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1 Introduction

For a system under thermal conditions in a heat bath with ézatpreT’, the dynamics of each
of the system particles is influenced by interactions withhikat-bath particles. If quantum ef-
fects are negligible (what we will assume in the followinie classical motion of any system
particle looks erratic; the particle follows a stochastitip The system can “gain” energy from
the heat bath by these collisions (which are typically maaegally called “thermal fluctua-
tions”) or “lose” energy by friction effects (dissipatianhe total energy of the coupled system
of heat bath and particles is a conserved quantity, i.e.tufiion and dissipation refer to the
energetic exchange between heat bath and system partidies @onsequently, the coupled
system is represented byrdacrocanonical ensembhle/hereas the particle system is in this case
represented by aanonical ensembieThe energy of the particle system is not a constant of
motion. Provided heat bath and system are in thermal equilih i.e., heat-bath and system
temperature are identical, fluctuations and dissipatidartze each other. This is the essence of
the celebrated fluctuation-dissipation theorem [1]. Inigpium, only the statistical mean of
the particle system energy is constant in time.

This canonicalbehavior of the system particles is not accounted for bydstechNewtonian
dynamics (where the system energy is considered to be aardnst motion). In order to
perform molecular dynamics (MD) simulations of the systemdler the influence of thermal
fluctuations, the coupling of the system to the heat bathgsired. This is provided by a
thermostat, i.e., by extending the equations of motion loitemhal heat-bath coupling degrees
of freedom [2]. The introduction of thermostats into the dymcs is a notorious problem in
MD and it cannot be considered to be solved satisfactorilgiate [3]. In order to take into
consideration the stochastic nature of any particle ttajgdan the heat bath, a typical approach
is to introduce random forces into the dynamics. These forepresent the collisions of system
and heat-bath particles on the basis of the fluctuationgdiien theorem [1].

Unfortunately, MD simulations of complex systems on micagsc and mesoscopic scales are
extremely slow, even on the largest available computersiofnment example is the folding of
proteins with natural time scales of milliseconds to sesoritlis currently still impossible to
simulate folding events of bioproteins under realisticditions, since even longest MD runs are
hardly capable of generating single trajectories of moa@tfew microseconds. Consequently,
if the intrinsic time scale of a realistic model exceeds threetscale of an MD simulation of this
model, MD cannot seriously be applied in these cases.

However, many interesting questions do not require to crdhe intrinsic dynamics of the
system explicitly. This regards, e.g., equilibrium thedyoamics, which includes all relevant
phenomena of cooperativity — the collective original seuiar the occurrence of phase transi-
tions. Stability of all matter, independently whether swfsolid, requires fundamental ordering
principles. We are far away from having understood ge@eral physical propertiesf tran-
sition processes that separate, e.g., ordered and disdrgbases, crystals and liquids, glassy
and globular polymers, native and intermediate proteiddpferromagnetic and paramagnetic
states of metals, Bose-Einstein condensates and bosa@s,ggc. Meanwhile, the history of
research of collective or critical phenomena has alreastgthfor more than hundred years and
the universality hypothesis has already been known forraédecades [4]. Though, no com-
plete theory exists which is capable relating to each othenpmena such as protein folding
(unfolding) and freezing (melting) of solid matter. Thegea is that the first process is domi-
nated by finite-size effects, whereas the latter seems tonh@caoscopic “bulk” phenomenon.
However, although doubtlessly associated to differengtlerscales which differ by orders of
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magnitude, both examples are based on cooperativitythe ¢ollective multi-body interplay
of a large number of atoms. Precise theoretical analysesxremely difficult, even more,
if several attractive and repulsive interactions compete @ach other and if the system does
not possess any obvious internal symmetries (which isquaatily apparent for “glassy” het-
eropolymers like proteins). On the experimental side, theason has not been much better
as the resolution of the data often did not allow an in-depidlyssis of the simultaneous mi-
croscopic effects accompanying cooperative phenomeng HEs dramatically improved by
novel experimental techniques enabling to measure th@nsgpof the system to local manip-
ulations, giving insight in the mesoscopic and macroscopitti-body effects upon activation.
On the other hand, a systematic understanding require®eetical basis. The relevant physical
forces have been known for a long time, but the efficient coration of technical and algorith-
mic prerequisites has been missing until recently. The g¢énmderstanding of cooperativity
in complex systems as a statistical effect, governed by ditode of forces acting on different
energy and length scales, requires the study of the integdlantropy and energy. The key to
this is currently only provided by Monte Carlo computer slations [5].

