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Germany

Contents

1 Introduction 2

2 Conventional Markov-chain Monte Carlo sampling 3
2.1 Ergodicity and finite time series . . . . . . . . . . . . . . . . . . . .. . . . . 3
2.2 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.3 Selection and acceptance probabilities . . . . . . . . . . . . .. . . . . . . . . 6
2.4 Simple sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Metropolis sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8

3 Reweighting methods 9
3.1 Single-histogram reweighting . . . . . . . . . . . . . . . . . . . . .. . . . . . 9
3.2 Multiple-histogram reweighting . . . . . . . . . . . . . . . . . . .. . . . . . 9

4 Generalized-ensemble Monte Carlo methods 12
4.1 Replica-exchange Monte Carlo method (parallel tempering) . . . . . . . . . . 12
4.2 Multicanonical sampling . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 13
4.3 Wang-Landau method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

5 Summary 16

Lecture Notes of 42nd IFF Spring School “Macromolecular Systems in Soft and Living Matter”
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1 Introduction

For a system under thermal conditions in a heat bath with temperatureT , the dynamics of each
of the system particles is influenced by interactions with the heat-bath particles. If quantum ef-
fects are negligible (what we will assume in the following),the classical motion of any system
particle looks erratic; the particle follows a stochastic path. The system can “gain” energy from
the heat bath by these collisions (which are typically more generally called “thermal fluctua-
tions”) or “lose” energy by friction effects (dissipation). The total energy of the coupled system
of heat bath and particles is a conserved quantity, i.e., fluctuation and dissipation refer to the
energetic exchange between heat bath and system particles only. Consequently, the coupled
system is represented by amicrocanonical ensemble, whereas the particle system is in this case
represented by acanonical ensemble: The energy of the particle system is not a constant of
motion. Provided heat bath and system are in thermal equilibrium, i.e., heat-bath and system
temperature are identical, fluctuations and dissipation balance each other. This is the essence of
the celebrated fluctuation-dissipation theorem [1]. In equilibrium, only the statistical mean of
the particle system energy is constant in time.
This canonicalbehavior of the system particles is not accounted for by standard Newtonian
dynamics (where the system energy is considered to be a constant of motion). In order to
perform molecular dynamics (MD) simulations of the system under the influence of thermal
fluctuations, the coupling of the system to the heat bath is required. This is provided by a
thermostat, i.e., by extending the equations of motion by additional heat-bath coupling degrees
of freedom [2]. The introduction of thermostats into the dynamics is a notorious problem in
MD and it cannot be considered to be solved satisfactorily todate [3]. In order to take into
consideration the stochastic nature of any particle trajectory in the heat bath, a typical approach
is to introduce random forces into the dynamics. These forces represent the collisions of system
and heat-bath particles on the basis of the fluctuation-dissipation theorem [1].
Unfortunately, MD simulations of complex systems on microscopic and mesoscopic scales are
extremely slow, even on the largest available computers. A prominent example is the folding of
proteins with natural time scales of milliseconds to seconds. It is currently still impossible to
simulate folding events of bioproteins under realistic conditions, since even longest MD runs are
hardly capable of generating single trajectories of more than a few microseconds. Consequently,
if the intrinsic time scale of a realistic model exceeds the time scale of an MD simulation of this
model, MD cannot seriously be applied in these cases.
However, many interesting questions do not require to consider the intrinsic dynamics of the
system explicitly. This regards, e.g., equilibrium thermodynamics, which includes all relevant
phenomena of cooperativity – the collective original source for the occurrence of phase transi-
tions. Stability of all matter, independently whether softor solid, requires fundamental ordering
principles. We are far away from having understood thegeneral physical propertiesof tran-
sition processes that separate, e.g., ordered and disordered phases, crystals and liquids, glassy
and globular polymers, native and intermediate protein folds, ferromagnetic and paramagnetic
states of metals, Bose-Einstein condensates and bosonic gases, etc. Meanwhile, the history of
research of collective or critical phenomena has already lasted for more than hundred years and
the universality hypothesis has already been known for several decades [4]. Though, no com-
plete theory exists which is capable relating to each other phenomena such as protein folding
(unfolding) and freezing (melting) of solid matter. The reason is that the first process is domi-
nated by finite-size effects, whereas the latter seems to be amacroscopic “bulk” phenomenon.
However, although doubtlessly associated to different length scales which differ by orders of
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magnitude, both examples are based on cooperativity, i.e.,the collective multi-body interplay
of a large number of atoms. Precise theoretical analyses areextremely difficult, even more,
if several attractive and repulsive interactions compete with each other and if the system does
not possess any obvious internal symmetries (which is particularly apparent for “glassy” het-
eropolymers like proteins). On the experimental side, the situation has not been much better
as the resolution of the data often did not allow an in-depth analysis of the simultaneous mi-
croscopic effects accompanying cooperative phenomena. This has dramatically improved by
novel experimental techniques enabling to measure the response of the system to local manip-
ulations, giving insight in the mesoscopic and macroscopicmulti-body effects upon activation.
On the other hand, a systematic understanding requires a theoretical basis. The relevant physical
forces have been known for a long time, but the efficient combination of technical and algorith-
mic prerequisites has been missing until recently. The general understanding of cooperativity
in complex systems as a statistical effect, governed by a multitude of forces acting on different
energy and length scales, requires the study of the interplay of entropy and energy. The key to
this is currently only provided by Monte Carlo computer simulations [5].

