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ABSTRACT Two-state cooperativity is an important characteristic in protein folding. It is defined by a depletion of states that lie
energetically between folded and unfolded conformations. There are different ways to test for two-state cooperativity; however,
most of these approaches probe indirect proxies of this depletion. Generalized-ensemble computer simulations allow us to
unambiguously identify this transition by a microcanonical analysis on the basis of the density of states. Here, we present
a detailed characterization of several helical peptides obtained by coarse-grained simulations. The level of resolution of the
coarse-grained model allowed to study realistic structures ranging from small a-helices to a de novo three-helix bundle without
biasing the force field toward the native state of the protein. By linking thermodynamic and structural features, we are able to
show that whereas short a-helices exhibit two-state cooperativity, the type of transition changes for longer chain lengths
because the chain forms multiple helix nucleation sites, stabilizing a significant population of intermediate states. The helix
bundle exhibits signs of two-state cooperativity owing to favorable helix-helix interactions, as predicted from theoretical models.
A detailed analysis of secondary and tertiary structure formation fits well into the framework of several folding mechanisms and
confirms features that up to now have been observed only in lattice models.
INTRODUCTION
Two-state protein folding is characterized by a single free-
energy barrier between folded and unfolded conformations
at the transition temperature Tc, whereas downhill folders
do not exhibit folding barriers (1,2). The analysis of this
property conveys important information on both the thermo-
dynamics and the kinetic pathways of proteins (2,3). A
widely used test for a two-state transition is the calorimetric
criterion, which probes features in the canonical specific
heat curve (4). However, this criterion does not provide
a sufficient condition to identify two-state transitions (5),
and makes no clear distinction between weakly two-state
and downhill folders. Other experimentally observable
aspects of two-state cooperativity include sharp transitions
in certain order parameters, or features in chevron plots
(3,6). All these methods focus on the thermodynamic conse-
quences of a depletion of intermediate states, rather than
studying it directly.

However, it is possible to determine the density of states in
a standard canonical computer simulation at temperature T�

of interest by sampling the probability density pðEÞ of finding
an energyE. The density of statesUðEÞ is then proportional to
pðEÞeE=kBT�

, and hence the entropy is (up to a constant) given
by SðEÞ ¼ kB ln UðEÞ ¼ const:þ kB ln pðEÞ þ E=T�. We
can then proceed to analyze the system microcanonically,
i.e., by studying the thermodynamics of SðEÞ in the neighbor-
hood of hEiT� . This is advantageous because essentially we
can directly analyze the probability density pðEÞ instead of
merely looking at its lowest moments, such as the specific
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heat. Such microcanonical analyses have been applied to
a wide variety of problems, including spin systems (7–13),
nuclear fragmentation (14,15), colloids (16), gravitating
systems (17,18), off-lattice homo- and heteropolymer models
(19,20), and protein folding (21–27). Two remarks are
worthwhile:

1. If the transition is characterized by a substantial barrier,
standard canonical sampling suffers from the usual
getting-stuck problem. During a simulation, the system
may not cross the barrier often enough to equilibrate
the two coexisting ensembles. This must be avoided
regardless of whether one is performing a canonical or
microcanonical analysis. Investigators have proposed
many ways to get around this problem, including multi-
canonical (28) or Wang-Landau (29) sampling. In our
study, we employed replica-exchange molecular
dynamics (MD) to sample coupled canonical ensembles
(33) and combined the overlapping energy histograms by
means of the weighted histogram analysis method
(WHAM) (30–32), a minimum variance estimator for
UðEÞ.