2 Conventional Markov-chain Monte Carlo sampling

2.1 Ergodicity and finite time series

The general idea behind all Monte Carlo methodologies isrtwige an efficient stochastic
sampling of the configurational or conformational phasecepar parts of it with the objec-
tive to obtain reasonable approximations for statistiagrgities such as expectation values,
probabilities, fluctuations, correlation functions, digies of states, etc.

A given system conformation (e.g., the geometric structdiiee molecule)X is locally or glob-
ally modified to yield a conformatioiX’. This update or “move” is then accepted with the
transition probabilityt(X — X’). Frequently used updates for polymer models are, for exam-
ple, random translational changes of single monomer posfibond angle modifications, or
rotations about covalent bond axes. More global updatesisioof combined local updates,
which can be necessary to satisfy constraints such as fixed leagths or simply to improve
efficiency. Itis, however, a necessary condition for carstatistical sampling that Monte Carlo
moves are ergodic, i.e., the chosen set of moves must, iniplén guarantee to reach any con-
formation out of any other conformation. Since this is ofterd to prove and an insufficient
choice of move sets can result in systematic errors, graat maust be dedicated to choose
appropriate moves or sets of moves. Since molecular moftels contain constraints, the con-
struction of global moves can be demanding. Thereforepressie and efficient moves have to
be chosen in correspondence to the model of a system to béasatiu

A Monte Carlo update corresponds to the discrete “time stef’in the simulation process. In
order to reduce correlations, typically a number of updagrformed between measurements
of a quantityO. This series of updates is called a “sweep” and the “time’spdsn a single
sweep isAT = NAr if the sweep consists ¥ updates. Thus, i/ sweeps are performed,
the discrete “time series” is expressed by the ve@irrinit + A7), O(Tinit +2A7), . .., O(Tinit +
mAT),...,O(minit + MAT)) and represents the Monte Carlo trajectory. The period ofliequ
brationT,;; sets the starting point of the measurement. For convenigrease the abbreviation
Om = O(Tint + mAT) andr,,, = 7ipir + mAT withm =1,2,..., M in the following.

According to the theory of ergodicity, averaging a quantier an infinitely long time series is
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identical to perform the statistical ensemble average:

0= lim — > 0n=(0 /DXO (1)

whereD X represents the formal integral measure for the infinitebgoan of the conformation
space angh(X) is the energy dependent microstate probability of the aonébion X in the
relevant ensemble in thermodynamic equilibrium [in thearaoal ensemble with temperature
T, simply p(X) = exp[—E(X)/kgT]]. This is the formal basis for Monte Carlo sampling.
However, only finite time series can be simulated on a conmpbt a finite number of sweeps
M in a samplek, the relation (1) can only be satisfied approximately,* Z%Zl oW =

o" ~ (O). Note that the mean valug™ will depend on the sample, meaning that it is

likely that another samplé’ will yield a different valueo™’ + 0™ In order to define a
reasonable estimate for the statistical error, it is nerg® start from the assumption that we
have generated an infinite number of independent samplesthis case the distribution of the

estimate®" is Gaussian, according to the central limit theorem of uretated samples. The
exact average of the estimates is then giverq®y. The statistical error of) is thus suitably
defined as the standard deviation of the Gaussian:

eo=\/<(5—<5>)2>= (0") — () = %fjjf}/&mna%m, 0

m=1 n=1

where (0,0,) = (0.)(0.)
A _ myYn/ — m n 3
is the autocorrelation function anf, - O2 2y — (O,)? is the variance of the distribution

of individual dataO,,. If the Monte Carlo updates in each sample are performed iaip
randomly without memory, i.e., a new conformation is crdatelependently of the one in the
step before (which is a possible but typically very ineffitistrategy), two measured values,
andO,, are uncorrelated, if» # n. Then, the autocorrelation function simplifiesAQ,, = d,.,
and the statistical error satisfies the celebrated relation