2 Conventional Markov-chain Monte Carlo sampling

2.1 Ergodicity and finite time series

The general idea behind all Monte Carlo methodologies is to provide an efficient stochastic
sampling of the configurational or conformational phase space or parts of it with the objec-
tive to obtain reasonable approximations for statistical quantities such as expectation values,
probabilities, fluctuations, correlation functions, densities of states, etc.
A given system conformation (e.g., the geometric structureof a molecule)X is locally or glob-
ally modified to yield a conformationX′. This update or “move” is then accepted with the
transition probabilityt(X → X

′). Frequently used updates for polymer models are, for exam-
ple, random translational changes of single monomer positions, bond angle modifications, or
rotations about covalent bond axes. More global updates consist of combined local updates,
which can be necessary to satisfy constraints such as fixed bond lengths or simply to improve
efficiency. It is, however, a necessary condition for correct statistical sampling that Monte Carlo
moves are ergodic, i.e., the chosen set of moves must, in principle, guarantee to reach any con-
formation out of any other conformation. Since this is oftenhard to prove and an insufficient
choice of move sets can result in systematic errors, great care must be dedicated to choose
appropriate moves or sets of moves. Since molecular models often contain constraints, the con-
struction of global moves can be demanding. Therefore, reasonable and efficient moves have to
be chosen in correspondence to the model of a system to be simulated.
A Monte Carlo update corresponds to the discrete “time step”∆τ0 in the simulation process. In
order to reduce correlations, typically a number of updatesis performed between measurements
of a quantityO. This series of updates is called a “sweep” and the “time” passed in a single
sweep is∆τ = N∆τ0 if the sweep consists ofN updates. Thus, ifM sweeps are performed,
the discrete “time series” is expressed by the vector(O(τinit +∆τ), O(τinit +2∆τ), . . . , O(τinit +
m∆τ), . . . , O(τinit + M∆τ)) and represents the Monte Carlo trajectory. The period of equili-
brationτinit sets the starting point of the measurement. For convenience, we use the abbreviation
Om ≡ O(τinit +m∆τ) andτm = τinit +m∆τ with m = 1, 2, . . . ,M in the following.
According to the theory of ergodicity, averaging a quantityover an infinitely long time series is
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identical to perform the statistical ensemble average:

O = lim
M→∞

1

M

M
∑

m=1

Om ≡ 〈O〉 =
∫

DXO(X)p(X), (1)

whereDX represents the formal integral measure for the infinitesimal scan of the conformation
space andp(X) is the energy dependent microstate probability of the conformationX in the
relevant ensemble in thermodynamic equilibrium [in the canonical ensemble with temperature
T , simply p(X) = exp[−E(X)/kBT ]]. This is the formal basis for Monte Carlo sampling.
However, only finite time series can be simulated on a computer. For a finite number of sweeps
M in a samplek, the relation (1) can only be satisfied approximately,M−1

∑M
m=1O

(k)
m =

O
(k) ≈ 〈O〉. Note that the mean valueO

(k)
will depend on the samplek, meaning that it is

likely that another samplek′ will yield a different valueO
(k′) 6= O

(k)
. In order to define a

reasonable estimate for the statistical error, it is necessary to start from the assumption that we
have generated an infinite number of independent samplesk. In this case the distribution of the

estimatesO
(k)

is Gaussian, according to the central limit theorem of uncorrelated samples. The
exact average of the estimates is then given by〈O〉. The statistical error ofO is thus suitably
defined as the standard deviation of the Gaussian:

εO =

√

〈

(

O − 〈O〉
)2
〉

=

√

〈O2〉 − 〈O〉2 =

√

√

√

√

1

M2

M
∑

m=1

M
∑

n=1

Amnσ2
Om

, (2)

where

Amn =
〈OmOn〉 − 〈Om〉〈On〉

〈O2
m〉 − 〈Om〉2

(3)

is the autocorrelation function andσ2
Om

= 〈O2
m〉 − 〈Om〉2 is the variance of the distribution

of individual dataOm. If the Monte Carlo updates in each sample are performed completely
randomly without memory, i.e., a new conformation is created independently of the one in the
step before (which is a possible but typically very inefficient strategy), two measured valuesOm

andOn are uncorrelated, ifm 6= n. Then, the autocorrelation function simplifies toAmn = δmn

and the statistical error satisfies the celebrated relation

εO =
σOm√
M

. (4)

Since the exact distribution ofOm values and the “true” expectation value〈O〉 are unchanged in
the simulation (but unfortunately unknown), the standard deviationσOm

is constant, too. Thus,
the statistical error decreases with1/

√
M .1

In practice, most of the efficient Monte Carlo techniques generate correlated data, in which case
we have to fall back to the more general formula (2). It can conveniently be rewritten as

εO = σOm
/
√

Meff (5)

1For the actual calculation, it is a problem thatσ2

Om

is unknown. However, what can be estimated isσ̃2

Om

=

O2−O
2

and for its expected value we thus obtain〈σ̃2

Om

〉 = σ2

Om

(1−1/M). The1/M correction is thesystematic
error due to the finiteness of the time series, called bias. The bias-corrected relation for the statistical error reads

finally εO = [M(M − 1)]−1/2
√

∑

m(Om −O)2 [6].
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with the effective statisticsMeff = M/∆τac ≤ M , where∆τac corresponds to the autocorrela-
tion time. This means, the statistics is effectively reduced by the number of sweeps until the
correlations have decayed.2 Since it takes at least the time∆τac = Nac∆τ0 to generate statisti-
cally independent conformations, a sweep can simply contain as many updatesNac as necessary
to satisfy∆τ ≈ ∆τac without losing effective statistics. In this case, theM ≈ Meff data enter-
ing into the effective statistics are virtually uncorrelated. This is also the general idea behind
advanced, computationally convenient error estimation methods such as binning and jackknife
analyses [6,7]. For the correctness of the measurements,M ≈ Meff is not a necessary condition;
more sweeps with less updates in each sweep, i.e., periods between measurements shorter than
∆τac only yield redundant statistical information. This is not even wrong, but computationally
inefficient as it does not improve the statistical error (5).

