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Thermodynamics of polymer adsorption to a flexible membrane
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We analyze the structural behavior of a single polymer chain grafted to an attractive, flexible surface. Our
model is composed of a coarse-grained bead-and-spring polymer and a tethered membrane. By means of extensive
parallel tempering Monte Carlo simulations it is shown that the system exhibits a rich phase behavior ranging
from highly ordered, compact to extended random coil structures, and from desorbed to completely adsorbed or
even partially embedded conformations. These findings are summarized in a pseudophase diagram indicating the
predominant class of conformations as a function of the external parameters temperature and polymer-membrane
interaction strength. By comparison with adsorption to a stiff membrane surface it is shown that the flexibility of
the membrane gives rise to qualitatively new behavior such as stretching of adsorbed conformations.

DOI: 10.1103/PhysRevE.84.031803 PACS number(s): 61.41.+e, 05.10.−a, 87.15.ak, 87.15.Cc

I. INTRODUCTION

The interaction of macromolecules and cell membranes is
essential for almost all biological processes. Membrane pro-
teins like glycoproteins and transmembrane proteins govern
the exchange of signals, small molecules, and ions between the
intracellular and extracellular solvent. Membrane-embedded
receptors are specific for the binding of ligands. The confor-
mational changes caused by the binding process can trigger
cellular motion, drug delivery, or enzymatic catalysis.

It is interesting to understand how the conformational
changes that a polymer can experience in the binding process
to a membrane-like substrate depend on external parameters
such as temperature and adsorption strength. Our study
aims at the systematic investigation of such transitions for
classes of polymer-membrane systems. Therefore, it is our goal
to construct a conformational phase diagram that comprises
the generic phase behavior of these types of organic hybrid
systems.

Initiated by a different motivation, the study of binding
affinity and specificity of organic and inorganic matter, much
work has been dedicated to the identification of structural
transitions polymers experience when adsorbing to solid
substrates [1–12]. In these studies, the substrate is typically
considered as a solid material (e.g., a crystal) with virtually no
thermal activity (i.e., its surface structure does not change in
the course of thermal fluctuations).

Although being equally important, much less is known
about the thermodynamic structural behavior of a polymer
that interacts with a fluctuating surface such as a membrane
[13–16].

In this paper, we are going to study a simple coarse-grained
model system consisting of a flexible, elastic polymer grafted
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to a fluctuating substrate by means of generalized-ensemble
Monte Carlo computer simulations. In a comparative analysis,
we show how the structural phase diagram changes under the
influence of thermal membrane fluctuations.

The paper is organized as follows. In Sec. II the model
system is described in detail. Also, the parallel tempering
Monte Carlo method is reviewed shortly and the measured
observables are introduced. Section III presents and discusses
the main results, the pseudophase diagrams for the two systems
under comparison. Finally, Sec. IV concludes the paper with
a summary of our findings.

II. MODEL AND METHODS

A. Compound polymer-membrane model

We employ a coarse-grained off-lattice model for a single
elastic flexible homopolymer [17–21] consisting of N = 13
monomers [22]. All monomers interact pairwise via a Lennard-
Jones (LJ) potential

V
pp

LJ (r) = 4εpp[(σ/r)12 − (σ/r)6], (1)

modeling van der Waals forces. Here, r denotes the relative
distance between the monomers, σ = r0/21/6 the zero of the
LJ potential, and r0 the minimum-potential distance. The
interaction strength is determined by the energy parameter
εpp. Throughout this study we set r0 ≡ 1 and εpp ≡ 1 as basic
length and energy scales. Additionally, adjacent monomers
are tied together by the finitely extensible nonlinear elastic
(FENE) potential [23,24]

V
p

FENE(r) = −K

2
R2

p ln{1 − [(r − r0)/Rp]2}, (2)

modeling covalent bonds. r0 is the same minimum-potential
distance as above. The FENE potential behaves like a harmonic
potential with spring constant K in the vicinity of r0 and
diverges for r → r0 ± Rp. For the simulations we set K ≡ 40
and Rp ≡ 0.3. The conformation of the polymer is completely
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defined by the set of position vectors {ri}i=1,...,N . Eventually,
the contribution of the polymer to the total energy reads

Epol =
N−1∑
i=1

N∑
j=i+1

V
pp

LJ (|ri − rj |) +
N−1∑
i=1

V
p

FENE(|ri − ri+1|).