O-O"’L
& o= . (4)

VM
Since the exact distribution @},, values and the “true” expectation val(fe) are unchanged in
the simulation (but unfortunately unknown), the standaediationo,, is constant, too. Thus,
the statistical error decreases withy/M .2

In practice, most of the efficient Monte Carlo techniquesagate correlated data, in which case
we have to fall back to the more general formula (2). It carveorently be rewritten as

€6 = 00,/ Mett )

!For the actual calculation, it is a problem the is unknown. However, what can be estimatedis =

02-0" andforits expected value we thus obtéiig, ) =03 (1—1/M). Thel/M correction is thesystematic
error due to the finiteness of the time series, called biag bihs-corrected relation for the statistical error reads

finally e = [M(M — 1)]7Y/2,/3", (O,,, — O)2 [6].
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with the effective statistic8/er = M/AToc < M, whereAr,; corresponds to the autocorrela-
tion time. This means, the statistics is effectively redubg the number of sweeps until the
correlations have decayédSince it takes at least the tinfer,. = N.AT7 to generate statisti-
cally independent conformations, a sweep can simply coagimany updates, . as necessary
to satisfyAr ~ A, without losing effective statistics. In this case, the~ Mg+ data enter-
ing into the effective statistics are virtually uncorreldt This is also the general idea behind
advanced, computationally convenient error estimatiothous such as binning and jackknife
analyses [6,7]. For the correctness of the measuremehts, M. is not a necessary condition;
more sweeps with less updates in each sweep, i.e., peribdedremeasurements shorter than
AT, only yield redundant statistical information. This is neea wrong, but computationally
inefficient as it does not improve the statistical error (5).

2.2 Master equation

Beside ergodicity, another demand for correct statisseahpling is to ensure that the prob-
ability distributionp(X) associated to the desired statistical ensemble is indepewd time.
This can only be achieved in the simulation, if lieéevant partof the phase space is sampled
sufficiently efficient to allow for quick convergence towara stable or, more precisely, station-
ary estimate fop(X). In most of the Monte Carlo methods, the simulation followdarkov
dynamics, i.e., the update of a given conformafno a new oneX’ is not influenced by the
history that led taX, i.e., the dynamics does not possess an explicit memonh &tarkov
process can be described by the master equation:

Ap(X)
ATQ

=Y p(XNUX = X; Arg) — p(X)H(X — X'; Arp)], (6)

X/

wheret(X — X'; Arg) is the transition probability fronX to X’ in a single update (or “time”
stepAr,). Due to particle conservation, it satisfies the normaliatondition) |y, t(X —
X'; A1) = 1, i.e., whatever update we perform, we must end up with a Satevhich is
an element of the conformational space. The conditigriX)/A7m, = 0 ensures that the
ensemble is in a stationary state if the right-hand side of &qvanishes. Since the stationarity
condition also allows solutions where the distributiondtion p(X) dynamically changes on
cycles which, however, is not the physical situation in distiaal equilibrium ensemble, we
demand more rigorously that the expression in the braclatskes. This is called the detailed
balance condition. Consequently, the ratio of transitettes is given by

t(X — X'; Arp) B p(X') @
(X = X;An)  p(X)

and thus independent of the length of “time” st&p,, which we, therefore, omit in the fol-
lowing. From this relation, it follows that it is obviouslygood idea to construct an efficient
Markov chain Monte Carlo algorithm, i.e., to choose appiateracceptance probabilities for
the Monte Carlo updates to yield the correct transition phility ¢(X — X’), by taking into
account the basic microstate probabilities of the staate&nsemble to be simulated. Markov
Monte Carlo simulations in the canonical ensemble at fixetperaturel’, for example, have