2.2 Master equation

Beside ergodicity, another demand for correct statisticalsampling is to ensure that the prob-
ability distributionp(X) associated to the desired statistical ensemble is independent of time.
This can only be achieved in the simulation, if therelevant partof the phase space is sampled
sufficiently efficient to allow for quick convergence towards a stable or, more precisely, station-
ary estimate forp(X). In most of the Monte Carlo methods, the simulation follows aMarkov
dynamics, i.e., the update of a given conformationX to a new oneX′ is not influenced by the
history that led toX, i.e., the dynamics does not possess an explicit memory. Such a Markov
process can be described by the master equation:

∆p(X)

∆τ0
=

∑

X′

[p(X′)t(X′ → X; ∆τ0)− p(X)t(X → X
′; ∆τ0)], (6)

wheret(X → X
′; ∆τ0) is the transition probability fromX to X

′ in a single update (or “time”
step∆τ0). Due to particle conservation, it satisfies the normalization condition

∑

X′ t(X →
X

′; ∆τ0) = 1, i.e., whatever update we perform, we must end up with a stateX
′ which is

an element of the conformational space. The condition∆p(X)/∆τ0 = 0 ensures that the
ensemble is in a stationary state if the right-hand side of Eq. (6) vanishes. Since the stationarity
condition also allows solutions where the distribution function p(X) dynamically changes on
cycles which, however, is not the physical situation in a statistical equilibrium ensemble, we
demand more rigorously that the expression in the brackets vanishes. This is called the detailed
balance condition. Consequently, the ratio of transition rates is given by

t(X → X
′; ∆τ0)

t(X′ → X; ∆τ0)
=

p(X′)

p(X)
(7)

and thus independent of the length of “time” step∆τ0, which we, therefore, omit in the fol-
lowing. From this relation, it follows that it is obviously agood idea to construct an efficient
Markov chain Monte Carlo algorithm, i.e., to choose appropriate acceptance probabilities for
the Monte Carlo updates to yield the correct transition probability t(X → X

′), by taking into
account the basic microstate probabilities of the statistical ensemble to be simulated. Markov
Monte Carlo simulations in the canonical ensemble at fixed temperatureT , for example, have

2For a detailed discussion of the autocorrelation function and the calculation of the autocorrelation time, see,
e.g., Ref. [6].
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to satisfy
t(X → X

′)

t(X′ → X)
= e−β∆E, (8)

where∆E = E(X′)−E(X) is the energy difference between the new and the old state. Thus,
the transition rate to reach a stateX′, supposed to be energetically favored if compared with
the initial stateX, grows exponentially with∆E < 0. “Climbing the hill” towards a state with
higher energy (∆E > 0) is, on the other hand, exponentially suppressed. This is incorrespon-
dence with the interpretation of the Markov transition state theory. Hence, it is possible to study
the kinetic behavior (identification of free-energy barriers, measuring the height of barriers, es-
timating transition rates, etc.) of a series of processes inequilibrium – for example the folding
and unfolding behavior of a protein – by means of Monte Carlo simulations. To quantify the
dynamics of a process, i.e., the explicit time dependence is, however, less meaningful as the
conformational change in a single time step depends on the move set and does not follow a
physical, e.g., Newtonian, dynamics.3

2.3 Selection and acceptance probabilities

In order to correctly satisfy the detailed balance condition (7) in a Monte Carlo simulation, we
have to take into account that each Monte Carlo step consistsof two parts. First, a Monte Carlo
update of the current state is suggested and second, it has tobe decided whether or not to accept
it according to the chosen sampling strategy. In fact, both steps are independent of each other in
the sense that each possible update can be combined with any sampling method. Therefore, it is
useful to factorize the transition probabilityt(X → X

′) in the selection probabilitys(X → X
′)

for a desired update fromX toX
′ and the acceptance probabilitya(X → X

′) for this update:

t(X → X
′) = s(X → X

′)a(X → X
′). (9)

The acceptance probability is typically used in the form

a(X → X
′) = min (1, σ(X,X′)w(X → X

′)) , (10)

with the ratio of microstate probabilities

w(X → X
′) =

p(X′)

p(X)
(11)

and the ratio of forward and backward selection probabilities

σ(X,X′) =
s(X′ → X)

s(X → X′)
. (12)

The expression (10) for the acceptance probability naturally fulfills the detailed-balance con-
dition (7). The selection ratioσ(X,X′) is unity, if the forward and backward selection proba-
bilities are identical. This is typically the case for “simple” local Monte Carlo updates. If, for

3The natural way to study the time dependence of Newtonian mechanics is typically based on molecular dy-
namics methods which, however, suffer from severe problemsto ensure thecorrect statistical sampling at finite
temperatures by using thermostats [2,3]. From a more formalpoint of view, it is even questionable what “dynam-
ics” shall mean in a thermal system, where even under the samethermodynamic conditions trajectories run typi-
cally differently, due to the “random” thermal fluctuationscaused by interactions with the huge number [O(1023)
per mol] of realistically not traceable heat bath particles.
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example, the update is a translation of a coordinate,x′ = x + ∆x, where∆x ∈ [−x0,+x0]
is chosen from a uniform random distribution, the forward selection for a translation by∆x
is equally probable to the backward move, i.e., to translatethe particle by−∆x. This is also
valid for rotations about bonds in a molecular system such asrotations about dihedral angles in
a protein. If selection probabilities for forward and backward moves differ, the selection rate
is not unity. This is often the case in complex, global updates which comprise several steps.
Then, the determination of the correct selection probabilities can be difficult and the selection
rate has typically to be estimated in test runs first. To this class of updates belong the biased
Gaussian steps [8], where a series of torsional updates of a few sequential protein backbone
dihedral angles are performed in order to ensure that the update does not drastically change the
protein conformation (which would likely be rejected).
Note that the overall efficiency of a Monte Carlo simulation depends on both, a model-specific
choice of a suitable set of moves and an efficient microstate sampling strategy based onw(X →
X

′).