(3)

The fluctuating substrate is modeled by a tethered mem-
brane [25–27] where the individual building segments (nodes)
are tied together according to a square lattice structure with
Lx × Ly nodes in total. As tethering potential we apply, again,
a FENE potential

V m
FENE(r) = −K

2
R2

m ln{1 − [(r − r0)/Rm]2}. (4)

The equilibrium distance r0 and spring constant K take the
same values as above, the maximum extension we set to
Rm ≡ 0.1. Additionally, we introduce a hard-sphere potential
between all pairs of nodes to ensure self-avoidance

Vhs(r) =
{

0 if r > 2rhs,

∞ if r � 2rhs,
(5)

with hard-sphere radius rhs ≡ 0.15. The configuration of the
membrane is then described by the set of position vectors
{rk,l}(k,l)=(1,1),...,(Lx,Ly ). The contribution of the membrane to
the total energy of the system thus reads

Emem =
Lx−1∑
k=1

Ly∑
l=1

V m
FENE(|rk,l − rk+1,l|)

+
Lx∑
k=1

Ly−1∑
l=1

V m
FENE(|rk,l − rk,l+1|). (6)

In our simulations, we set Lx = Ly = 27. The polymer, which
is anchored at the membrane center, can then take on all
possible conformations and its fluctuations are not limited by
the membrane boundaries.

The interaction between polymer and membrane is modeled
by another LJ potential between all pairs of monomers and
membrane nodes

V
pm

LJ (r) = 4εpm[(σ/r)12 − (σ/r)6]. (7)

The interaction strength between polymer and membrane is
determined by the energy parameter εpm which serves as an
external control parameter, with values between 0.05 and 1.50.
Furthermore, between the first monomer and the central node
acts the FENE potential V p

FENE(r), see Eq. (2), as the anchoring
potential. The interaction term is the third contribution to the
energy of the system

Eint =
N∑

i=1

Lx∑
k=1

Ly∑
l=1

V
pm

LJ (|ri − rk,l|)

+V
p

FENE(|r1 − rLx/2,Ly/2|), (8)

yielding a total energy E = Epol + Emem + Eint entering the
partition function Z = ∑

exp(−βE) where β ≡ 1/kBT is the
inverse thermal energy and the summation extends over all
possible microstates of the polymer and membrane.

For all the simulations presented in this work, we constrain
the membrane to fixed boundary conditions, that is, all nodes at
the boundary of the membrane are kept fixed. Their positions
are uniformly arranged on a rectangle of dimensions (Lx −
1)r0 × (Ly − 1)r0 in the xy plane, such that the membrane
can adopt its ground state of a regular square lattice. This
is a simple choice which satisfies computational needs. A
different composition of the membrane mesh structure will
doubtlessly have an influence on the location and specific
properties of low-temperature crystalline pseudophases of the
system. Nonetheless, we expect that the qualitative structure
of the pseudophase diagram, as obtained in our study, remains
widely unchanged. The main feature of our membrane model
is its flexibility which allows for thermal fluctuations around
the planar ground state. To identify the effects caused by this
flexibility we also study the case where the whole membrane
is kept fixed in its ground state. We will distinguish these two
situations by speaking of the “flexible membrane” and “stiff
membrane” systems.

B. Simulation method

The parallel tempering (PT) Monte Carlo algorithm [28,29]
provides a conceptually simple but efficient method for the
simulation of complex systems over a broad temperature
range. The basic idea is to perform parallel simulations on a
number of identical copies (replicas) of the system at different
temperatures using a standard sampling scheme (e.g., the
Metropolis algorithm [30]). After a certain number of sweeps
(Monte Carlo “time” steps) the conformations are exchanged
with an acceptance probability

APT =
{

1 for � < 0,

exp(−�) for � > 0,
(9)

where � = (βn − βm)[E(X) − E(X′)]. X and X′ are the
conformations of the replicas at inverse thermal energy βm and
βn, respectively. If the temperature values of the PT simulation
are chosen thoroughly [31], the conformations will perform
a random walk in temperature space and therefore rapidly
decorrelate, helping to escape from trapped states.

The density of states and canonical expectation values for
temperatures in between the selected values can be obtained
by the multiple-histogram reweighting technique [32].

C. Observables

To identify and distinguish the different structural phases
of the system we define a number of observable quantities O.
The behavior of the canonical expectation values 〈O〉 and their
temperature derivatives ∂〈O〉/∂T = kBβ2[〈OE〉 − 〈O〉〈E〉]
will provide information about the structural phases and
transitions.

The most basic quantities are the canonical averages of
the total energy 〈E〉 and its individual contributions 〈Epol〉,
〈Emem〉, and 〈Eint〉 together with the associated heat capacities
(temperature derivatives) C, Cpol, Cmem, and C int, where
Cpol = ∂〈Epol〉/∂T , and so on. Evidently, 〈E〉 = 〈Epol〉 +
〈Emem〉 + 〈Eint〉 and C = Cpol + Cmem + C int.

The radius of gyration Rg is a measure for the overall
compactness of the polymer conformation. It is defined as the
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root-mean-square distance of the individual monomers from
the center of mass of the polymer rc.m. = N−1 ∑N

n=1 rn,
〈Rg〉 = 〈[N−1 ∑N

n=1(rn − rc.m.)2]1/2〉. Although the mem-
brane surface is not planar, it may be instructive to sep-
arate the radius of gyration into the components of the
gyration tensor parallel and perpendicular to the mem-
brane equilibrium state (i.e., to the xy plane), 〈Rg,‖〉 =
〈{N−1 ∑N

n=1[(xn − xc.m.)2 + (yn − yc.m.)2]}1/2〉 and 〈Rg,⊥〉 =
〈[N−1 ∑N

n=1(zn − zc.m.)2]1/2〉. The ratio of these two values
gives the sphericity aspect ratio with respect to the xy plane
�r = √

2〈Rg,⊥〉/〈Rg,‖〉. This definition is chosen such that
�r = 1 indicates spherically symmetric structures, while an
oblate (prolate) spheroid with polar axis z will have �r < 1
(�r > 1).