2For a detailed discussion of the autocorrelation functiod the calculation of the autocorrelation time, see,
e.g., Ref. [6].
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to satisfy ,

(X = X) _ 9aE ®)

tH(X' — X)
whereAFE = E(X’) — E(X) is the energy difference between the new and the old states, Th
the transition rate to reach a staXg, supposed to be energetically favored if compared with
the initial stateX, grows exponentially wittlA £ < 0. “Climbing the hill” towards a state with
higher energy AE > 0) is, on the other hand, exponentially suppressed. Thisasirespon-
dence with the interpretation of the Markov transitionsti#ieory. Hence, itis possible to study
the kinetic behavior (identification of free-energy barsianeasuring the height of barriers, es-
timating transition rates, etc.) of a series of processegjinlibrium — for example the folding
and unfolding behavior of a protein — by means of Monte Cairlautations. To quantify the
dynamics of a process, i.e., the explicit time dependenckeowever, less meaningful as the
conformational change in a single time step depends on the et and does not follow a
physical, e.g., Newtonian, dynamits.

2.3 Selection and acceptance probabilities

In order to correctly satisfy the detailed balance condi{ip) in a Monte Carlo simulation, we
have to take into account that each Monte Carlo step cordist® parts. First, a Monte Carlo
update of the current state is suggested and second, it basiecided whether or not to accept
it according to the chosen sampling strategy. In fact, btepssare independent of each other in
the sense that each possible update can be combined withrpisg method. Therefore, itis
useful to factorize the transition probabilitgX — X') in the selection probability(X — X’)

for a desired update fro to X’ and the acceptance probabilityX — X') for this update:

H(X = X') =5s(X = X)a(X = X). (9)
The acceptance probability is typically used in the form
a(X = X’) = min (1, (X, Xw(X = X)), (10)

with the ratio of microstate probabilities

n_ PX)
w(X = X') = 11
(X X) =T (12)
and the ratio of forward and backward selection probabsiti
N S(X = X)
o(X,X') = XX (12)

The expression (10) for the acceptance probability ndiufalfills the detailed-balance con-
dition (7). The selection ratie(X, X') is unity, if the forward and backward selection proba-
bilities are identical. This is typically the case for “sitaplocal Monte Carlo updates. If, for

3The natural way to study the time dependence of Newtoniarharécs is typically based on molecular dy-
namics methods which, however, suffer from severe problenensure theorrect statistical sampling at finite
temperatures by using thermostats [2, 3]. From a more fopoialt of view, it is even questionable what “dynam-
ics” shall mean in a thermal system, where even under the saeneodynamic conditions trajectories run typi-
cally differently, due to the “random” thermal fluctuatiocsused by interactions with the huge numt@¢10>%)
per mol] of realistically not traceable heat bath particles
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example, the update is a translation of a coordinates = + Az, whereAz € [—xq, +x]

is chosen from a uniform random distribution, the forwartesgon for a translation byAx

is equally probable to the backward move, i.e., to trandlaeparticle by—Az. This is also
valid for rotations about bonds in a molecular system sualot@sions about dihedral angles in
a protein. If selection probabilities for forward and baekd moves differ, the selection rate
is not unity. This is often the case in complex, global upslatlich comprise several steps.
Then, the determination of the correct selection prob@dslican be difficult and the selection
rate has typically to be estimated in test runs first. To thassof updates belong the biased
Gaussian steps [8], where a series of torsional updates efvaéquential protein backbone
dihedral angles are performed in order to ensure that thategtbes not drastically change the
protein conformation (which would likely be rejected).

Note that the overall efficiency of a Monte Carlo simulati@pdnds on both, a model-specific
choice of a suitable set of moves and an efficient microstatep$ing strategy based an( X —
X').