2. Accurately sampling the whole distribution pðEÞ over
some range of interest requires better statistics than is
needed for merely sampling its lowest moments; there
is a price for higher-quality data. A microcanonical anal-
ysis can tap into this quality, whereas a canonical anal-
ysis of the much longer simulation run will not
significantly improve the observables. Recall that the
canonical partition function ZðTÞ ¼ R

dE UðEÞe�E=kBT

is the Laplace transform of the density of states UðEÞ,
an operation that is well known to be strongly smoothing
and thus difficult to invert.
doi: 10.1016/j.bpj.2011.03.056
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TABLE 1 Amino acid sequences of the peptides studied in

this work

Peptide Sequence

helix n ¼ 3 (AAQAA) 3

helix n ¼ 7 (AAQAA) 7

helix n ¼ 10 (AAQAA) 10

helix n ¼ 15 (AAQAA) 15

bundle a3D MGSWA EFKQR LAAIK TRLQA LGGSE .
AELAA FEKEI AAFES ELQAY KGKGN .
PEVEA LRKEA AAIRD ELQAY RHN

The three helical regions of the native state (from NMR structure, PDB

2A3D) of the helix bundle a3D (38) are underlined (as predicted by STRIDE

(39)).
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From a thermodynamic standpoint, a two-state transition
is characterized by two coexisting ensembles of conforma-
tions (6). Although this does not qualify as a genuine
(first-order) phase transition (because the free energy of
finite systems is always analytical), we can unambiguously
characterize its finite-size equivalent by monitoring the
entropy SðEÞ. In the phase-coexistence region, it will exhibit
a convex intruder due to the suppression of states of interme-
diate energy. This can best be observed by defining the
quantity DSðEÞ ¼ HðEÞ � SðEÞ, where HðEÞ corresponds
to the (double-)tangent to SðEÞ in the transition region
(8–10,23,24). In a finite system, the existence of a barrier
in DSðEÞ will imply a nonzero microcanonical latent heat
DQ, defined by the interval over which SðEÞ departs from
its convex hull, and in turn leads to a backbending effect
(akin to a van der Waals loop) in the inverse microcanonical
temperature T�1

mc ðEÞ ¼ vS=vE (8–10,12,13,23). A nonzero
DQ demarcates a transition region, whereas a downhill
folder (continuous transition) will only exhibit a transition
point at which the concavity of SðEÞ is minimal.

Extending a recent study (27), we focus here on the link
between 1), the nature of the transition (i.e., two-state versus
downhill); 2), secondary structure; and 3), tertiary structure
formation for several helical peptides using a high-resolu-
tion, implicit-solvent, coarse-grained (CG) model. The
results are interpreted in terms of different frameworks of
folding mechanisms, such as the molten-globule model
and simple polymer-collapse models (34,35). Although all
of the helical peptides presented in this work were artifi-
cially constructed (de novo), and thus have not naturally
evolved, they exhibit the relevant physics in a particularly
clean way and thus provide useful model systems. (See Sup-
porting Material for a further discussion of this point.)
MATERIALS AND METHODS

We performed CG-MD simulations based on an intermediate resolution,

implicit-solvent peptide model (36). This model accounts for amino acid

specificity and is capable of representing genuine secondary structure

without explicitly biasing the force field toward any particular conforma-

tion (native or not). Table 1 lists the sequences of all of the studied peptides.

More details can be found in the Supporting Material.

We performed replica-exchange MD simulations using the ESPResSo

package (37), and ran all simulations in the canonical (NVT) ensemble using

a Langevin thermostatwith friction constantG ¼ t�1, where t is the intrinsic

unit of time of the CG model. The CG unit of energy, E, relates to thermal

energy at room temperature via E ¼ kBTroom ¼ 1:38� 10�23JK�1�
300Kz0:6 kcalmol�1. The temperature T was expressed in terms of the

intrinsic unit of energy ½T� ¼ E=kB. The equations of motion were integrated

with a time step dt ¼ 0:01t.

Entropy, order parameters, and canonical averages were obtained from

the density of states, UðEÞ, which itself was calculated from WHAM

(30–32). Details can again be found in the Supporting Material.

