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a b s t r a c t

The investigation of freezing transitions of single polymers is computationally demanding,
since surface effects dominate the nucleation process. In recent studies we have systemat-
ically shown that the freezing properties of flexible, elastic polymers depend on the precise
chain length. Performing multicanonical Monte Carlo simulations, we faced several compu-
tational challenges in connection with liquid–solid and solid–solid transitions. For this rea-
son, we developed novel methods and update strategies to overcome the arising problems.
We introduce novel Monte Carlo moves and two extensions to the multicanonical method.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Induced by the rapidly increasing efficiency and availability of computational resources, the field of computational phys-
ics has gained tremendously in importance within the last decades, and it is today regarded as physics’ third pillar alongside
experimental and theoretical physics. In addition to the innovations in hardware, simulation techniques have evolved fur-
ther, and in fact, the greater improvements have resulted from better methods rather than from faster computers. A partic-
ularly important application is the investigation of thermodynamic properties of complex systems by means of Markov chain
Monte Carlo methods. Starting about 60 years ago with the Metropolis algorithm [1], which emulates the canonical ensem-
ble, the arsenal of algorithms has been extended and more sophisticated methods have been introduced. Among the most
powerful simulation techniques are generalized-ensemble methods such as parallel tempering [2,3], multicanonical sam-
pling [4], simulated tempering [5], or the Wang–Landau method [6], which allow in principle to collect all information about
the entire thermodynamic behavior of the investigated system in a single simulation. However, depending on the considered
system, substantial difficulties can occur, part of which are specifically related to properties of the system being studied,
whereas others, like broken ergodicity, are of more general nature.

In a recent study on flexible homopolymers [7,8], we encountered a number of problems of both kinds and developed
new simulation techniques to overcome these. Some of them are rather specific to polymers, while others are more general
. All rights reserved.
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and can also be applied to nonmolecular systems. Combining our strategies we were able to boost the efficiency of our algo-
rithms and to perform very precise simulations of systems which could not be investigated in this quality before.

The purpose of this paper is to explain our methods in detail. After a short introduction of the applied polymer model in
the next section, we briefly explain in Section 3 the multicanonical Monte Carlo method, which served as the basic algorithm
in our simulations. The following Section 4 is dedicated to the applied conformational updates and includes a new general
optimization strategy for basic updates of systems with continuous degrees of freedom. Afterwards we introduce and moti-
vate in Section 5 two general extensions to the multicanonical method, and finish in Section 6 with some concluding
remarks.

2. Model

In our simulations we employed a bead-spring model for flexible, elastic polymers. For a specified set of monomer coor-
dinates {X}, the energy of a polymer conformation is given by
EðfXgÞ ¼
XN�1

i¼1

XN

j¼iþ1

EnbðjXi � XjjÞ þ
XN�1

i¼1

EbðjXiþ1 � XijÞ: ð1Þ
Here, the non-bonded interaction
EnbðrÞ ¼ ELJðminfr; rcgÞ � ELJðrcÞ ð2Þ
corresponds to a truncated and shifted Lennard–Jones (LJ) potential
ELJðrÞ ¼ 4½ðr=rÞ12 � ðr=rÞ6� ð3Þ
with the cutoff radius rc. Pairs of bonded monomers further interact via
EbðrÞ ¼ �
K
2

R2 lnð1� ½ðr � r0Þ=R�2Þ; ð4Þ
which is the standard finitely extensible non-linear elastic (FENE) potential. The parameters are chosen such that the minima
of both potentials coincide at r0, in order to prevent frustration. For details of the parametrization see [8,9].

This model belongs to the class of coarse-grained models, i.e., microscopic details have been traded for generality and
handiness. However, accurate simulations are still a substantial challenge.