2.4 Simple sampling

The choice of the microstate probabilitieSX) is not necessarily coupled to a certain physical
statistical ensemble. Thus, the simplest choice is a unifoobabilityp(X) = 1 independently
of ensemble-specific microstate properties. Thus al§X — X’) = 1 and if the Monte
Carlo updates satisfy(X, X’) = 1, the acceptance probability is trivially also unity,X —
X’) = 1, i.e., all generated Monte Carlo updates are acceptedpamitently of the type of
the update. Thus, updates of system degrees of freedom gaerfoemed randomly, where the
random numbers are chosen from a uniform distribution. rretghod is calledimple sampling
However, its applicability is quite limited. Consider, fexample, the estimation of the density
of states for a discrete system with this method. After hgyaarformed a series dff updates,
we will have obtained an energetic histogratr) = M~! Z%zl 0m,, .z Which represents
an estimate for the density of states. The canonical exii@ctaalue of the energy can be
estimated byE = M"YV E,e Pn/keT — S Eh(E)e F/%T, If the microstates are
generated randomly from a uniform distribution, it is olwsahat we will sample the statés
with an energyF (X) in accordance with their system-specific frequency or degey. High-
frequency states thermodynamically dominate in the puledgrdered phase. However, near
phase transitions towards more ordered phases, the dehstgtes drops rapidly — typically by
many orders of magnitude. The degeneracies of the lowestgistates representing the most
ordered states are so small that the thermodynamically mesesting transition region spans
even in rather small systems often hundreds to thousamigss of magnitudé

To bridge a region of 100 orders of magnitude between an eddand a disordered phase by
simple sampling would roughly mean to perform about®d@pdates in order to find a single
ordered state. Assuming that a simple single update wogldgineonly a few CPU operations,
it will at least take 1 ns on standard CPU cores. Even undsrdptimistic assumption, it
would take more than £9years to perform 1¥° updates on a single core! Thus, for studies of

“4In order to get an impression of the large numbers consige2Ising model of locally interacting spins on
a square lattice which can only be oriented parallel or anéiel. For a system with0 x 50 = 2500 spins, the
total number of spin configurations is th2®° ~ 107°2, The degeneracy of the maximally disordered energetic,
paramagnetic is of the same order of magnitude. Since thenfeignetic ground-state degeneracy is 2 (all spins
up or all down), i.e., it is of the order of £0the density of states of this rather small system coversitare than
700 orders of magnitude.
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complex systems with sufficiently many degrees of freeddowdhg for cooperativity, simple
sampling is of very little use.

2.5 Metropolis sampling

Because of the dominance of a certain restricted space wbstates in ordered phases, it is
obviously a good idea to primarily concentrate in a simolaton a precise sampling of the
microstates that form the macrostate under given exteraampeters such as, for example,
the temperature. The canonical probability distributiandtions clearly show that within the
certain stable phases, only a limited energetic space ofostates is noticeably populated,
whereas the probability densities drop off rapidly in thistaThus, an efficient sampling of
this state space should yield the relevant information iwitlomparatively short Markov chain
Monte Carlo runs. This strategy is calledportance sampling

The standard importance sampling variant is the Metropuakshod [9], where the algorith-
mic microstate probability(X) is identified with the canonical microstate probabilityX ) ~

e PEX) at the given temperatur€ (3 = 1/kgT). Thus, the acceptance probability (10) is
governed by the ratio of the canonical thermal weights oftierostates:

w(X — X') = e AEX)=EX)] (13)