Finally, the reader should observe that CG force fields, including the one

used here, are usually constructed to reproduce the canonical ensemble, and

hence they strive to reproduce the free energy. However, individual enthalpic

and entropic contributionswill generally be off, because the reduced number

of degrees of freedom lowers the entropy of CG conformations, and thus the
energies must be adjusted to leave the free energy correct. For instance, in

the absence of solvent, both solvent energy and entropy must be parame-

trized into effective solute interaction energies. Therefore, the entropies

we calculate in this work are not to be confused with the entropies of the

actual system. On the other hand, this does not preclude them from being

exquisitely sensitive observables for the thermodynamics of the CG model.
RESULTS

Secondary structure

We first examine the structural and energetic properties of
the sequence (AAQAA)n with various chain lengths
(n ¼ 3; 7; 10; 15). The n ¼ 3 variant is known as a stable
a-helix folder and has been studied both experimentally
and computationally (40–44). The n ¼ 7 peptide has also
been shown to fold into a helix (42). We find that all four
peptides form a stable, long helix in the lowest-energy sector
(see below), but we are not aware of any structural study that
would confirm this for the longer peptides with n ¼ 10; 15.
Since we will soon show that the latter two fold differently
from the shorter ones, an experimental confirmation of their
ground state structure would be very useful.

For (AAQAA)3, Fig. 1 a shows a barrier in DSðEÞ as well
as a backbending in the inverse microcanonical temperature
T�1
mc ðEÞ, indicative of a first-order like transition. The two

vertical lines mark the transition region with the correspond-
ing microcanonical latent heat DQ. In the region between
E ¼ ð40� 80ÞE, mostly helical and mostly coil conforma-
tions coexist, in agreement with the sharp transitions in
the helicity qðEÞ (as determined by the STRIDE algorithm
(39)) and the number of helices in the chain, HðEÞ. These
results point to a clear two-state folder.

Increasing the chain length from n ¼ 3 to n ¼ 15 (Fig. 1,
b–d) changes the nature of the transition significantly.
Whereas n ¼ 7 still shows a (lower) barrier in DSðEÞ and
a nonzero microcanonical latent heat DQ, the cases
n ¼ 10 and n ¼ 15 are downhill folders (no barrier in
DSðEÞ and monotonic T�1

mc ðEÞ curves). The transition region
is replaced by a transition point for which the concavity
of SðEÞ is minimal and DQ ¼ 0. This process is
associated with important structural changes around the
transition region/point, as seen in the number of helices
Biophysical Journal 100(11) 2764–2772
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FIGURE 1 Various observables as a function of energy for (AAQAA)n: (a) n ¼ 3, (b) n ¼ 7, (c) n ¼ 10, and (d) n ¼ 15. From top to bottom for each inset:

DSðEÞ, error bars reflect the variance of the data points (1s interval); inverse temperatures from a canonical (T�1
canðhEcani, blue) and a microcanonical

(T�1
mc ¼ vS=vE, red) analysis, where Ecan is the canonical average energy; helicity qðEÞ (red) and number of helices HðEÞ (blue), both with the error of

the mean. Vertical lines mark either the transition region (n ¼ 3; 7) or the transition point (n ¼ 10; 15). Representative conformations at different energies,

visualized with the use of VMD (45), are shown.
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HðEÞ: although the curve is monotonic for n ¼ 3, it exhibits
a peak with HðEÞ>1 for larger n, showing that during the
transition most conformations form more than one helix.
This suggests the existence of multiple helix nucleation sites
upon folding (see representative conformations at the transi-
tion point for n ¼ 10; 15 in Fig. 1).

To further elucidate the structural features of these chains
around the transition region/point, we analyzed the fraction
of secondary structure (i.e., helicity) in dependence of both
energy and the residue index for helices n ¼ 3; 15. For
Biophysical Journal 100(11) 2764–2772
n ¼ 3, helix nucleation appears mostly around the center
of the peptide and propagates symmetrically to the termini
(Fig. 2 a); however, n ¼ 15 shows two distinct peaks at an
energy E slightly below the transition point (Fig. 2 b). The
results suggest the formation of two individual helices
placed symmetrically from the midpoint of the chain,
around residue 35, which only join into one long helix
significantly below the transition point. As discussed further
below, these two helices divide the system into two distinct
melting domains that fold noncooperatively (i.e., folding



a

b

FIGURE 2 Fraction of secondary structure as a function of energy and

residue for (a) (AAQAA)3 and (b) (AAQAA)15. Vertical lines mark the tran-

sition region (a) and point (b).

FIGURE 3 Various observables as a function of energy for a3D. Plots

and definitions agree with the conventions in Fig. 1.