To determine whether the polymer is, on average, close to
the membrane surface (adsorbed) or freely exploring the third
dimension (desorbed), we measure the distance of the center of
mass of the polymer from the membrane equilibrium state in
the xy plane (i.e., its z component, 〈zc.m.〉 = 〈N−1 ∑N

n=1 zn〉).
The number of contacts between monomers and membrane

nodes may give excellent information about the state
of adsorption. As a reasonable, but still to some extent
arbitrary, measure for a “contact” we decided to count
every monomer-node pair that contributes a V

pm
LJ (r) energy

less than a threshold value E
pm
c ≡ −0.5εpm as a contact

yielding a mean number of polymer-membrane contacts
〈npm〉 = 〈N−1 ∑N

i=1

∑Lx

k=1

∑Ly

l=1 �[Epm
c − V

pm
LJ (|ri − rk,l|)]〉,

where �(x) denotes the Heaviside step function.
Similarly, we define the number of intrinsic contacts as
another measure for the compactness of the polymer,
〈npp〉 = 〈N−1 ∑N−1

i=1

∑N
j=i+1 �[Epp

c − V
pp

LJ (|ri − rj |)]〉, with
E

pp
c ≡ −0.5εpp.

III. RESULTS AND DISCUSSION

A. Stiff membrane system

The stiff membrane system is studied as a reference system
here. On the one hand, the knowledge about this system will
enable us to point out the differences in the behavior of the
stiff and the flexible membrane cases and to identify the new
effects emerging from the surface flexibility. On the other hand,
the stiff membrane case allows a comparison of our model
with studies on polymer adsorption to solid (flat) substrates
[11,12]. For the stiff membrane system we keep all membrane
nodes, in agreement with the boundary conditions, fixed on a
regular square lattice with lattice spacing r0 in the xy plane.
This is obviously the ground state of the membrane as all
FENE springs are at equilibrium, V m

FENE(r0) = 0, Emem = 0,
and any deviation from this state would introduce a positive
contribution to the membrane energy.

The main results we show here were obtained by parallel
tempering simulations with 24 replicas in the temperature
range from 0.021 to 1.500 and 8 × 106 sweeps on each
replica. Exchanges of conformations between the replica were
attempted every 20 sweeps. For the uncritical region above
T = 1.5, additional PT simulations with 106 sweeps were
carried out. All the simulations were performed at 30 different
values of εpm in the interval εpm = 0.05, . . . ,1.50.

1. Pseudophase diagram

The main information about the structural behavior is
summarized in the pseudophase diagram shown in Fig. 1.
It displays the structural pseudophases and pseudophase
transitions in the εpm-T plane. Temperature increases from
bottom to top, interaction strength increases from left to
right.

The structural phases in which certain conformations pre-
dominate are labeled by a letter code adopted from Ref. [11].
Since we are working with a finite system, we cannot identify
precise transition lines but rather transition regions between
the phases. These are displayed as the shaded regions in the
phase diagram where the dark shades indicate well-founded
transitions and the bright shades stand for less established
transitions. In the following, we describe all the identified
structural pseudophases, for pictures of typical conformations
in each phase see Fig. 2.

Desorbed Compact (DC). The most compact conforma-
tions the polymer can adopt. For the example considered here
(N = 13), these are the highly ordered icosahedral states we
know from the free polymer [19]. Here, it is simply attached
to the membrane surface [Fig. 2(a)].

Globular (G). Compact but disordered conformations.
Similar to DC these are globular states of the free polymer
attached to the membrane. Because of the short chain length,
we cannot distinguish here between adsorbed and desorbed
globular conformations [Fig. 2(b)].

Desorbed Expanded (DE). The most disordered conforma-
tions. These are random coil structures of the free polymer
anchored to the membrane and restricted to the upper half-
space [Fig. 2(c)].

Adsorbed Compact, Single Layer (AC1). Completely ad-
sorbed, compact conformations. These film-like structures are
constrained to lie flat on the surface of the membrane and to its
square lattice structure. Additionally they are mainly disk-like
compact [Fig. 2(d)].

Adsorbed Compact, Double Layer (AC2). Partially ad-
sorbed, compact conformations. These consist of a bottom
layer adsorbed to the membrane and adapted to its lattice

0.0 0.5 1.0 1.5
εpm

0.5

1.0

1.5

2.0

T

DE

G

DC AC2
AC1

AE2

AE1

FIG. 1. Pseudophase diagram for the stiff membrane system. The
main structural phases divide into predominantly adsorbed (A), and
desorbed (D) on the one hand and expanded (E), globular (G), and
compact (C) structures on the other hand.
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(a) DC (b) G (c) DE

(d) AC1 (e) AC2 (f) AE2

(g) AE1

FIG. 2. (Color online) Representative conformations in the indi-
vidual phases of the stiff membrane system (see text for a detailed
description).

structure and a second layer on top of it building a semi-
spherical droplet [Fig. 2(e)].