3. Multicanonical Monte Carlo sampling

Before we discuss our novel simulation strategies, let us first recall basic principles of Markov chain Monte Carlo simu-
lations [10], for which acceptance criteria are obtained from the master equation:
dPlðtÞ
dt

¼
X

m
½PmðtÞWm!l � PlðtÞWl!m�; ð5Þ
where Pl(t) denotes the probability for a state l to occur at time t and Wm?l is the transition probability from state m to l. In
stationary equilibrium, where dPl(t)/dt = 0, this equation is solved by:
PmWm!l ¼ PlWl!m; ð6Þ
called ‘‘detailed balance’’. The transition probability Wm?l is the product of the probability of selecting the update proposal
Ws

m!l and the probability Wa
m!l of accepting it:
Wm!l ¼Ws
m!lWa

m!l: ð7Þ
Symmetric selection probabilities
Ws
m!l ¼Ws

l!m; ð8Þ
entail
Wa
m!l

Wa
l!m
¼ Pl

Pm
ð9Þ
for which the most common solution is given by the Metropolis rule
Wa
m!l ¼ min 1;

Pl

Pm

� �
: ð10Þ
However, for convenience or increased sampling efficiency, it is useful to introduce Monte Carlo updates where the selection
probabilities are unequal:
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Ws
m!l – Ws

l!m; ð11Þ
in which case
Wa
m!l

Wa
l!m
¼

PlWs
l!m

PmWs
m!l

: ð12Þ
Then, the more general expression
Wa
m!l ¼min 1;

PlWs
l!m

PmWs
m!l

 !
ð13Þ
of the acceptance probability is required. It has been demonstrated that such weighted updates can enable a much more effi-
cient sampling of the system conformations [11], compared with symmetrically chosen selection probabilities. This also ap-
plies to simulations in the grand-canonical ensemble (constant chemical potential) or a constant pressure in the Npt
ensemble, where volume fluctuations are relevant [12].

The goal of the multicanonical method [4] is to generate a flat histogram H over a certain macroscopic observable which
in our case is the energy E. This is achieved by introducing a weight function x(E) which is inversely proportional to the den-
sity of states g(E):
HðEÞ ¼ const ¼ xðEÞgðEÞ; ð14Þ
xðEÞ / g�1ðEÞ: ð15Þ
A single point in state space (conformation) l = {X} is in the multicanonical ensemble represented by a probability density
which is proportional to the weight function and is therefore depending only on the energy:
PfXg / xðEðfXgÞÞ: ð16Þ
The acceptance probability for a proposed Monte Carlo move is according to (13)
Wa
fXg!fX0g ¼min 1;

xðEðfX0gÞÞWs
fX0g!fXg

xðEðfXgÞÞWs
fXg!fX0g

 !
: ð17Þ
Usually, the density of states and hence the weight function is not known in the beginning and has to be estimated by iter-
ative procedures such as error weighted accumulation [13] or the Wang–Landau method [6].
4. Conformational update proposals

4.1. Displacement move with energy dependent maximal step length

When investigating many-particle systems by means of Monte Carlo simulations, the simplest possible conformational
update is the displacement of a single particle to a uniformly distributed random position X0i within a sphere1 around its ori-
ginal location Xi:
X0i ¼ Xi þ r; with jrj 6 rmax: ð18Þ
In the case of a flexible polymer with elastic bonds, such updates can be applied to all monomers. Thereby, the size rmax of
the sphere crucially influences the performance of the simulation. A larger sphere allows the system to perform extended
steps in conformational space and is therefore appropriate for simulations at high temperatures. If the temperature is low-
ered, the efficiency decreases since the proposed steps are now too large, and the system will not smoothly descend to nar-
row local energy minima. Moreover, if the system eventually finds an energy minimum, further moves are unlikely to be
accepted, since the proposed changes will almost certainly result in a huge increase in energy. In consequence, smaller
spheres should be used when a system with a rough energy landscape is investigated at low temperatures. It is simple to
incorporate variable sphere radii into simulation techniques such as Metropolis [1], parallel tempering [3], or simulated tem-
pering [5] by assigning suitable sphere radii to each temperature, i.e., to use rmax(T) instead of rmax, since for each of these
methods a (sub) ensemble is associated to each single temperature and detailed balance is satisfied. Changes in temperature
are usually performed separately from moves in conformational space and hence need not to be considered here.