2.4 Simple sampling

The choice of the microstate probabilitiesp(X) is not necessarily coupled to a certain physical
statistical ensemble. Thus, the simplest choice is a uniform probabilityp(X) = 1 independently
of ensemble-specific microstate properties. Thus alsow(X → X

′) = 1 and if the Monte
Carlo updates satisfyσ(X,X′) = 1, the acceptance probability is trivially also unity,a(X →
X

′) = 1, i.e., all generated Monte Carlo updates are accepted, independently of the type of
the update. Thus, updates of system degrees of freedom can beperformed randomly, where the
random numbers are chosen from a uniform distribution. Thismethod is calledsimple sampling.
However, its applicability is quite limited. Consider, forexample, the estimation of the density
of states for a discrete system with this method. After having performed a series ofM updates,
we will have obtained an energetic histogramh(E) = M−1

∑M
m=1 δEm,E which represents

an estimate for the density of states. The canonical expectation value of the energy can be
estimated byE = M−1

∑M
m=1Eme

−Em/kBT =
∑

E Eh(E)e−E/kBT . If the microstates are
generated randomly from a uniform distribution, it is obvious that we will sample the statesX
with an energyE(X) in accordance with their system-specific frequency or degeneracy. High-
frequency states thermodynamically dominate in the purelydisordered phase. However, near
phase transitions towards more ordered phases, the densityof states drops rapidly – typically by
many orders of magnitude. The degeneracies of the lowest-energy states representing the most
ordered states are so small that the thermodynamically mostinteresting transition region spans
even in rather small systems often hundreds to thousandsorders of magnitude.4

To bridge a region of 100 orders of magnitude between an ordered and a disordered phase by
simple sampling would roughly mean to perform about 10100 updates in order to find a single
ordered state. Assuming that a simple single update would require only a few CPU operations,
it will at least take 1 ns on standard CPU cores. Even under this optimistic assumption, it
would take more than 1083 years to perform 10100 updates on a single core! Thus, for studies of

4In order to get an impression of the large numbers consider the 2D Ising model of locally interacting spins on
a square lattice which can only be oriented parallel or antiparallel. For a system with50 × 50 = 2500 spins, the
total number of spin configurations is thus22500 ∼ 10752. The degeneracy of the maximally disordered energetic,
paramagnetic is of the same order of magnitude. Since the ferromagnetic ground-state degeneracy is 2 (all spins
up or all down), i.e., it is of the order of 100, the density of states of this rather small system covers farmore than
700 orders of magnitude.
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complex systems with sufficiently many degrees of freedom allowing for cooperativity, simple
sampling is of very little use.

2.5 Metropolis sampling

Because of the dominance of a certain restricted space of microstates in ordered phases, it is
obviously a good idea to primarily concentrate in a simulation on a precise sampling of the
microstates that form the macrostate under given external parameters such as, for example,
the temperature. The canonical probability distribution functions clearly show that within the
certain stable phases, only a limited energetic space of microstates is noticeably populated,
whereas the probability densities drop off rapidly in the tails. Thus, an efficient sampling of
this state space should yield the relevant information within comparatively short Markov chain
Monte Carlo runs. This strategy is calledimportance sampling.
The standard importance sampling variant is the Metropolismethod [9], where the algorith-
mic microstate probabilityp(X) is identified with the canonical microstate probabilityp(X) ∼
e−βE(X) at the given temperatureT (β = 1/kBT ). Thus, the acceptance probability (10) is
governed by the ratio of the canonical thermal weights of themicrostates:

w(X → X
′) = e−β[E(X′)−E(X)]. (13)

According to Eq. (10), a Monte Carlo update fromX to X
′ (assumingσ(X,X′) = 1) is ac-

cepted, if the energy of the new microstate is lower than before,E(X′) < E(X). If this update
would provoke an increase of energy,E(X′) > E(X), the conformational change is accepted
only with the probabilitye−β∆E , where∆E = E(X′) − E(X). Technically, in the simula-
tion, a random numberr ∈ [0, 1) from a uniform distribution is drawn: Ifr ≤ e−β∆E, the
move is still accepted, whereas it is rejected otherwise. Thus, the acceptance probability is
exponentially suppressed with∆E and the Metropolis simulation yields, at least in principle,
a time series which is inherently correctly sampled in accordance with the canonical statistics.
The arithmetic mean value of a quantityO over the finite Metropolis time series is already an
estimate for the canonical expectation value:O = M−1

∑M
m=1 Om ≈ 〈O〉. In the hypotheti-

cal case of an infinitely long simulation (M → ∞), this relation is an exact equality, i.e., the
deviation is due to the finiteness of the time series only. However, it is just this restriction to
a finite amount of data which limits the quality of Metropolisdata. Because of the canonical
sampling, reasonable statistics is only obtained in the energetic region which is most dominant
for a given temperature, whereas in the tails of the canonical distributions the statistics is rather
poor. Thus, there are three physically particularly interesting cases where Metropolis sampling
as standalone method is little efficient.
First, for low temperatures, where lowest-energy states dominate, the widths of the canonical
distributions are extremely small and sinceβ ∼ 1/T is very large, energetic “uphill” updates
are strongly suppressed by the Boltzmann weighte−β∆E → 0. That means, once caught in a
low-energy state, the simulation freezes and it remains trapped in a low-energy state for a long
period.
Second, near a second-order phase transition, the standarddeviationσE =