Adsorbed Expanded, Double Layer (AE2). Partially ad-
sorbed, extended conformations. These are random coil
structures mainly adsorbed to the membrane surface but also
extending into the third dimension [Fig. 2(f)].

Adsorbed Expanded, Single Layer (AE1). Completely
adsorbed, extended conformations. These are mainly two-
dimensional random coil structures adsorbed to the membrane
surface [Fig. 2(g)].

2. Structural phases and transitions

In the following, we substantiate the proposed pseu-
dophases and discuss the transitions by looking in detail at
the observables measured in the course of the simulations.

The simulation methods we apply here are not specialized in
finding ground states. For this task simpler and more efficient
algorithms exist. Nevertheless, our simulation results reach
down to sufficiently low temperatures where a convergence
sets in. We therefore think that the low-energy conformations
we found in the low-temperature phases DC, AC2, and AC1
are good approximations of the real ground states. Of course,
further details like the actual bond distribution, translations
on the membrane surface, and distortions of the idealized
symmetries due to LJ interactions over longer ranges have
to be considered for more precise ground-state predictions.

The different compact conformations are characterized in
a simple way by the contact numbers (see Sec. II C). The
icosahedron is the most compact structure of the 13mer in

DC, resulting in the highest number of intrinsic contacts.
Counting them correctly we end up with nDC

pp = 42/13 ≈ 3.23.
Due to its compactness, this structure can build up few
polymer-membrane contacts, nDC

pm ≈ 1.
In the two-dimensional compact disk-like structures of

AC1 every monomer is in contact with four membrane
nodes, nAC1

pm = 4, and we count nAC1
pp = 18/13 ≈ 1.38 intrinsic

contacts per monomer. In the partially adsorbed semi-spherical
droplets of AC2, nine of the monomers are in contact with
four membrane nodes each, nAC2

pm = 36/13 ≈ 2.78, for the
intrinsic contacts we get nAC2

pp = 32/13 ≈ 2.46. Equipped with
this information, we can easily identify the different low-
temperature phases. Figure 3 shows the mean numbers of in-
trinsic and polymer-membrane contacts for different polymer-
membrane interaction strengths over the whole interaction
strength spectrum investigated here. At low temperatures, we
see convergence to exactly the values predicted above.

For εpm � 0.3, the mean numbers of intrinsic contacts
approach the value 3.23 uniquely characterizing DC. The
mean number of polymer-membrane contacts does not exhibit
such a clear convergence in this case since reorientation
on top of the membrane is still possible in this phase. For
0.4 � εpm � 0.8, the mean contact numbers approach 2.46
for the intrinsic contacts and 2.78 for the polymer-membrane
contacts. Together, these values identify compact double-layer

FIG. 3. (Color online) Mean number of intrinsic (top) and
polymer-membrane (bottom) contacts as a function of temperature
for various polymer-membrane interaction strengths in the stiff
membrane system. The legend applies to both plots.
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FIG. 4. (Color online) Polymer heat capacity (top) and temper-
ature derivative of the radius of gyration (bottom) for low polymer-
membrane interaction strengths in the stiff membrane system. For
better comparison, the values for the free polymer are also plotted
(red circles).

conformations as approximate ground states in this phase
(AC2). For εpm � 0.9, the mean numbers of 1.38 intrinsic
contacts and four polymer-membrane contacts are approached
for low temperatures. We therefore find monolayer structures
as approximate ground states in this region (AC1).

For low polymer-membrane interaction strength, the poly-
mer should behave similarly to the free polymer [18,19]. The
freezing transition between the compact icosahedral and the
globular phase is identified by peaks in the polymer heat
capacity and temperature derivative of the radius of gyration
around T = 0.35. The latter quantity shows another peak
at around T = 0.9 indicating the � transition between the
globular and expanded phase. In Fig. 4, we plot these two
quantities for the stiff membrane system. The curves for
εpm = 0.05 and 0.10 lie almost on top of each other and agree
almost perfectly with those for the free polymer (red circles).
We conclude that the same kinds of transitions take place
here, from DC over G to DE. For εpm = 0.20 and 0.30 the
freezing peaks shift to lower temperatures in both quantities,
disappearing almost completely at εpm = 0.35 which marks
the point where the ground state changes from DC to AC2
(see Fig. 3). The � peak maintains its position T ≈ 0.9 in the
whole range of 0.05 � εpm � 0.35.

FIG. 5. (Color online) Contribution of polymer-membrane inter-
action to heat capacity (top) and sphericity aspect ratio (bottom) at
the AC2–G transition in the stiff membrane system.