The situation is more complicated for multicanonical and Wang–Landau sampling, where a simulation temperature does
not exist. Instead, the entire state space is sampled in a single generalized ensemble, making it difficult to choose a single
sphere radius that leads to adequate performance. However, the application of variable sphere radii is highly desirable, as
it would greatly improve simulation efficiency. Since we require large steps at high and small steps at low energies, the en-
ergy itself appears to be a well-suited control parameter for the sphere radii. However, using the standard multicanonical
ead of a sphere, any three-dimensional body which is invariant under inversion of coordinates, e.g., an adequately oriented cube, would serve as well.
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method with a maximal step length that depends on energy, and therefore changes in time, would cause a violation of the
detailed balance condition.

Let us discuss this in more detail by considering a displacement of the kth monomer. Assume a conformation {Xh} with a
certain relatively high energy Eh, and assume further, the maximum step length rmax(Eh), is comparatively large. During the
following update the system might jump to a rather small energy El with a much smaller sphere radius rmax(El) < rmax(Eh).
That means the maximum step length for the next update is smaller than for the first. As one consequence, the system some-
times cannot reach the starting point Xh

k within a single step, hence detailed balance is clearly violated. This is the case if the
distance between the two positions exceeds the smaller sphere radius Xh

k � Xl
k

��� ��� > rmaxðElÞ. Note that Xh
k � Xl

k

��� ��� 6 rmaxðEhÞ
holds by definition. Even if this is not the case and the starting point lies within the smaller sphere, detailed balance is
not fulfilled, because the probability densities for selecting the forward and the backward update are different and (8) is vio-
lated. Fortunately, according to (13), the emerging bias can easily be corrected. The probability density of proposing a certain
displacement equals the inverse volume of the sphere:
Ws
m!l ¼

1= 4
3 pr3

maxðEmÞ
� �

; if Xm
k � Xl

k

�� �� 6 rmaxðEmÞ
0; else:

(
ð19Þ
For Xm
k � Xl

k

�� �� 6 rmaxðEmÞ, one obtains according to (12)
Wa
m!l

Wa
l!m
¼ Plr�3

maxðElÞ
Pmr�3

maxðEmÞ
: ð20Þ
Hence, the final acceptance criterion reads
Wa
m!l ¼

min 1; Plr3
maxðEmÞ

Pmr3
maxðElÞ

� �
; if Xm

k � Xl
k

�� �� 6 rmaxðElÞ

0; else:

(
ð21Þ
Remember that the case Xm
k � Xl

k

�� �� > rmaxðEmÞ cannot occur and is therefore not considered.
In principle, any strictly positive function rmax(E) can be employed, but here we are searching for a function that results in

appropriate acceptance rates for all energies. Therefore we start with a flat function and perform a tuning procedure. First,
we apply a standard binning, i.e., we divide the energy axis in intervals in which rmax(E) is constant, i.e., if Ei 6 E < Ei+1 then
rmax(E) = rmax(Ei), with a fixed interval size DE = Ei+1 � Ei. The value of rmax(Ei) shall now be adjusted such that approximately
two third of all proposed updates increase the energy while the remaining third leads to lower energies. It is reasonable to
assume that such values for rmax(Ei) exist, since for very small values the accessible part of the energy landscape resembles a
tilted hyperplane with one half belonging to higher and the other half to lower energies. If on the other hand rmax(Ei) is very
large, the great majority of accessible states will have higher energies, because the density of states usually increases rapidly
with energy. In consequence, there must be a value of rmax(Ei) in-between that shows the desired property. In order to find
this value we modify the radii after any proposed update m ? l according to
r0maxðEiÞ ¼
ð1� �ÞrmaxðEiÞ; if Em 6 El

ð1þ 2�ÞrmaxðEiÞ; if Em > El;

	
ð22Þ
with Ei < Em < Ei+1 and 0 < �� 1. It is easy to see that rmax(Ei) will remain approximately unaltered if it has the desired char-
acteristics, i.e., if Em < El in 66.6% of all cases. If the fraction of proposed moves leading to higher energies is too big, rmax will
be reduced and if it is too small, rmax will be increased. In our simulation we used � = 10�5 . . .10�3 and found little difference
in performance. As expected, higher values of � allow faster convergence but lead to more noise in rmax(Ei). However, in all
considered cases rmax(Ei) converged quickly and caused update acceptance rates above 60% for all energies. In Fig. 1, the ob-
tained radii for the homopolymer of length N = 309 are shown. The used ratio 1:2 was chosen for the sake of simplicity. Dif-
ferent values might be found to be appropriate as well. The only restriction is that the desired fraction of updates to higher
energies must be larger than 1/2.