FIGURE 4 Fraction of secondary structure as a function of energy and

residue for a3D. Vertical lines mark the transition region.
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one helix does not help fold the other) (46,47). The same
conclusion can be drawn from the probability distributions
of forming an m-helix (see Supporting Material).

To probe the behavior of simultaneous folding motifs
within a chain, we performed a microcanonical analysis of
the 73 residue de novo three-helix bundle a3D (38) (for
the amino acid sequence, see Table 1). The CG model
used here has been shown to fold a3D with the correct
native structure, up to a root mean-square deviation of 4�A
from the NMR structure (36). Although its length is similar
to that of (AAQAA)15, it shows a discontinuous transition
(see Fig. 3) and thus a nonzero microcanonical latent heat
during folding. In the transition region, the helicity increases
sharply from 20% to ~65%, and the average number of
helices also increases sharply but monotonically from 1.5
to 3. In contrast to the simple n ¼ 7, 10, 15 helices, the tran-
sition region never samples more helix nucleation sites than
the number of helices at low energies. As can be seen from
the representative conformations shown in Fig. 3, the
ensemble of folded states (Ez130 E) consists of three
partially formed helices in largely native chain topology,
and the coexisting unfolded ensemble (Ez225 E) consists
of a compact structure containing transient helices. All of
these findings identify a3D as a two-state folder.

To better monitor the formation of individual helices, we
measured the fraction of helicity as a function of energy
and residue (see Fig. 4). Unlike (AAQAA)n (Fig. 2), a3D
shows strong features due to its more interesting primary
sequence. The turn regions (dark color) delimiting the three
helices (light color) are clearly visible at low energies and
correspondwell to the STRIDE prediction of the NMR struc-
ture, as shown in Table 1.Moreover, it is clear from this figure
that secondary structure formation occurs simultaneously
(i.e., at the same energy) for all three helices, and that most
of the folding takes place within the coexistence region
Biophysical Journal 100(11) 2764–2772
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(marked by the two vertical lines). The residues that form the
native turn regions do not show any statistically significant
signal of helix formation at any energy. Secondary structure
is formed almost entirely close to the folded ensemble in the
transition region (leftmost vertical line), in line with the
representative conformations shown in Fig. 3.
Tertiary structure

A secondary structure analysis alone can only provide infor-
mation on the local aspects of folding. Several studies have
highlighted the role of an interplay between local and
nonlocal interactions in protein folding cooperativity
(27,48–50). Here, we first analyze the size and shape of the
overall molecule by monitoring the radius of gyration

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x þ l2y þ l2z

q
and the normalized acylindricity

c ¼ ðl2x þ l2yÞ=2l2z as a function of E, expressed in terms of

the three eigenvalues of the gyration tensor l2x<l
2
y<l

2
z ,

respectively. The results for the single helices n ¼ 3 and
n ¼ 15 and the three-helix bundle a3D are shown in Fig. 5.
(AAQAA)3 shows sharp features in both order parameters
within the transition region, indicating an overall structural
compaction (in shape and size) of the chain as energy is low-
ered. Observe that c approaches 0.13 at high energy, which is
close to the random walk or self-avoiding walk values, both
a