√

〈E2〉 − 〈E〉2
of the canonical energy distribution function gets very large at the critical temperatureTC , as
it corresponds to the maximum (or, in the thermodynamic limit, the divergence) of the spe-
cific CV = σ2

E/kBT
2. Thus, a large energetic space must precisely be sampled (“critical

fluctuations”) which requires high statistics. Since in Metropolis dynamics, “uphill moves”
with ∆E > 0 are only accepted with a reasonable rate, if at the transition point the ratio
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∆E/kBTC > 0 is not too large, it can take a long time to reach a high-energystate if start-
ing from the low-energy end. Since nearTC the correlation length diverges likeξ ∼ |τ |−ν

[with τ = (T − TC)/TC ] and the correlation time in the Monte Carlo dynamics behaves like
tcorr ∼ |τ |−νz, the dynamic exponentz allows to compare the efficiencies of different algo-
rithms. The larger the value ofz, the less efficient is the method. Unfortunately, the standard
Metropolis method turns out to be one of the least efficient methods in sampling critical prop-
erties of systems exhibiting a second-order phase transition.
The third reason is that the Metropolis method does also perform poorly at first-order phase
transitions. In this case, the canonical distribution function is bimodal, i.e., it exhibits two
separate peaks with a highly suppressed energetic region in-between, since two phases coexist.
For the reasons already outlined, it is extremely unlikely to succeed if trying to “jump” from
the low- to the high-energy phase by means of Metropolis sampling; it rather would have to
explore the valley step by step. Since the energetic region between the phases is entropically
suppressed – the number of possible states the system can assume is simply too small – it is
thus quite unlikely that this “diffusion process” will leadthe system into the high-energy phase,
or it will at least take extremely long.
However, apart from lowest-energy and phase transition regions, the Metropolis method can
successfully be employed, often in combination with reweighting techniques.

3 Reweighting methods

3.1 Single-histogram reweighting

A standard Metropolis simulation is performed at a given temperature, sayT0. However, it
is often desirable to get also quantitative information about the changes of the thermodynamic
behavior at nearby temperatures. Since Metropolis sampling is not a priori restricted to a limited
phase space, at least in principle, it is indeed theoretically possible to reweight Metropolis data
obtained for a given temperatureT0 = 1/kBβ0 to a different one,T = 1/kBβ. The idea is
to “divide out” the Boltzmann factore−β0E in the estimates for any quantity at the simulation
temperature and to multiply it bye−βE:

〈O〉T =

〈

Oe−(β−β0)E
〉

T0

〈e−(β−β0)E〉T0

≈ OT =

∑M
m=1Ome

−(β−β0)Em

∑M
m=1 e

−(β−β0)Em

, (14)

where we have again considered that the MC time series of length M is finite. In practice,
the applicability of this simple reweighting method is rather limited in case the data series was
generated in a single Metropolis run, since the error in the tails of the simulated canonical
histograms rapidly increases with the distance from the peak. By reweighting, one of the noisy
tails will gain the more statistical weight the larger the difference between the temperatures
T0 andT is. In combination with the generalized-ensemble methods to be discussed later in
this chapter, however, single-histogram reweighting is the only way of extracting the canonical
statistics off the simulated histograms and works perfectly.

3.2 Multiple-histogram reweighting

From each Metropolis run, an estimate for the density of statesg(E) can easily be calculated.
Since the histogram measured in a simulation at temperatureT , h(E;T ) =

∑M
m=1 δEEm

, is an
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estimate for the canonical distribution functionpcan(E;T ) ∼ g(E)e−βE, the estimate for the
density of states is obtained by reweighting,g(E) = h(E;T )eβE. However, since in a “real”
Metropolis run at the single temperatureT accurate data can only be obtained in a certain
energy interval which depends onT , the estimateg(E) is restricted to this typically rather
narrow energy interval and does by far not cover the whole energetic region reasonably well.
Thus, the question is whether the combination of Metropolisdata obtained in simulations
at different temperatures, can yield an improved estimateg(E). This is indeed possible by
means of the multiple-histogram reweighting method [10], sometimes also called “weighted
histogram analysis method” (WHAM) [11]. Even though the general idea is simple, the actual
implementation is not trivial. The reason is that conventional Monte Carlo simulation tech-
niques such as the Metropolis method cannot yield absolute estimates for the partition sum
Z(T ) =

∑

E g(E)e−βE, i.e., estimates for the density of states at different energiesgi(E) and
gj(E

′) can only be related to each other if obtained in the same run, i.e.,i = j, but not if per-
formed under different conditions. This is not a problem forthe estimation of mean values or
normalized distribution functions at fixed temperatures aslong as the Metropolis data obtained
in the respective temperature threads are used, but interpolation to temperatures where no data
were explicitly generated, is virtually impossible. Also the multiple-histogram reweighting
method does not solve the problem of getting absolute quantities, but at least a “reference par-
tition function” is introduced, which the estimates of the density of states obtained in runs at
different simulation temperatures can be related to. Thus,interpolating the data between differ-
ent temperatures becomes possible.
Basically, the idea is to perform a weighted average of the histogramshi(E), measured in
Monte Carlo simulations for different temperatures, i.e.,at βi (wherei = 1, 2, . . . , I indexes
the simulation thread), in order to obtain an estimator for the density of states by combining the
histograms in an optimal way:

ĝ(E) =

∑

i gi(E)wi(E)
∑

i wi(E)
. (15)