If the applied algorithm is able to find the valley of the global energy minimum, in principle the optimization allows us to
come arbitrarily close to the ground state. Remaining problems are of ‘‘technical’’ nature and concern the resolution of the
energy scale and limits of numerical data types. In Fig. 2, the density of states g(E) for the 309mer as obtained from two sim-
ulations is shown. After we investigated the general behavior and covered approximately 2000 orders of magnitude in the
density of states, we resampled the region E < � 1815 with a much higher energy resolution gaining further 1000 orders of
magnitude in g(E).

In a similar approach, attempted some time ago [14], the authors applied analytic functions rmax(ek) depending on the
energy ek of the single particle k that is to be moved within a canonical ensemble. In contrast to the results presented here,
decisive improvements could not be achieved. Most likely this is in the first place due to the fact that in the canonical ensemble
the potential for speedups is much smaller than in the multicanonical ensemble. We also believe for two reasons that the en-
ergy of a single particle as the argument of rmax is in general less favorable then the energy of the entire system. First, when the
system approaches the ground state, the particles might possess differing energies but rmax has to be close to zero for all of
them. Secondly, the same displacement will cause smaller relative changes for the global energy than for the single-particle



Fig. 2. Density of states for N = 309 (E0 = � 1820.684), covering more then 3000 orders of magnitude.

Fig. 1. Maximal step length rmax(E) after a preliminary tuning procedure for N = 309 (E0 = � 1820.684).
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energy and, therefore, smaller changes in rmax. Thus, the correction factor will be closer to unity if the global energy is used and
the general acceptance will be higher and/or larger steps are possible.

Notice that the described tuning procedure leads to a violation of the detailed balance condition which seemed to be of
little relevance, though, presumably since � is small. Of course, the tuning must be ceased for the production run, in order to
exclude this source of systematic error.

If the considered system has continuous degrees of freedom, this optimization procedure should in principle always be
applicable to basic Monte Carlo moves. However, the method might not work as described in the exceptional situations
when the density of states decreases with increasing energy. In these (rare) cases one should not rely on the proposed energy,
but on the density of states itself, i.e., the radius has to be reduced (increased) if the update leads to an energy with a higher
(lower) density of states. This was not necessary for the here investigated polymer model and since the density of states is
not known a priori we employed the energy as reference.

4.2. Bond-exchange moves

While performing bond-exchange moves the positions of the monomers remain unchanged, but the bonds between them
are rearranged. In the past this type of conformational update has been applied mainly to lattice polymers [15], and appli-
cations for off-lattice polymers have also been documented and proven to be efficient [16,17]. For the sake of completeness
we present the two different types used in our investigations.

The first version, depicted in Fig. 3, consists of a swap of bonds between four nearby monomers. Initially, the monomers
are labeled by numbers according to their position along the chain. Assuming two bonds have been chosen to be swapped,
only one way exists to reconnect the chain without splitting the polymer. Let the contributing monomers be on the positions
i, i + 1, j, and j + 1 with j > i + 1. It is obvious that if the i th bond between monomer i and i + 1 and the j th bond between
monomer j and j + 1 are removed, different bonds can only be established between the i th and the j th monomer on the
one side, and between the (i + 1) th and the (j + 1) th monomer on the other. Creating a bond between the (i + 1) th and



Fig. 3. Bond-exchange update.
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the j th monomer would result in a closed loop, since both monomers are already connected by a sequence of bonds. In our
simulations, we first randomly choose an arbitrary bond i and determine afterwards which other bonds can possibly partic-
ipate in an exchange update. Since in the employed model the bond length has an upper and a lower limit, only a few bonds
are candidates. From this group the second bond j is then drawn randomly and the acceptance probability is calculated.