b

c

FIGURE 5 Radius of gyration RgðEÞ (red) and normalized acylindricity

parameter cðEÞ (blue), both with the error of the mean, for (a) (AAQAA)3,

(b) (AAQAA)15, and (c) a3D. Vertical lines mark either the transition

region (n ¼ 3, a3D) or the transition point (n ¼ 15).
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of which are close to cz0:15 (51,52). The longer helix
n ¼ 15 shows a nonmonotonic behavior in both RgðEÞ and
cðEÞ: whereas the radius of gyration exhibits a minimum
around E ¼ 400 E, the normalized acylindricity displays
a maximum. This indicates a structure that is most compact
and spherical 100 E above the transition point. This dip in
RgðEÞ corresponds to a chain collapsing into maximally
compact nonnative states (34) due to a nonspecific compac-
tion of the chain gradually restricted by steric clashes, at
which point secondary structure becomes favorable. When
the energy is lowered, Rg increases and the acylindricity
decreases, because the peptide elongates while folding
from a compact globule into an a-helix. Results for the
three-helix bundle are similar: RgðEÞ and cðEÞ also show
a minimum and a maximum, respectively, slightly above
the transition region. This indicates a similar type of chain
collapse mechanism. However, nonmonotonic features
appear also at the other end of the transition region
(Ez130 E) where Rg shows a maximum and the acylindric-
ity plateaus. The evolution of the two order parameters below
the transition region is rather limited, suggesting that only
minor conformational changes take place (i.e., the shape of
the molecule stays steady while its size decreases slightly).
In contrast, at high energy, both (AAQAA)15 and a3D are
still far away from a random walk limit, as evidenced by
the acylindricity being far away from 0.15.

We can readily observe chain collapse in longer chains
(such as (AAQAA)15 and a3D) by monitoring tertiary
contacts as a function of energy. Fig. 6 shows the total
number of nonlocal contacts (red curve) as well as the
number of native contacts alone (blue curve). Tertiary
contacts are defined here as pairs of residues that are more
than five amino acids apart (which prevents chain connec-
tivity artifacts) and within a 10�A distance (these numbers
are somewhat arbitrary, but their value does not affect the
qualitative behavior of Fig. 6). Native contacts correspond
here to the set of abovementioned tertiary contacts sampled
with a frequency higher than 1% from a set of 10,000
FIGURE 6 Number of tertiary contacts for a3D as a function of energy.

The All-contacts curve (red) averages over all nonlocal pairs, whereas the

Native-only curve (blue) counts only native pairs (see text for details).

Vertical lines mark the transition region.
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b

FIGURE 7 Number of tertiary contacts as a function of energy and

residue for (a) (AAQAA)15 and (b) a3D. Observe that the dynamic range

of b is four times as wide as that for a. Vertical lines mark the transition

point (a) and region (b).
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low-energy conformations (E%50 E). Although the two
curves are virtually identical below the transition region
(i.e., all contacts are native) and show a similar trend above
it, they behave very differently inside that interval. The
number of native contacts monotonically increases as the
energy is lowered (i.e., in the transition from a globule to
a native-like structure), while the total number of contacts
shows a peak above the transition region and sharply
decreases inside it. To approach the native state, the peptide
needs to break more contacts of the nonnative type than it
gains native contacts.

The nonmonotonicity of this curve, as well as the Rg data,
invite a comparison with the thermodynamics of water. Upon
cooling, liquid water expands below 4�C.Weak but isotropic
van der Waals interactions are given up for strong but direc-
tional hydrogen bonds. This energy/entropy balance seems to
occur in a very similar manner here, and essentially for the
same reason. Weak van der Waals side-chain interactions
(i.e., tertiary contacts) are replaced by hydrogen-bond inter-
actions (i.e., secondary structure) at lower energies. This
further confirms the concept of a chain collapsing into maxi-
mally compact nonnative states: after a decrease in energy
(above the transition region), the system accumulates a large
number of nonnative contacts due to a simple hydropho-
bicity-driven compaction mechanism. This idea was
proposed early on as the hydrophobic-collapse model or
molten-globule model (34,35). Hills and Brooks (53)
observed a similar effect by using a G�o model in which
out-of-register contacts had to unfold to reach the native state.

Although a transient chain collapse upon cooling is
present in both (AAQAA)15 and a3D (RgðEÞ is nonmono-
tonic; see Fig. 5, b and c), its effect on tertiary structure
formation will greatly depend on the amino acid sequence.
Fig. 7 shows the number of tertiary contacts of the two
peptides as a function of energy and residue. The single
helix n ¼ 15 shows a uniformly small number of tertiary
contacts in the low-energy region (due to the linearity of
the helix) and peaks above the transition point (which corre-
sponds to the energy where RgðEÞ is smallest). The tertiary
contact distribution in the maximally compact nonnative
states is homogeneous along the chain (i.e., all residues
have the same number of contacts). On the other hand, the
number of tertiary contacts along the three-helix bundle
(Fig. 7 b) is highly structured, forming stripes as a function
of residue that extend below the transition region. This
follows directly from the amphipathic nature of the subheli-
ces that constitute a3D: residues that form the native hydro-
phobic core of the bundle have a higher number of contacts.
The presence of these stripes in the energetic region of
collapsed structures (Ez300 E) is due to a strong selection
between hydrophobic and polar amino acids during the
hydrophobic collapse, burying hydrophobic groups inside
the globule. The low number of tertiary contacts in the
turn regions indicates that they remain on the surface of
the maximally compact globule during chain collapse.
DISCUSSION