According to Eqg. (10), a Monte Carlo update fra¥nto X’ (assumingr(X, X’) = 1) is ac-
cepted, if the energy of the new microstate is lower thantdeefo(X’) < £(X). If this update
would provoke an increase of enerdy(X’) > E(X), the conformational change is accepted
only with the probabilitye="2#, where AE = E(X') — E(X). Technically, in the simula-
tion, a random number € [0, 1) from a uniform distribution is drawn: If < ¢ #2E the
move is still accepted, whereas it is rejected otherwiseusTthe acceptance probability is
exponentially suppressed withE and the Metropolis simulation yields, at least in princjple
a time series which is inherently correctly sampled in adaoce with the canonical statistics.
The arithmetic mean value of a quanti@yover the finite Metropolis time series is already an
estimate for the canonical expectation val@e= M~ Y _ 0,, ~ (0). In the hypotheti-
cal case of an infinitely long simulatiod{ — o0), this relation is an exact equality, i.e., the
deviation is due to the finiteness of the time series only. &l@x; it is just this restriction to
a finite amount of data which limits the quality of Metropatiata. Because of the canonical
sampling, reasonable statistics is only obtained in thegetie region which is most dominant
for a given temperature, whereas in the tails of the canddistributions the statistics is rather
poor. Thus, there are three physically particularly intéireg cases where Metropolis sampling
as standalone method is little efficient.

First, for low temperatures, where lowest-energy statesidate, the widths of the canonical
distributions are extremely small and singe~ 1/7 is very large, energetic “uphill” updates
are strongly suppressed by the Boltzmann weight®” — 0. That means, once caught in a
low-energy state, the simulation freezes and it remaingptd in a low-energy state for a long
period.

Second, near a second-order phase transition, the staddaiaionor = +/(E?) — (E)?

of the canonical energy distribution function gets vergéaat the critical temperatufg-, as

it corresponds to the maximum (or, in the thermodynamictlirtie divergence) of the spe-
cific Cy = 0% /kgT?. Thus, a large energetic space must precisely be sampleiticgt
fluctuations”) which requires high statistics. Since in Meblis dynamics, “uphill moves”
with AE > 0 are only accepted with a reasonable rate, if at the tramsgimint the ratio
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AE/kgTe > 0 is not too large, it can take a long time to reach a high-enstgte if start-
ing from the low-energy end. Since ne&¢ the correlation length diverges like ~ |77
[with 7 = (T" — T¢)/T¢] and the correlation time in the Monte Carlo dynamics bebdike
teorr ~ |7|7¥#, the dynamic exponent allows to compare the efficiencies of different algo-
rithms. The larger the value af the less efficient is the method. Unfortunately, the steshda
Metropolis method turns out to be one of the least efficienthmas in sampling critical prop-
erties of systems exhibiting a second-order phase transiti

The third reason is that the Metropolis method does alscoparpoorly at first-order phase
transitions. In this case, the canonical distribution tiorcis bimodal, i.e., it exhibits two
separate peaks with a highly suppressed energetic regioetween, since two phases coexist.
For the reasons already outlined, it is extremely unlikelysticceed if trying to “jump” from
the low- to the high-energy phase by means of Metropolis siagypit rather would have to
explore the valley step by step. Since the energetic regetwden the phases is entropically
suppressed — the number of possible states the system ecaneasssimply too small — it is
thus quite unlikely that this “diffusion process” will ledlde system into the high-energy phase,
or it will at least take extremely long.

However, apart from lowest-energy and phase transitioronsy the Metropolis method can
successfully be employed, often in combination with reigity techniques.

3 Reweighting methods

3.1 Single-histogram reweighting

A standard Metropolis simulation is performed at a givengemature, sayl,. However, it

is often desirable to get also quantitative informationwthibe changes of the thermodynamic
behavior at nearby temperatures. Since Metropolis sagdinot a priori restricted to a limited
phase space, at least in principle, it is indeed theoré&fipalssible to reweight Metropolis data
obtained for a given temperatuig = 1/kg/3, to a different onel’ = 1/kgf. The idea is
to “divide out” the Boltzmann factor—*F in the estimates for any quantity at the simulation
temperature and to multiply it by #%:

) (Oe~B-m)E),

M 0, o) Em
(e~ GBIy ~ Or =

M _(B—
T Zm:le (8—Bo)Em

<O>T ) (14)

where we have again considered that the MC time series otHehgis finite. In practice,
the applicability of this simple reweighting method is mthimited in case the data series was
generated in a single Metropolis run, since the error in ks of the simulated canonical
histograms rapidly increases with the distance from thd&pBg reweighting, one of the noisy
tails will gain the more statistical weight the larger thdfetence between the temperatures
Ty andT is. In combination with the generalized-ensemble methodsetdiscussed later in
this chapter, however, single-histogram reweighting esdhly way of extracting the canonical
statistics off the simulated histograms and works peryectl