At this point it is important to recognize that also for this type of Monte Carlo move the probability for selecting the up-
date, which is inversely proportional to the product of the number of bonds Nbonds and the number of possible exchange part-
ner bonds nepb

m;i , often differs from that of the backward update. Both must be calculated and used for the determination of the
acceptance probability according to (13). One obtains
Wa
m!l ¼min 1;

PlWs
l!m

PmWs
m!l

 !
;

¼min 1;
Pl � Nbondsn

epb
m;i

� ��1

Pm � Nbondsn
epb
l;i

� ��1

0
B@

1
CA;

¼min 1;
Plnepb

l;i

Pmnepb
m;i

 !
:

ð23Þ
The order of monomers and bonds gets changed during the update and eventually appears to be totally random, if it is not
restored by relabeling.

If only the update just described is used, an end monomer will always remain an end monomer and the simulation would
still be inefficient. Hence, we applied a second bond-exchange move shown in Fig. 4. Thereby we connect an end monomer to
another nearby monomer and break the created loop by removing the old bond next to the formed junction. More explicitly,
if we connect the first monomer to the j th, we obtain a ring of bonds connecting the first j monomers with a side chain
branching off at the j th monomer. To remove the junction we have to delete the bond between the (j � 1) th and the j th
monomer. In the second case where the N th monomer gets connected to the j th, the bond between the monomers j and
j + 1 has to be deleted. Within the simulation we choose one of the end monomers and determine all monomers that are
possible partners for the update. Again, we draw monomer j from this set and, in order to be able to calculate the acceptance
probability Wa, it is necessary to consider the selection probabilities for the update in both directions:
Wa
m!l ¼ min 1;

Plnepm
l;i

Pmnepm
m;i

 !
ð24Þ
Fig. 4. End-bond-exchange update.
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with nepm
i;m and nepm

i;l being the numbers of possible exchange partner monomers and i 2 {1,N}.
The application of the two bond-exchange updates significantly increased the performance of the simulation and allowed

larger changes of the polymer’s configuration also in the ‘‘frozen’’ low-temperature regime. Even if there are no noticeable
changes in monomer positions, the bonds are still quite flexible and arrange in a specific order when zero temperature is
approached. Exemplified for the lowest-energy conformation of the 309mer, the length of each bond is shown in Fig. 5,
where the shell to which it belongs is represented by the symbol and the color. As a result of the icosahedral packing, neigh-
boring monomers are closest when they belong to neighboring shells. This makes these monomer pairs unfavorable for
bonds, and in consequence only one bond each connects the inner shells, and at low T one end of the polymer is always lo-
cated in the center.
4.3. Monomer cut-and-paste update

Below the liquid–solid transition the representative conformations differ not only in the arrangement of the bonds, but in
monomer positions as well. Even if the ground state is a perfect icosahedron, single monomers can be displaced at low tem-
peratures, thereby creating multiple surface defects (Fig. 6). Transitions between these microstates cannot be performed
with simple monomer displacements and bond-exchange moves only, since high energy barriers separate favorable mono-
mer positions on the surface of the icosahedron. Hence, we developed a fourth type of Monte Carlo move (Fig. 7) to overcome
this difficulty. For this update, a monomer i is selected whose neighbors are at an appropriate distance to be bonded them-
selves. In order to possess two neighbors the chosen monomer must not be an end of the polymer (1 – i – N). The position
(r,/,z)s of monomer i is then determined according to a cylindrical coordinate system s defined as follows: The z-axis points
through the neighboring monomers i � 1 and i + 1 and the origin is located in their midpoint. The further orientation of s is
irrelevant, because the original angle / will not be needed in the following. Now, monomer i is cut and a bond connecting the
monomers i � 1 and i + 1 is created while another existing bond is removed in order to paste monomer i at its position. For
Fig. 5. Bond ordering for the putative ground state of the 309mer icosahedron.

Fig. 6. (a) Polymer with length N = 309 at low temperature forming an icosahedron with a surface defect and (b) ground state conformation. For the color
code of the shells, cp. Fig. 5.



Fig. 7. Monomer cut-and-paste update.
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that purpose, a second coordinate system s0 is defined similar to s but based on the adjacent monomers of the removed bond,
say monomer j and j + 1 (j – i – j + 1). The coordinates r and z are now transposed from s to s0 and a new angle /0 is drawn
randomly from [0,2p). Again the angular orientation of s0 can be arbitrary. Monomer i is now placed at this new position
ðr;/0; zÞs0 and connected to the monomers j and j + 1.