In the range of 0.4 � εpm � 0.6, the mean polymer-
membrane contacts decrease considerably between T ≈ 0.15
and 0.35 without a substantial change in the intrinsic contacts
(Fig. 3) suggesting a (partial) desorption transition into the
globular phase G. This assumption is supported by a peak in
the interaction part of the heat capacity C int(T ), indicating that
the interaction energy becomes higher in this region, and an
increase of the sphericity aspect ratio in that range (Fig. 5).
We find that the transition temperature becomes higher for
increasing interaction strength, from T ≈ 0.18 at εpm = 0.4
to T ≈ 0.30 at εpm = 0.6. For larger values of the interaction
strength, we see the sphericity aspect ratio decreasing which
suggests a transition into structures extending parallel to the
membrane.

This can be affirmed by looking at the two components
of the gyration tensor separately. Figure 6 displays the tem-
perature derivatives of the two components for 0.7 � εpm �
0.8. We see a clear peak in the parallel component (upper
three curves) and no signal or a valley in the perpendicular
component (lower three curves) around 0.30 � T � 0.35
meaning that the polymer does extend in the xy direction while
it does not, or even contracts, in the z direction. This strongly
supports the assumption that we have a transition from the
droplet phase AC2 to the adsorbed three-dimensional random
coil phase AE2 here.

The transition from the globular phase G to the adsorbed
expanded, double layer, phase AE2 is difficult to identify since
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FIG. 6. (Color online) Temperature derivatives of the parallel
(upper curves) and perpendicular (lower curves) component of the
gyration tensor at the AC2–AE2 transition in the stiff membrane
system.

globular structures are due to the anchoring approximately as
close to the surface as the adsorbed but still three-dimensional
random coils of AE2. Nevertheless, we do observe an increase
in the parallel component of the gyration tensor indicated by
a peak in its temperature derivative for εpm � 0.6 (Fig. 7).
For increasing εpm, the peak position slightly moves to lower
temperatures and disappears from εpm ≈ 0.7 on. We will
see below that the perpendicular component experiences a
similar increase, which for 0.3 � εpm � 0.6 takes place at
significantly higher temperatures. Therefore, we conclude that
the G–DE transition discussed above separates for higher
interaction strengths into two transitions, an expansion G–AE2
and a desorption AE2–DE.

The suggested desorption transition from adsorbed three-
dimensional random coils AE2 to desorbed random coils
DE should be measurable by a simultaneous increase in
the perpendicular component of the gyration tensor and the
height of the polymer’s center of mass above the membrane
surface. These two effects can indeed be observed as peaks
in the respective temperature derivatives (Fig. 8). As in many
transitions of finite systems, the peak positions slightly differ

FIG. 7. (Color online) Temperature derivative of the parallel
component of the gyration tensor at the G–AE2 transition in the
stiff membrane system.

FIG. 8. (Color online) Temperature derivative of the z component
of the center of mass (top) and perpendicular component of the
gyration tensor (bottom) at the AE2–DE transition in the stiff
membrane system.

from each other causing the rather broad transition region in
the phase diagram.

We conclude this section by discussing the last transition
between the compact film phase AC1 and the adsorbed
expanded phases AE2 and AE1. Figure 9 shows the interaction
heat capacity for high polymer-membrane interaction strengths
1.0 � εpm � 1.5. We see a clear peak indicating a (partial) des-
orption transition shifting to higher temperatures for stronger
polymer-membrane interaction. This is supported by peaks in
the temperature derivatives of the components of the gyration
tensor (Fig. 10). Taking a closer look at these figures, we see
that with increasing interaction strength the parallel expansion
shifts more slowly to higher temperatures than the expansion
perpendicular to the membrane. Although this disagreement
might be another finite-size effect, we think that it is caused
by the onset of the completely adsorbed random coil phase
AE1. The existence of this phase is also supported by the
fact that the parallel expansion becomes stronger while the
perpendicular expansion becomes weaker for higher polymer
interaction strength, as suggested by the peak heights.

3. Comparison with established results

The phase diagram we have constructed here (Fig. 1)
qualitatively compares with that by Möddel et al. [11], Fig. 2,
which allowed us to adopt their notation. The main qualitative
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FIG. 9. (Color online) Interaction heat capacity at the AC1–AE2
transition in the stiff membrane system.

differences between the models introduced there and here are
the anchoring of the polymer and the discrete surface structure.
For this reason, we do not expect quantitative agreement in
the locations of the transitions, but qualitatively, both systems
should behave similarly.

As mentioned above we cannot distinguish between ad-
sorbed and desorbed globular structures in our case, so we
just have a single globular phase G in contrast to the adsorbed

FIG. 10. (Color online) Temperature derivative of the parallel
(top) and perpendicular (bottom) components of the gyration tensor
at the AC1–AE2/AE1 transition in the stiff membrane system.

globular AG and desorbed globular DG phases in Ref. [11].
Also we do not find an adsorbed compact phase, like AC2a in
Ref. [11], that can be clearly distinguished from DC and AC2.
Obviously these two differences stem from the anchoring of
the polymer. For longer chains the distinctions possibly can be
recovered also in the grafted case.