The exact density of states is given byg(E) = pcan(E;T )Z(T )eβE and since the normalized
histogramhi(E)/Mi obtained in theith simulation thread is an estimator for the canonical
distribution functionpcan(E;Ti), the density of states is in this thread estimated by

gi(E) =
hi(E)

Mi
Zie

βiE, (16)

whereZi is the unknown partition function at theith temperature. Since in Metropolis simu-
lations the best-sampled energy region depends on the simulation temperature, the number of
histogram entries for a given energy will differ from threadto thread. Thus, the data of the
thread with high statistics atE should in this interpolation scheme get more weight than his-
tograms with less entries atE. Therefore, the weight shall be controlled by the errors of the
individual histograms. A possibility to determine a set of optimal weights is to reduce the devi-
ation of the estimatêg(E) for the density of states from the unknown exact distribution 〈g〉(E),
where the symbol〈. . .〉 is used to refer to this quantity as the true distribution which would
have been hypothetically obtained in an infinite number of threads (it should not be confused
with a statistical ensemble average). As usual, the “best” estimate is the one that minimizes
the varianceσ2

ĝ = 〈(ĝ − 〈g〉)2〉. Inserting the relation (15) and minimizing with respect tothe
weightswi yields a solution

wi =
1

σ2
gi

, (17)
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whereσ2
gi
= 〈(gi − 〈gi〉)2〉 is the exact variance ofgi in theith thread. Because of Eq. (16) and

the fact thatZi is an energy-independent constant in theith thread, we can now concentrate on
the discussion of the error of theith histogram, sinceσ2

gi
= σ2

hi
Z2

i e
2βiE/M2

i .
The varianceσ2

hi
is also an unknown quantity and, in principle, an estimator for this variance

would be needed. This would yield an expression that includes the autocorrelation time [10,
11] – similar to the discussion below Eq. (5). However, to correctly keep track of the correla-
tions in histogram reweighting is difficult and thus also theestimation of error propagation is
nontrivial. Therefore, we follow the standard argument based on the assumption of uncorre-
lated Monte Carlo dynamics (which is typically not perfectly true, of course). The consequence
of this idealization will be that the weights (17) are not necessarily optimal anymore (the ap-
plicability of the method itself is not dependent of the choice ofwi, but the error of the final
histogram will depend on the weights).
In order to determineσ2

hi
for uncorrelated data, we only need to calculate the probability P (hi)

that in theith thread a state with energyE (for simplicity we assume that the problem is discrete)
is hit hi times inMi trials, where each hit occurs with the probabilityphit. This leads to the
binomial distribution with the hit average〈hi〉 = Miphit. In the limit of small hit probabilities (a
reasonable assumption in general if the number of energy bins is large, and, in particular, for the
tails of the histogram) the binomial turns into the Poisson distributionP (hi) → 〈hi〉hie−〈hi〉/hi!
with identical variance and expectation value,σ2

hi
= 〈hi〉. Insertion into Eq. (17) yields the

weights

wi(E) =
M2

i

〈hi〉(E)Zie2βiE
. (18)

Since〈hi〉(E) is exact, the exact density of states can also be written as

g(E) =
〈hi〉(E)

Mi
Zie

βiE (19)

which is valid for all threads, i.e., the left-hand side is independent ofi. This enables us to
replace〈hi〉 everywhere. Inserting expression (18) into Eq. (15) and utilizing the relation (19)
to replace〈hi〉, we finally end up with the estimator for the density of statesin the form

ĝ(E) =

∑I
i=1 hi(E)

∑I
i=1MiZ

−1
i e−βiE

, (20)

where the unknown partition sum is given by

Zi =
∑

E

ĝ(E)e−βiE , (21)

i.e., the set of equations (20) and (21) must be solved iteratively.5 One initializes the recursion
with guessed valuesZ(0)

i for all threads, calculates the first estimateĝ(1)(E) usingZ(0)
i , re-

inserts this into Eq. (21) to obtainZ(1)
i , and continues until the recursion process has converged

close enough to a fixed point.
There is a technical aspect that should be taken into accountin an actual calculation. Since
the density of states can even for small systems cover many orders of magnitude and also the
Boltzmann factor can become very large, the application of the recursion relations (20) and (21)

5Note that for a system with continuous energy space which is partitioned into bins of width∆E in the simu-
lation, the right-hand side of Eq. (21) must still be multiplied by∆E.
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often results in overflow errors since the floating-point data types cannot handle these numbers.
At this point, it is helpful to change to a logarithmic representation which however, makes it
necessary to think about adding up large numbers in logarithmic form. Consider the special
but important case of two positive real numbersa ≥ 0 and0 ≤ b ≤ a which are too large
to be stored such that we wish to use their logarithmic representationsalog = log a andblog =
log b instead. Since the result of the addition,c = a + b, will also be too large, we introduce
clog = log c as well. The summation is then performed by writingc = eclog = ealog + eblog.
Sincea ≥ b (and thus alsoalog ≥ blog), it is useful to separatea, and to rewrite the sum
aseclog = ealog(1 + eblog−alog). Taking the logarithms yields the desired result, where only the
logarithmic representations are needed to perform the summation:clog = alog+log(1+x), where
x = b/a = eblog−alog ∈ [0, 1]. The upper limitx = 1 is obviously associated toa = b, whereas
the lower limitx = 0 matters ifa ≥ 0, b = 0.6 Since the logarithm of the density of states is
proportional to the microcanonical entropy,S(E) ∼ log g(E), the logarithmic representation
has even an important physical meaning.

4 Generalized-ensemble Monte Carlo methods

The Metropolis method is the simplest importance sampling Monte Carlo method and for this
reason it is a good starting point for the simulation of a complex system. However, it is also
one of the least efficient methods and thus one will often haveto face the question of how to
improve the efficiency of the sampling. One of the most frequently used “tricks” is to employ
a modified statistical ensemble within the simulation run and to reweight the obtained statistics
after the simulation. The simulation is performed in an artificial generalized ensemble.