The selection probabilities of the move and its inversion are identical, and no correction needs to be applied at this point.
However, it is appropriate to introduce restrictions to the choice of the monomer to be moved and the bond to be split. If the
polymer occupies a compact shape, the update has only a good chance of acceptance when performed at the surface, since
moving a monomer within the interior, as well as from the center to the surface, implies a large increase in energy and a very
low acceptance rate. It is therefore useful to choose only bonds and monomers that are in regions of minor density, e.g., at
the surface of a compact conformation. To estimate the density we use the number of contacts of a monomer (for details see
[7]), i.e., the number of monomers to which its distance does not exceed a certain threshold. Since inner monomers at low
temperature always have 12 contacts, we choose only monomers with less than 11 contacts and bonds that connect mono-
mers with less than 12 neighbors. Unfortunately this leads to unequal selection probabilities and requires once more the
introduction of a correction term. If nm

m is the number of monomers to choose from and nm
b;i is the number of available bonds,

we obtain
Wa
m!l ¼ min 1;

Plnm
mnm

b;i

Pmnl
mnl

b;i

 !
: ð25Þ
Here, nm
b;i depends on i in a non-trivial way since bonds adjacent to monomer i must not be chosen. An alternative way would

be to allow choosing these bonds, but to immediately reject the update, once they are selected.
5. Extensions to the multicanonical sampling algorithm

In the previous section we described how to overcome the problem of energy barriers through avoiding them by the
application of certain update procedures, which is possible in the described cases since the configurations on both ‘‘sides’’
of the barriers are rather similar. For the bond-exchange update the monomer positions are identical, and in the case of
the cut-and-paste update, only a single monomer is moved. However, other barriers of different nature exist, and need to
be treated with other strategies. As we have shown [8], the polymers adopt different geometries corresponding to different
optimizing strategies, resembling the behavior of atomic LJ clusters. This similarity has been already reported for a slightly
different model [18] some time ago and is the result of the matching minimum distances of the two interaction potentials,
which ensure that configurations minimizing the Lennard–Jones potential also lead to low bond energies. Clusters and poly-
mers both favor icosahedral crystal-like conformations at temperatures below the liquid–solid transition. These conforma-
tions divide into two subgroups according to the type of the outer layer which can be either Mackay (fcc) or anti-Mackay
(hcp) [19]. Transitions between these two types occur at different temperatures, and for certain system sizes, the investiga-
tion with standard Monte Carlo methods is difficult or impossible due to high free-energy barriers between different solid
phases associated with Mackay or anti-Mackay growth. A second type of solid–solid transition that occurs for special system
sizes involves non-icosahedral ground-state conformations, which can be of fcc-, decahedral, or tetrahedral structure. These
systems change to an icosahedral solid state at very low temperatures, posing a considerable challenge to the applied sim-
ulation method.

5.1. ‘‘Grand-multicanonical’’ simulation

First, we will consider the Mackay–anti-Mackay transition within the surface of an icosahedral conformation. As already
mentioned, the investigated LJ homopolymer behaves very similar to atomic LJ clusters. In the interval N 2 [13,147], we find
anti-Mackay ground states for 13 < N < 31 and 55 < N < 81 while for the remaining polymer lengths Mackay ground states are
favored. Exceptions are N = 38,75 � 77,86,87 [8].

Most of the systems with Mackay ground states undergo a transition to anti-Mackay conformations at a transition tem-
perature which generally increases with system size (Fig. 8). It turned out that this transition complicates the investigation, if
it takes place at low temperatures, as for N = 31, or if the system is large, e.g., for N P 81. If standard methods like parallel
tempering [3], multicanonical sampling [4] or the Wang–Landau method [6] are applied, the system has to cross the barrier



Fig. 8. Sketch of the conformational state space at low temperatures with ‘‘paths’’ to avoid the Mackay–anti-Mackay barrier.
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between the Mackay and the anti-Mackay state many times in order to produce precise results. It turned out that this can be
avoided by allowing the system to move also in N-direction, i.e., to change its size, during the simulation. The system is then
able to circumvent the Mackay–anti-Mackay transition by changing N, and performing two liquid–solid transitions (Fig. 8),
which happens more frequently than the crossing of the Mackay–anti-Mackay transition line for sizes 81 6 N 6 110.