Two-state cooperativity has been characterized as a common
signature of small proteins for which the transition of the
cooperative domain corresponds to the whole molecule (i.e.,
the protein undergoes a transition as a whole) (54). Although
this framework applieswell to the small helix (AAQAA)3, it is
difficult to predict its thermodynamic signature from other
grounds. A description of the conventional helix-coil transi-
tion is not appropriate given the small size of the system
and the correspondingly important finite-size effects.

The thermodynamic signature of proteins can better be
described for longer chains. Several arguments can be
brought forward to explain the transition we observe for
the longer helices (AAQAA)n for n ¼ 10, 15:

1. Most theoretical models of the helix-coil transition,
such as the Zimm-Bragg model (55), are based on the
Biophysical Journal 100(11) 2764–2772
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one-dimensional Ising model, which, being one-dimen-
sional, shows no genuine phase transition but only a finite
peak in the specific heat. The entropic gain of breaking
a hydrogen bond (i.e., forming two unaligned spins)
outweighs the associated energetic cost for a sufficiently
long chain.

2. The structure of the maximally compact state right above
the transition (see Fig. 7) indicates that there is no statis-
tically significant competition between amino acids (i.e.,
all residues have the same number of tertiary contacts),
and therefore it is associated with a homopolymer-type
of collapse, which is indeed barrierless (34,56).

3. The denaturation of large proteins composed of several
melting domains is not a two-state transition (46,47).
The presence of two helix nucleation sites around the
transition point (Fig. 2) indicates the existence of two
such melting domains that fold noncooperatively (i.e.,
the folding of one helix is not correlated with the forma-
tion of the other). We ascertained that there were no
statistically significant helix-helix interactions between
the two domains by calculating contact maps. These
were averaged over the ensemble of conformations for
which 50%E%150 E (data not shown).

A common expectation is that larger systems will show
sharper transition signals, and thus it may appear surprising
that the transition of the (AAQAA)n sequence weakens for
increasing n. However, one must bear two things in mind:
First, size alone is not sufficient—dimensionality counts
as well. In the Supporting Material we show examples of
quasi-one-dimensional systems for which the transitions
become weaker for larger systems because in the process
of growing, they become more one-dimensional. When
size is associated with cooperativity, one tends to think of
globular (three-dimensional) systems, for which the size-co-
operativity connection is true, but this is not the most
general case. Second, the sharpness may depend on which
observable is being studied. The helicity q as a function of
temperature indeed varies more sharply for larger n, making
the response function ðvq=vTÞn peak more strongly for
bigger n. This steepening would suggest a stronger two-state
nature; however, this goes against every other observable,
which suggests a downhill folder, including the calorimetric
criterion (see below). Therefore, observing response func-
tions alone can be misleading. More details on this can be
found in the Supporting Material.

The two-state signature of the helix bundle a3D can be
understood from two different perspectives:

1. Although there are clearly three distinct folding motifs
(i.e., three helices), the selective hydrophobicity (i.e.,
amphipathic sequence) between residues provides coop-
erativity (i.e., the folding of one helix helps the formation
of the others).

2. The barrier associated with a two-state transition is inter-
preted in the hydrophobic-collapse model as the result of
Biophysical Journal 100(11) 2764–2772
the cost of breaking hydrophobic contacts from a maxi-
mally compact state into the folded ensemble (34). A
further discussion on the order of appearance of
secondary versus tertiary structure formation can be
found in the Supporting Material.