3.2 Multiple-histogram reweighting

From each Metropolis run, an estimate for the density okest@tE) can easily be calculated.
Since the histogram measured in a simulation at temperdtuiéFr; 7') = Z%zl dp g, 1S an
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estimate for the canonical distribution functipgn(E;T) ~ g(E)e PE, the estimate for the
density of states is obtained by reweightigglF’) = h(E;T)e’E. However, since in a “real”
Metropolis run at the single temperatuféaccurate data can only be obtained in a certain
energy interval which depends dh the estimategj(F) is restricted to this typically rather
narrow energy interval and does by far not cover the wholegatie region reasonably well.
Thus, the question is whether the combination of Metropdésa obtained in simulations
at different temperatures, can yield an improved estingafe). This is indeed possible by
means of the multiple-histogram reweighting method [10jnstimes also called “weighted
histogram analysis method” (WHAM) [11]. Even though the g@hidea is simple, the actual
implementation is not trivial. The reason is that convemioMonte Carlo simulation tech-
niques such as the Metropolis method cannot yield absoktimates for the partition sum
Z(T) =Y, g9(E)e ¥, ie., estimates for the density of states at differentgiesy;(F) and
g;(E'") can only be related to each other if obtained in the same re; i= j, but not if per-
formed under different conditions. This is not a problemttoe estimation of mean values or
normalized distribution functions at fixed temperaturetoag as the Metropolis data obtained
in the respective temperature threads are used, but inétigoto temperatures where no data
were explicitly generated, is virtually impossible. Aldwet multiple-histogram reweighting
method does not solve the problem of getting absolute qies)tbut at least a “reference par-
tition function” is introduced, which the estimates of thendity of states obtained in runs at
different simulation temperatures can be related to. Timiistpolating the data between differ-
ent temperatures becomes possible.

Basically, the idea is to perform a weighted average of tl#obgramsh;(FE), measured in
Monte Carlo simulations for different temperatures, ia.;3; (wherei = 1,2,..., I indexes
the simulation thread), in order to obtain an estimator fierdensity of states by combining the
histograms in an optimal way:

_ 2 9i(B)wi(E)
T TSw® (o)
The exact density of states is given §§F) = pean(E;T)Z(T)e’? and since the normalized

histogramh;(F)/M; obtained in theith simulation thread is an estimator for the canonical
distribution functionpean( F; T;), the density of states is in this thread estimated by
hi(E)
M;
where Z; is the unknown partition function at théh temperature. Since in Metropolis simu-
lations the best-sampled energy region depends on theaiomkemperature, the number of
histogram entries for a given energy will differ from thretdthread. Thus, the data of the
thread with high statistics & should in this interpolation scheme get more weight than his
tograms with less entries &. Therefore, the weight shall be controlled by the errorshef t
individual histograms. A possibility to determine a set pfimal weights is to reduce the devi-
ation of the estimaté(£) for the density of states from the unknown exact distributig) (E),
where the symbol...) is used to refer to this quantity as the true distribution ahhivould
have been hypothetically obtained in an infinite number ofdls (it should not be confused
with a statistical ensemble average). As usual, the “bedifmate is the one that minimizes
the variancerg = ((g — {g))?). Inserting the relation (15) and minimizing with respectte
weightsw; yields a solution

9(E)

g(E) = Z;ePE (16)

1

2 Y
Ugi

(17)

w; =
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whereo? = ((g: — (g:))?) is the exact variance af in theith thread. Because of Eq. (16) and
the fact thatZ; is an energy-independent constant in ithethread, we can now concentrate on
the discussion of the error of thth histogram, since?, = o} Z2e*** /M?.