To move in N-direction we need a new Monte Carlo update that changes the system size at runtime. Fortunately, the
monomer cut-and-paste update introduced above can be used as a starting point. If an increase of system size should be pro-
posed, a bond k can be picked and coordinates of the new monomer are randomized. We again apply a cylindrical coordinate
system s, defined by the adjacent monomers of the chosen bond: the z-axis points through these monomers and their mid-
point defines the origin. The angular orientation is arbitrary. The coordinates (r,/,z)s have to be determined in order to be
uniformly distributed in the hollow cylinder defined by rmin, rmax, and zmax (Fig. 9). Therefore, / and z are drawn from con-
stant distributions over the intervals [0,2p) and (�zmax,zmax), respectively. Within [rmin,rmax) the desired probability density
PR(r) has to be proportional to the area of the cylinder shell with radius r, i.e., proportional to r itself. If we regard the radius r
as a monotonic function of a uniformly distributed random number n:
r ¼ rðnÞ; ð26Þ
where the probability density of n is given by
PNðnÞ ¼
1; if 2 ½0;1Þ;
0; else;

	
ð27Þ
the fraction of points in the ring between rmin and r
f ðrÞ ¼ pðr2 � r2
minÞ

pðr2
max � r2

minÞ
ð28Þ
has to equal n,
n ¼ f ðrÞ; ð29Þ
which leads to
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

max � r2
min

� �
nþ r2

min

q
: ð30Þ
The inverse update meaning the reduction of the system size is simpler to accomplish. A monomer, which must not be an
end monomer, is chosen randomly and once more the coordinates ðr0; /0; z0Þs0 in a cylindrical system s0 defined by the neigh-
bors are determined. The update may only be performed if jz0j < zmax and rmin 6 r0 < rmax, since otherwise the inverse update
Fig. 9. Coordinates for adding a new monomer.
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would be impossible, violating detailed balance. Note that in its present form the update contains another imbalance, since
for the first choice the number of alternatives differs. If the system size should be increased, we choose from N � 1 bonds
while, if the size is to be decreased, there are only N0 � 2 monomers (with N0 = N + 1) to choose from. However, this imbal-
ance can be neglected, since it does not effect the balance of conformations with identical N.

To calculate the acceptance probability we first need the probability of each conformation. Again, we use a weight func-
tion x(E,N) to produce a flat distribution but now in the two directions N and E. It is
Fig. 1
PfXg / xðEðfXgÞ;NðfXgÞÞ ð31Þ
and with (10) we easily obtain
Wa
fXg!fX0g ¼min 1;

xðEðfX0gÞ;NðX0ÞÞWs
fX0g!fXg

xðEðfXgÞ;NðXÞÞWs
fXg!fX0g

 !
: ð32Þ
Again, it is appropriate to choose only bonds and monomers from the surface. The adaptation of the method and the deter-
mination of Ws are very similar to the procedure we discussed for the cut-and-paste update and are not repeated here. Note
that the imbalance mentioned in the last paragraph is cured this way, too.

This algorithm proved to be surprisingly efficient. While it appeared to be impossible to investigate the full behavior of
the 100mer with standard multicanonical simulations, the simultaneous sampling of all chains with N 6 147 did not pose
any major difficulties. Furthermore, we were able to derive the thermodynamics for all polymers of size 13 6 N 6 309 down
to T � 0.05 within a single simulation on a single Intel Xeon core (3.06 GHz). This simulation involved 2 � 1012 single updates
and ran for approximately five months. Some results are shown in Fig. 10.

Note that this method is primarily not designed to investigate the grand-canonical ensemble. Here, the focus is still on
systems of fixed size and the merit lies in greater efficiency in sampling them simultaneously and not in a physical under-
standing of polymerization processes.