Another difference can be identified in the transition line
between compact and globular or expanded structures. In
Ref. [11], these transitions occurred at more or less constant
temperature, independently of the polymer-surface interaction
strength. This seems to be not the case in our model.

B. Flexible membrane system

We now extend the focus of this study and discuss the
structural behavior of the coupled system consisting of an
elastic polymer anchored to a flexible membrane. This section
describes our findings about the flexible membrane system in
detail where we concentrate on the differences and similarities
with the stiff membrane case.

All results presented here were obtained by parallel temper-
ing simulations with 48 replicas in the temperature range from
0.055 to 1.500 and 107 sweeps on each replica. Exchanges
of conformations between the replica were attempted every
20 sweeps. The simulations were carried out at 30 different
values of εpm = 0.05, . . . ,1.50. As the performance of the
parallel tempering conformation exchanges turned out to be
poor in the temperature range below T ≈ 0.1 leading to large
statistical errors, we restrict our discussion to temperatures
above this value.

1. Pseudophase diagram

The pseudophase diagram shown in Fig. 11 summarizes the
main information about the structural behavior of the flexible
membrane system. It displays the structural pseudophases
and pseudophase transitions in the εpm-T plane. As before,
temperature increases from bottom to top and polymer-
membrane interaction strength from left to right.

0.0 0.5 1.0 1.5
εpm

0.5

1.0

1.5

T

DC MEMC

DE

G

AC1

AE2

AE1

FIG. 11. Pseudophase diagram for the flexible membrane system.
The main structural phases divide into predominantly adsorbed (A),
desorbed (D), and embedded (M) on the one hand and expanded or
elongated (E), globular (G), and compact (C) structures on the other
hand.
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Again, the structural phases are labeled by a letter code
similar to the one used before and transition regions are shaded
in dark gray for well-founded and light gray for less certain
transitions. In the following, we describe the identified pseu-
dophases in the flexible membrane system. Images of typical
conformations in each phase are shown in Fig. 12. The phases
in which the polymer-membrane interaction is not of particular
importance (DC, G, and DE [Figs. 12(a)–12(c)]) are, of course,
very similar to the case of the stiff membrane. To avoid
redundancy we omit a description of these here. The main new
structures are the embedded conformations (MC, ME) which
reflect the back-reaction between polymer and membrane
fluctuations. Let us now first summarize the differences in
the phase behavior, compared to the stiff membrane case.

Adsorbed Compact, Single Layer (AC1). Completely ad-
sorbed, compact conformations. These film-like structures
lie flat on the membrane surface. Since the membrane
is deformable in this case, the conformations are, strictly
speaking, not two-dimensional as before and do not necessarily
adopt any lattice structure [Fig. 12(d)].

Embedded Compact (MC). Compact conformations, de-
forming the membrane. These highly compact structures
are partially wrapped in by the membrane, which, on the
other hand, forms an immersion to incorporate the collapsed
polymer [Fig. 12(e)].

Embedded Elongated (ME). Stretched conformations, in-
corporated by the membrane. For these structures the mem-
brane forms a channel into which the almost fully stretched
polymer is embedded. The polymer is not randomly expanded
here, but specifically elongated [Fig. 12(f)].

(a) DC (b) G (c) DE

(d) AC1 (e) MC (f) ME

(g) AE1 (h) AE2

FIG. 12. (Color online) Representative conformations in the
individual phases of the flexible membrane system (see text for a
detailed description).

Adsorbed Expanded, Single Layer (AE1). Completely
adsorbed, extended conformations. These are randomly ex-
panded structures that live on the membrane surface. In
contrast to the stiff membrane case, the structures are not
strictly two-dimensional as the membrane is fluctuating in all
directions [Fig. 12(g)].

Adsorbed Expanded, Double Layer (AE2). Partially ad-
sorbed, extended conformations. These are partly adsorbed
random coil structures significantly extending into the third
dimension. Although the membrane is important here, there
is little structural difference to the stiff membrane case
[Fig. 12(h)].

2. Structural phases and transitions

We will shortly summarize similarities with the stiff
membrane system here and then look at the differences and
emergence of new phenomena in more detail.

The phases DC, G, and DE are hardly affected by the pres-
ence of the membrane. Therefore, we expect the fluctuations
of the membrane to have little effect on these phases and the
transitions between them. For the adsorbed random coil phase
AE2, the membrane is, of course, essential as the adsorbing
surface. Nevertheless, the phase is already highly disordered
such that membrane fluctuations should not generate new
effects here. This is exactly what we observe in our simulation
results and is reflected in the phase diagram where we just have
marginal differences to the stiff membrane system. We do not
repeat all the plots of the observables identifying the phases just
mentioned and their transitions. To provide only one example
for these obvious similarities, Fig. 13 shows the polymer
heat capacity and the temperature derivative of the radius of
gyration for low interaction strengths, 0.05 � εpm � 0.45. The
curves clearly resemble those in Fig. 4 for the stiff membrane
system indicating, again, the � collapse around T ≈ 0.9 and
the freezing transition at T ≈ 0.3 of the polymer. Note that we
already find a small difference to the stiff membrane system
here. The freezing peak is still pronounced for εpm = 0.35
and present up to εpm = 0.40 where this transition already
disappeared in the stiff membrane system. This possibly
indicates a slightly higher stability of the icosahedral phase in
the flexible membrane system. A reason for this could be the
membrane’s possibility to adapt to the polymer structure and
build up more polymer-membrane contacts while the polymer
maintains its icosahedral shape.

