to the internal structure of ’phase B’

Actually, the intriguing monolayer polymer structures we found in our previous study [1]
for strong wire adsorption, and which we summarized under the name ’barrel (B) phase’,
made us think about a possible link to single-walled carbon nanotubes and were the mo-
tivation for the present study. Beside the systematic presentation of the results above, let
us therefore comment on some actual structures we found earlier.

At σf=0.647, we found in a monolayer polymer conformation consisting of two com-
peting substructures with different chirality and a defect at the interface between both
substructures (see Fig. 9 (a)) [1]. One region forms a (2,2) tube, the other is a 4-helix with
a measured mean wrapping angle of θ=14±4, which corresponds to a (3,1) tube. These
observations fit in perfectly with the results presented above in Table 2. Both structures
are neighbors in the radius-ordered sequence of tube structures. Slight deviations of the
value of the radius and the larger error of the mean wrapping angle trace back to the fact
that we originally used a slightly different polymer model with fixed bond length (sticks
instead of elastic bonds) where the optimal distance between two nonbonded monomers
was slightly larger than the bond length. However, on the other hand, this indicates
that our results are of general character and do not depend on certain details of the im-
plemented polymer model. Another conformation found in the earlier study was the,
somewhat artificial, (1,1) tube at σf=0.4 (see Fig. 9 (b)). Again, this was confirmed exactly
by the present study and fits into the general scheme as presented here.

Finally, let us look at conformations with larger radius of r≈1.7, as shown in Fig. 9 (c).
There, we found a 12-helix with chiral angle of 20±1◦, which can now be assigned to a

(8,4) tube (not listed in Table 2, but calculations lead to θ(8,4) = 19.1 and r
(8,4)
poly,△ = 1.71).

However, we also found in that region a strong competition between conformations
with different structures as well as conformations composed of different substructures,

Figure 9: Monolayer polymer tubes in the barrel phase B for strong wire adsorption. (a) σf=0.65, (b) σf=0.40,
and (c) σf=1.57. Different colors or shadings shall facilitate the perception only, data taken from study presented
in [1].
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as shown for example in Figs. 1 and 4 in [45]. We find for example regions which can

be explained to be parts of (7,5) tubes (not in Table 2, θ(7,5) = 24.5, r
(7,5)
poly,△ = 1.68). This

structure forms also a 12-helix, but with just slightly different wrapping angle compared

to (8,4). Finally, we find among those structures (10,1) tubes (θ(10,1) = 4.7, r
(10,1)
poly,△= 1.70

forming 11-helices. Note the small differences between r
(8,4)
poly,△, r

(10,1)
poly,△, and r

(7,5)
poly,△.

6 Summary

In this study, we have investigated the relationship between single-walled carbon nano-
tubes and the tube phase of a bead-spring polymer model attracted by a thin wire. In
fact, we found surprisingly clear geometrical similarities between these different materi-
als. We could only obtain our results by taking into account the discreteness and curva-
ture effects in the mathematical description of the geometrical properties of nanotubes.
Hence, we provide an example for the necessity of applying accurate discrete models,
rather than continuous approximations, in computational studies of nanotubes.

To strengthen our theoretical considerations on the link between carbon nanotubes
and polymer nanotubes, we employed numerical optimization procedures to construct
lowest-energy polymer conformations for given attraction length scales of the wire (or,
equivalently, given polymer tube radii). Comparing those conformations based on a
triangular lattice, with carbon nanotubes based on a hexagonal honeycomb lattice, we
found that both share the same chirality sequence and we show how the length scales are
connected. We addressed the problem of competing substructures leading to defects in
non-ideal structures, which definitely merits further investigation.

The perfect structural coincidence between atomic nanotubes and polymer tubes ex-
plains the internal structure of the barrel phase of polymers adsorbed at nanowires. It
is also a good starting point for the further systematic investigation of hybrid systems
of polymers and single-walled carbon nanotubes, which might be of technological inter-
est for controlling, e.g., physical properties of polymer-coated nanotubes. We have also
presented further evidence, that helical conformations are intrinsic natural structures in
simple polymer models [46].

Our key result of the universal nature of the sequence of conformations in nanotubes
and polymer tubes has developed from a series of simulations. Such extensive 3d simu-
lations have only recently become possible, and the situation is reminiscent of the discov-
eries in the seventies and early eighties as the picture of universality in critical phenom-
ena emerged from the early numerical results of series expansions and simulations, and
a very few experiments. With current and future computer power, the two directions
mentioned above, namely the exploration of defective structures and the study of hy-
brid systems should lead into interesting theoretical and practical directions in polymer
research and nanotechnology.
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