5.2. Multicanonical simulation with multiple weight functions

The existence of non-icosahedral ground states for atomic LJ clusters of certain sizes has been known for a long time, but
the identification of these ground states is still regarded to be a major challenge to the applied algorithm. On the other hand,
the investigation of the associated solid–solid transitions is even more complicated, since the goal is not only to reach the
ground-state conformation but also to maintain detailed balance and to measure the density of states very precisely. To the
best of our knowledge there has been only one successful attempt to solve the problem for the 98-atom cluster [20], which
involved the construction of an artificial energy landscape based on the prior knowledge of low-energy conformations. Here,
we present an extension to the multicanonical approach which allows for investigating the solid–solid transitions of LJ poly-
mers and clusters, but at the same time is general enough to be of use in other cases, too.
0. Results from a single grand-multicanonical simulation: (a) specific heat and (b) temperature derivative of the normalized radius of gyration.



Fig. 11. Decomposition of the microcanonical ensembles according to the different values of the order parameter m.
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In [7,8], we used the number of icosahedral cells to introduce a parameter m that indicates the geometrical state of the
system: With high reliability we found m = 0 for unstructured and for non-icosahedral states, m = 1 for icosahedral states with
Mackay overlayer, and m = 2 for icosahedral states with anti-Mackay overlayer.

For the 98mer with large cutoff (rc = 5r) the decompositions of the ‘‘microcanonical’’ ensembles according to this param-
eter are depicted in Fig. 11. Since the different values of m belong to very different structures, lines between the different
domains in Fig. 11 can only be penetrated in the high-energy regime. Hence, any algorithm producing these microcanonical
distributions (e.g., simulated tempering, parallel tempering, the multicanonical method or the Wang–Landau technique) is
prevented from finding the tetrahedral ground-state conformation, since the probability to pass through the bottle neck
belonging to m = 0 at E � � 500 is by far too small. The solution is to balance the probabilities of the three subensembles
by introducing single weight functions for each value of m. Based on the multicanonical approach (16), we use
PfXg / xmðfXgÞðEðfXgÞÞ ð33Þ
to derive the acceptance probability
Wa
fXg!fX0g ¼min 1;

xmðX0 ÞðEðfX0gÞÞWs
fX0g!fXg

xmðXÞðEðfXgÞÞWs
fXg!fX0g

 !
: ð34Þ
The remaining task is to tune the multiple weight function x to allow each geometry to participate equally at any energy and
to enable the system to reach the energies where the solid–solid transition takes place.

Results of applications of this algorithm are reported in detail in Ref. [8].

6. Conclusions

In this paper, we described methods used to investigate the behavior of flexible homopolymers in much more detail and
at much lower temperatures than it was previously possible.

With the energy-dependent step length we introduced a novel general optimization scheme for basic Monte Carlo moves
for systems with continuous degrees of freedom which allows constantly high acceptance rates everywhere in energy space.
Applying this procedure in combination with multicanonical sampling we were able to estimate the density of states over
several thousands of orders of magnitudes.

We then described two bond-exchange moves and demonstrated that these updates allow the reordering of polymer
bonds without alteration of monomer positions. Subsequently, with the monomer-jump update we introduced a novel
Monte Carlo move which increased the efficiency of the simulation further in two ways. First, the update allows the tunnel-
ing of energy barriers in the solid phase and second, it performs larger changes in the unstructured globular and the random
coil phase.

By enabling variations in system size at runtime we extended the multicanonical ensemble. This led to an additional gain
in efficiency since the thus modified algorithm was able to circumvent certain energy barriers or to penetrate them where
they are low, i.e., at their ‘‘weak’’ points. As a result we obtained information over the entire state space over a large size
interval from a single simulation.

Finally, confronted with the problem of broken ergodicity and low-temperature solid–solid transitions, we developed a
second extension to the standard multicanonical technique. Due to the application of additional weight functions it is pos-
sible to retain ergodicity and to reach ‘‘hidden’’ ground states by circumventing the ‘‘blocking’’ states at intermediate tem-
peratures. Although we yet have demonstrated the potential of this methods for homopolymers only, it is a general approach
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and, in combination with suitable order parameters, it might lead to substantial progress in the investigation of many other
systems as well.
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