4.1 Replica-exchange Monte Carlo method (parallel tempering)

Although not being most efficient, parallel tempering is themost popular generalized-ensemble
method. Advantages are the simple implementation and parallelization on computer systems
with many processor cores. The Metropolis method samples conformations of the system in
a single canonical ensemble at a fixed temperature, whereas replica-exchange methods like
parallel tempering simulateI ensembles at temperaturesT1, T2, . . . , TI in parallel (and thusI
replicas or instances of the system) [12–14]. In each of theI temperature threads, standard
Metropolis simulations are performed. A decrease of the autocorrelation time, i.e., an increase
in efficiency, is achieved by exchanging replicas in neighboring temperature threads after a
certain number of Metropolis steps are performed independently in the individual threads. The
acceptance probability for the exchange of the current conformationX at temperatureTi =
1/kBβi and the conformationX′ atβj is given by

a(X ↔ X
′; βi, βj) = min(1, exp{−(βi − βj)[E(X′)− E(X)]}), (22)

6At the lower limit, there is a numerical problem, ifblog − alog ≪ 0 (or x = b/a ≪ 1) is so small that the
minimumallowed floating-point number is underflown byx. This typically occurs ifa andb differ by many tens
to thousands orders of magnitude (depending on the floating-point number precision). In this case, the difference
betweenc anda cannot be resolved, as the error inclog = alog +O(x) is smaller than the numerical resolution; in
which case we simply setclog = alog. If this is not acceptable and a higher resolution is really needed, non-standard
concepts of handling numbers with arbitrary precision could be an alternative.
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which satisfies the detailed balance condition in this generalized ensemble.7 Since the tem-
perature of each thread is fixed, only a small section of the density of states can be sampled
in each thread because of the Metropolis limitations. In order to obtain an entire estimate of
the density of states, the pieces obtained in the different threads must be combined in an opti-
mal way. This is achieved by subsequent multiple-histogramreweighting. The main advantage
of parallel tempering is its high parallelizability. However, the most efficient selection of the
temperature set can be a highly sophisticated task. One necessary condition for reasonable
exchange probabilities is a sufficiently large overlap of the canonical energy distribution func-
tions in neighboring ensembles. At very low temperatures, the energy distribution is typically
a sharp-peaked function. Thus, the density of temperaturesmust be much higher in the regime
of an ordered phase, compared with high-temperature disordered phases. For this reason, the
application of the replica-exchange method is often not particularly useful for unraveling the
system behavior at very low temperatures or near first-ordertransitions.

4.2 Multicanonical sampling

The powerful multicanonical method [15–17] makes it possible to scan the whole phase space
within a single simulation with very high accuracy [18], even if first-order transitions occur. The
principle idea is to deform the Boltzmann energy distributionpcan(E;T ) ∝ g(E) exp(−βE) in
such a way that the notoriously difficult sampling of the tails is increased and – particularly
useful – the sampling rate of the entropically strongly suppressed lowest-energy conformations
is improved. In order to achieve this, the canonical Boltzmann distribution is modified by the
multicanonical weightWmuca(E;T ) which, in the ideal case, flattens the energy distribution:

Wmuca(E;T )pcan(E;T ) ∼ hmuca(E) = constE;T , (23)

wherehmuca(E) denotes the (ideally flat) multicanonical histogram. By this construction, the
multicanonical simulation performs a random walk in energyspace which rapidly decreases
the autocorrelation time in entropically suppressed regions. This is particularly apparent and
important in the phase separation regime at first-order-like transitions, as it is schematically
illustrated in Fig. 1.
Recalling that the simulation temperatureT does not possess any meaning in the multicanonical
ensemble as, according to Eq. (23), the energy distributionis always constant, independently of
temperature. Actually, it is convenient to set it to infinityin which caselimT→∞ pcan(E;T ) ∼
g(E) and thuslimT→∞Wmuca(E;T ) ∼ g−1(E). Then, the acceptance probability (10) is gov-
erned by

w(X → X
′) = Wmuca(E(X′))/Wmuca(E(X)) = g(E(X))/g(E(X′)). (24)

The weight function can suitably be parametrized as

Wmuca(E) ∼ exp[−S(E)/kB] = exp{−β(E)[E − F (E)]}, (25)

whereS(E) is the microcanonical entropyS(E) = kB ln g(E). Sinceβ(E) = ∂S(E)/∂E is
the microcanonical thermal energy (withβ(E) = 1/kBT (E), whereT (E) is the microcanonical

7In the generalized ensemble composed of two canonical ensembles at temperaturesTi andTj, the probability
for a stateX atTi and a stateX′ atTj readsp(X,X′;Ti, Tj) ∼ exp{−[βiE(X) + βjE(X′)]}.
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Fig. 1: Typical scenario of a first-order transition at transition temperatureTtr : Ordered and
disordered phases, represented by the peaked sections of the canonical energy distribution
pcan(E;Ttr) at low and high energies, are separated by an entropically strongly suppressed
energetic region. The multicanonical weight functionWmuca(E;Ttr) is chosen in such a way
that multicanonical sampling provides a random walk in energy space, independently of (en-
ergetic) free-energy barriers. Thus, the energy distribution hmuca(E) is ideally constant in the
multicanonical ensemble.

temperature), the microcanonical free-energy scalef(E) = β(E)F (E) andβ(E) are related to
each other by the differential equation

∂f(E)

∂E
=

∂β(E)

∂E
E. (26)

Sinceβ(E) andf(E) are unknown in the beginning of the simulation, this relation must be
solved recursively. This can be done in an efficient way [16,17,19]. If not already being discrete
by the model definition, the energy spectrum must be discretized, i.e., neighboring energy bins
are separated by an energetic step sizeε. Thus, for the estimation ofβ(E) and f(E), the
following system of difference equations needs to be solvedrecursively (s(E) = S(E)/kB):

s(n−1)(E) = ln g(n−1)(E) = − lnW (n−1)
muca (E)

β(n)(E) = [s(n−1)(E)− s(n−1)(E − ε)]/ε

f (n)(E) = f (n)(E − ε) + [β(n)(E)− β(n)(E − ε)](E − ε) (27)

s(n)(E) = β(n)(E)E − f (n)(E)

W (n)
muca(E) = exp[−s(n)(E)].