In the stiff membrane system, the mean numbers of
intrinsic and polymer-membrane contacts showed a striking
convergence to our predicted values for the highly ordered
low-temperature states. For the case of a flexible membrane,
the curves do not exhibit such a clear convergence (Fig. 14),
but still, we can extract some information about the low-
temperature behavior of the system. For εpm � 0.3, again
we observe convergence to a mean of 3.23 intrinsic contacts
uniquely characterizing the icosahedral phase DC.

For εpm � 1.0, the mean number of polymer-membrane
contacts increases significantly above 4 while the mean
number of intrinsic contacts drops down to values even below
those of the disordered random coil phases. The latter number
suggests that the probability of specifically stretched structures
is enhanced in this region, whereas in random coils expanded
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FIG. 13. (Color online) Polymer heat capacity (top) and temper-
ature derivative of the radius of gyration (bottom) for low polymer-
membrane interaction strengths in the flexible membrane system.
For better comparison, the values for the stiff membrane system at
εpm = 0.05 (Fig. 4) are plotted again (red circles). The legend applies
to both plots.

structures only dominate because of higher entropy. The for-
mer number can only be reached when the membrane locally
wraps around the individual monomers allowing for more
than four polymer-membrane contacts. In the most perfect
realization of a structure in the embedded elongated phase ME,
the polymer would be linearly stretched, yielding 12/13 ≈
0.92 intrinsic contacts, and incorporated in a channel with a
triangular cross section such that every monomer is in optimal
distance to two square patches of the membrane, resulting in
a number of six polymer-membrane contacts per monomer.
Obviously, this idealized situation is not reached here but
from the tendencies shown in Fig. 14 we propose embedded
elongated conformations (ME) as predominant states for low
temperature and high polymer-membrane interaction strength.
In the range of 0.7 � εpm � 0.8 the two contact numbers seem
to converge to certain intermediate values. Although we are
not sure which would be the perfect symmetry in this case,
we expect to find the embedded compact phase MC as the
low-temperature phase here as suggested by the snapshot in
Fig. 12(e).

The transition out of the MC phase with increasing
temperature is analyzed in Figs. 15–17. In the range of 0.65 �
εpm � 0.75, the perpendicular component of the gyration
tensor significantly increases in the region 0.14 � T � 0.18

FIG. 14. (Color online) Mean number of intrinsic (top) and
polymer-membrane (bottom) contacts as a function of temperature
for various polymer-membrane interaction strengths in the flexible
membrane system. The legend applies to both plots.

as indicated by the peaks in the corresponding temperature
derivative (Fig. 16). Additionally, we observe a slight increase
in the sphericity aspect ratio as depicted in Fig. 15 meaning that
conformations change from oblate to more spherical shapes.
This marks the transition from embedded compact (MC) to
globular (G) conformations which qualitatively compares to
the droplet–globule transition (AC2–G) in the stiff membrane
case.

For higher polymer-membrane interaction strengths,
0.80 � εpm � 0.95, we observe a peak in the temperature
derivative of the parallel component of the gyration tensor
in the region 0.15 � T � 0.19 (Fig. 17). As the perpendicular
component does not increase simultaneously, this indicates a
further “flattening” of the polymer structures. This can also
be concluded from the drop in the sphericity aspect ratio
(Fig. 15). Together with the observed drop in the number of
intrinsic contacts (Fig. 14), we identify the transition from
the embedded compact (MC) to the adsorbed compact (AC1)
phase here.

One of the strongest transition signals we find is shown in
Fig. 18. The temperature derivatives of the radius of gyration
and the number of polymer-membrane contacts exhibit a
deep valley indicating a sharp transition line. The position
of the valley increases from T ≈ 0.14 at εpm = 1.0 to T ≈ 0.3
at εpm = 1.5 almost linearly. The decrease in the radius of
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FIG. 15. (Color online) Sphericity aspect ratio at the MC–G and
MC–AC1 transitions in the flexible membrane system.

gyration suggests that we have a transition from expanded (or
elongated) structures at lower temperature to more compact
structures at higher temperature. This is exactly the opposite
of what we usually observe in transitions like the � collapse
and would not be possible without the membrane serving as
an agent or a medium enhancing the probability of elongated
conformations in the low-temperature phase. Looking also at
the mean number of polymer-membrane contacts per monomer
(Fig. 14), we see that the “inverse collapse” is accompanied by
a drop from more than four to slightly less than four contacts
per monomer, which was the maximum value for a stiff
membrane. This suggests that the membrane adapts its shape
to the polymer to form up to six contacts with each monomer in
the low-temperature phase and gives up this behavior at higher
temperatures after passing the transition. Taken together,
we observe a transition form elongated conformations of the
polymer which are partially incorporated into the membrane
(ME) to disk-like compact film structures adsorbed to the
fluctuating membrane surface (AC1).