Previous experimental studies of a3D showed a fast
folding rate of ð1� 5Þms and single-exponential kinetics
(57), compatible with a two-state cooperative transition.
As presented here, this highlights the interplay between
secondary structure formation (see Fig. 4) and the loss of
nonnative tertiary contacts (see Fig. 6), both occurring
exactly within the coexistence region, as a possible mecha-
nism for folding cooperativity (27).

Compaction of the unfolded state upon an increase in
temperature was observed experimentally by Nettels et al.
(58) using single-molecule fluorescence resonance energy
transfer. The decrease in Rg in our simulations can be ex-
plained by a combination of the hydrophobic effect and the
loss of helical structure; however, Nettels et al. also showed
a similar behavior for an intrinsically disordered hydrophilic
protein, in which other mechanisms likely play a role.

So far, we have avoided any reference to free-energy
barriers. Although the nature of the finite-size transition
can unambiguously be characterized from the presence of
a convex intruder in the entropy SðEÞ (8), which implies
a nonzero latent heatDQ, the mere existence of a free-energy
barrier is not a strong criterion, for two reasons: 1), the defi-
nition of a free-energy barrier is not unique in a finite-size
system (7,11); and 2), the height of the barrier depends on
the reaction coordinate used. Chan (59) therefore argued
that the calorimetric criterion, which relates the van’t Hoff
and calorimetric energies, is often more restrictive for
protein models than the existence of such a free-energy
barrier. Still, the density-of-states calculations performed
here correlate well with calorimetric ratios for (AAQAA)n,
n ¼ {3, 7, 10, 15} and a3D: d ¼ 0:78; 0:76; 0:51; 0:52
and 0.78, respectively. We determined these values by
analyzing the canonical specific heat curve CVðTÞ as previ-
ously described by Kaya and Chan (4) (k2 without baseline
subtraction). The value d ¼ 0:78 for a3D also agrees with
an earlier theoretical calculation of the similar bundle a3C
from Ghosh and Dill (49), who found d ¼ 0:72.
CONCLUSIONS

Replica-exchange MD simulations of an intermediate reso-
lution CG implicit-solvent peptide model allowed us to
accurately determine the thermodynamics of folding for
several helical peptides without biasing the force field
toward a particular native structure. We argued that a micro-
canonical analysis would be extremely valuable for charac-
terizing the energetics and structure of peptides, for two
reasons: First, an accurate density-of-states calculation
would allow an unambiguous characterization of the nature
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of the folding transition. Second, different order parameters,
analyzed as a function of E, exhibit highly nonmonotonic
behavior inside the (first-order-like) transition region. A cor-
responding canonical analysis (i.e., as a function of T)
would not allow us to observe in such detail many of the
abovementioned features around transition regions.

The results showed that simply elongating the (AAQAA)n
sequence induced a change in the nature of the transition,
from two-state (n ¼ 3, 7) to downhill (n ¼ 10, 15). This
correlated with the number of helices sampled around the
transition region/point, which is indicative of the average
number of helix nucleation sites, and thus characterized
the number of distinct melting domains and the structural
diversity of intermediates. Remarkably, the loss of a first-
order signature still goes along with a potentially misleading
steepening of the helicity as a function of temperature for
longer chains (see Supporting Material). The bundle a3D
was found to be two-state cooperative, in agreement with
theoretical models (49,50). The analysis of tertiary structure
formation highlighted the influence of the amino acid
sequence on the folding mechanism, with the hydro-
phobic-collapse model used as a starting point.

Although previous studies have brought forward the
coupling between secondary and tertiary structure formation
for two-state cooperativity (27,48–50), in this study we have
illustrated several links between the nature of the transition
and secondary/tertiary structure signatures of folding for
realistic representations of peptide chains. Gaining a thor-
ough understanding of structure formation in two-state coop-
erative proteins will provide insight into the stability of their
folded conformation. Cooperativity improves the stability of
the folded state by suppressing the population of intermedi-
ates. Mutations that lower cooperativity not only decrease
stability, they can also promote misfolding in certain cases
(60). The resolution of the CG model provides a useful
compromise between computational efficiency and resolu-
tion, and allows us to access features that thus far have
only been observed in less-realistic lattice models.
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