The superscript(n) refers to the index of the iteration. If no better initial guess is available, one
typically setsg(0)(E) = 1 in the beginning, implyings(0)(E) = W

(0)
muca(E) = 0. The zeroth

iteration thus corresponds to a Metropolis run at infinite temperature, yielding the first estimate
for the multicanonical weight functionW (1)

muca(E), which is used to initiate the second recursion,
etc. The recursion procedure based on Eq. (27) can be stoppedafterI recursions, if the weight
function has sufficiently converged. The number of necessary recursions and also the number
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of sweeps to be performed within each recursion is model dependent. Since the sampled energy
space increases from recursion to recursion and the effective statistics of the histogram in each
energy bin depends on the number of sweeps, it is a good idea toincrease the number of sweeps
successively from recursion to recursion. Since the energyhistogram should be “flat” after the
simulation run at a certain recursion level, an alternativeway to control the length of the run is
based on a flatness criterion. If, for example, minimum and maximum value of the histogram
deviate from the mean histogram value by less than 20%, the run is stopped.

Finally, after the best possible estimate for the multicanonical weight function is obtained, a
long multicanonical production run is performed, including all measurements of quantities of
interest. From the multicanonical trajectory, the estimate of the canonical expectation value of
a quantityO is then obtained at any (canonical) temperatureT by:

OT =

∑

tO(Xt)W
−1
muca(E(Xt)e

−E(Xt)/kBT

∑

t W
−1
muca(E(Xt)e−E(Xt)/kBT

. (28)

Since the accuracy of multicanonical sampling is independent of the canonical temperature and
represents a random walk in the entire energy space, the application of reweighting procedures
is lossless. This is a great advantage of the multicanonicalmethod, compared with Metropolis
Monte Carlo simulations. Virtually, a multicanonical simulation samples the system behavior at
all temperatures simultaneously, or, in other words, the direct estimation of the density of states
is another advantage, because multiple-histogram reweighting is not needed for this (in contrast
to replica-exchange methods).

4.3 Wang-Landau method

In multicanonical simulations, the weight functions are updated after each iteration, i.e., the
weight and thus the current estimate of the density of statesare kept constant at a given recursion
level. For this reason, the precise estimation of the multicanonical weights in combination with
the recursion scheme (27) can be a complex and not very efficient procedure. In the method
introduced by Wang and Landau [20], the density of states estimate is changed by a so-called
modification factorα after each sweep,g(E) → α(n)g(E), whereα(n) > 1 is kept constant
in the nth recursion, but it is reduced from iteration to iteration.A frequently used ad hoc
modification factor is given byα(n) =

√
α(n−1) = (α(0))1/2

n

, n = 1, 2, . . . , I, where often
α(0) = e1 = 2.718 . . . is chosen. The acceptance probability and histogram flatness criteria are
the same as in multicanonical sampling.

Since the dynamic modification of the density of states in therunning simulation violates the
detailed balance condition (7), the advantage of the high-speed scan of the energy space is paid
by a systematic error. However, since the modification factor is reduced with increasing iteration
level until it is very small (the iteration process is typically stopped ifα < 1.0 + 10−8), the
simulation dynamics is supposed to sample the phase space according to the stationary solution
of the master equation such that detailed balance is (almost) satisfied. Since it is difficult to
keep this convergence under control, the optimal method is to use the Wang-Landau method
for a very efficient generation of the multicanonical weights, followed by a long multicanonical
production run (i.e., at exactlyα = 1) to obtain the statistical data.
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5 Summary

Monte Carlo computer simulations are virtually the only wayto analyze the thermodynamic
behavior of a system in a precise way. However, the various existing methods exhibit extreme
differences in their efficiency, depending on model detailsand relevant questions. The original
standard method, Metropolis Monte Carlo, which provides only reliable statistical information
at a given (not too low) temperature has meanwhile been replaced by more sophisticated meth-
ods which are typically far more efficient (the differences in time scales can be compared with
the age of the universe). However, none of the methods yieldsautomatically accurate results,
i.e., a system-specific adaptation and control is always needed. Thus, as in any good experiment,
the most important part of the data analysis is statistical error estimation.



Monte Carlo Simulations A9.17

References

[1] See, e.g., R. Kubo, Rep. Prog. Phys.29, 255 (1966).

[2] D. Frenkel and B. Smith,Understanding Molecular Simulation(Academic Press, San
Diego, 2002).

[3] J. Schluttig, M. Bachmann, and W. Janke, J. Comput. Chem.29, 2603 (2008).

[4] See, e.g., L. P. Kadanoff, Physica A163, 1 (1990).

[5] D. P. Landau and K. Binder,A Guide to Monte Carlo Simulations in Statistical Physics
(Cambridge University Press, New York, 2009).

[6] W. Janke,Statistical Analysis of Simulations: Data Correlations and Error Estimation, in
Proceedings of the Winter School “Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms”, John von Neumann Institute for Computing, Jülich, NIC
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