For higher temperatures we observe another, but much
weaker, transition signal in the temperature derivative of the
radius of gyration. Taking a closer look at the temperature

FIG. 16. (Color online) Temperature derivative of the perpendic-
ular component of the gyration tensor at the MC–G transition in the
flexible membrane system.

FIG. 17. (Color online) Temperature derivative of the parallel
component of the gyration tensor at the MC–AC1 transition in the
flexible membrane system.

derivatives of the individual components of the gyration
tensor (Fig. 19), we find a similar behavior to what we have
seen already in the stiff membrane system. The perpendic-
ular component increases at a transition line ranging from
T ≈ 0.35 at εpm = 1.0 to T ≈ 0.85 at εpm = 1.5 indicating
a (partial) desorption of the polymer from the membrane
surface. Additionally, the parallel component increases along

FIG. 18. (Color online) Temperature derivatives of the radius of
gyration (top) and the mean number of polymer-membrane contacts
(bottom) at the ME–AC1 transition in the flexible membrane system.
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FIG. 19. (Color online) Temperature derivative of the perpendic-
ular (top) and parallel (bottom) components of the gyration tensor at
the AC1–AE2/AE1 transition in the flexible membrane system.

a transition line from T ≈ 0.4 at εpm = 1.2 to T ≈ 0.55 at
εpm = 1.5, indicating an expansion of the polymer parallel
to the membrane surface. As in the stiff membrane case, we
conclude that what we observe here is the transition from
disk-like compact film structures adsorbed to the membrane
surface (AC1) to expanded random coil structures, partially
adsorbed to the membrane surface (AE2). For high polymer-
membrane interaction strengths, we think that additionally
(almost) completely adsorbed random coil conformations
(AE1) appear in between.

In the region of the phase diagram where the phases G, MC,
AC1, and AE2 meet, εpm ≈ 0.7, . . . ,1.0 and T ≈ 0.2, . . . ,0.6,
many transitions seem to superimpose. Therefore, it cannot
be clearly decided what structures are predominantly present
in that region. As this is a finite-size effect, we think that
investigations on larger systems could reveal more about the
actual phase structure here.

IV. SUMMARY

In this paper we have studied the structural behavior of
a coarse-grained model system consisting of a single elastic,
flexible polymer in contact with a flexible membrane. The

main goal was to identify the conformational thermodynamic
pseudophases of the system in dependence of temperature
and polymer-membrane interaction strength as external pa-
rameters. To clearly point out the effects emerging from the
flexibility and adaptivity of the membrane, we separately
investigated the two cases of a stiff membrane forced into a flat
state and a flexible membrane, both with the polymer grafted.

The pseudophase diagrams were constructed from the mea-
sured observables and their fluctuations for an intermediate-
sized system of polymer length 13 and membrane size
27 × 27. The observed conformational pseudophases include
the following.

(i) Desorbed conformations for low polymer-membrane
interaction strengths. These phases are well known from
studies of free polymers. With decreasing temperature the
polymer undergoes two transitions, the � transition from
extended random coil structures (DE) to more compact
but disordered globular conformations (G) and the freezing
transition to a highly compact icosahedral ground state (DC).

(ii) Adsorbed disordered conformations in both systems. In
these conformations the polymer is adsorbed to the membrane
surface but still highly disordered such that the presence or
absence of membrane fluctuations does not induce qualitative
differences. We distinguish between (almost) completely
adsorbed, extended (AE1), and partially adsorbed, extended
(AE2) random coil structures.

(iii) Adsorbed well-ordered conformations in the stiff mem-
brane system. For low temperatures, we observed highly
ordered conformations adsorbed to the membrane surface.
We distinguish between disk-shaped compact film structures
(AC1) and semi-spherical droplets (AC2).

(iv) Embedded conformations in the flexible membrane
system. At low temperatures, we found the membrane adapting
its structure such that it partially incorporates the poly-
mer. Compact oblate-shaped structures embedded into the
membrane (MC) were observed at intermediate and linearly
stretched embedded structures (ME) were identified at high
interaction strength.

Because of its smallness, the system’s structural behavior
is influenced by finite-size effects. Nevertheless, we expect
that the phase behavior of the system remains qualitatively
intact also for larger systems. A verification by a systematic
finite-size analysis is currently unachievable for most of the
phases, in particular in the low-temperature regime. Thus, this
remains future work in its own right. However, also the finite-
size effects are of substantial interest since classes of polymers,
such as proteins, are naturally finite.
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