The variancer,%i is also an unknown quantity and, in principle, an estimabortiiis variance
would be needed. This would yield an expression that indutle autocorrelation time [10,
11] — similar to the discussion below Eq. (5). However, torectly keep track of the correla-
tions in histogram reweighting is difficult and thus also #stimation of error propagation is
nontrivial. Therefore, we follow the standard argumentdshen the assumption of uncorre-
lated Monte Carlo dynamics (which is typically not perfgdtiue, of course). The consequence
of this idealization will be that the weights (17) are not esgarily optimal anymore (the ap-
plicability of the method itself is not dependent of the aw®oofw;, but the error of the final
histogram will depend on the weights).

In order to determine,zli for uncorrelated data, we only need to calculate the praibald? (/)
that in theith thread a state with enerdy(for simplicity we assume that the problem is discrete)
is hit h; times in M; trials, where each hit occurs with the probabilify;. This leads to the
binomial distribution with the hit averagé;) = M;pni. In the limit of small hit probabilities (a
reasonable assumption in general if the number of energjibiarge, and, in particular, for the
tails of the histogram) the binomial turns into the Poissistrithution P(h;) — (h;) e~ /b,
with identical variance and expectation vallar%2 = (h;). Insertion into Eq. (17) yields the
weights

M?
(E) = : . 18
wz( ) <hi>(E)Zi€25iE ( )
Since(h;)(E) is exact, the exact density of states can also be written as
hi)(E ,
9g(E) = %Zﬁﬁﬂ (19)

which is valid for all threads, i.e., the left-hand side isiépendent of. This enables us to
replace(h;) everywhere. Inserting expression (18) into Eq. (15) anlizirtg the relation (19)
to replace(h;), we finally end up with the estimator for the density of statethe form

(B = > hi(E)

= ST Nz (20)
where the unknown partition sum is given by
Zi= §(E)e ", (21)
E

i.e., the set of equations (20) and (21) must be solved itetgf One initializes the recursion
with guessed vaIueZZ.(O) for all threads, calculates the first estimaté (E) using Zi(o), re-
inserts this into Eq. (21) to obtaiﬁi(l), and continues until the recursion process has converged
close enough to a fixed point.

There is a technical aspect that should be taken into acéouwant actual calculation. Since
the density of states can even for small systems cover matgroof magnitude and also the
Boltzmann factor can become very large, the applicatioh@fécursion relations (20) and (21)

SNote that for a system with continuous energy space whichiistipned into bins of width\A E in the simu-
lation, the right-hand side of Eq. (21) must still be mulggl by A E.
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often results in overflow errors since the floating-poinedapes cannot handle these numbers.
At this point, it is helpful to change to a logarithmic repeagation which however, makes it
necessary to think about adding up large numbers in logaritfiorm. Consider the special
but important case of two positive real numbers> 0 and0 < b < a which are too large
to be stored such that we wish to use their logarithmic regmegionsg = loga andbeg =
log b instead. Since the result of the additien= a + b, will also be too large, we introduce
cog = logc as well. The summation is then performed by writing= e = e®s + eboa,
Sincea > b (and thus alsay,g > big), it is useful to separate, and to rewrite the sum
aseos = eda(] + eboa—g)  Taking the logarithms yields the desired result, wherey dné
logarithmic representations are needed to perform the satiom ¢joq = ajog+log(1+x), where

x = b/a = ePa~%s ¢ [0,1]. The upper limitz = 1 is obviously associated 0= b, whereas
the lower limitz = 0 matters ifa > 0, b = 0.° Since the logarithm of the density of states is
proportional to the microcanonical entrogy( £) ~ log g(F), the logarithmic representation
has even an important physical meaning.

4 Generalized-ensemble Monte Carlo methods

The Metropolis method is the simplest importance samplirantd Carlo method and for this
reason it is a good starting point for the simulation of a ctaxpystem. However, it is also
one of the least efficient methods and thus one will often havace the question of how to
improve the efficiency of the sampling. One of the most freqlyeused “tricks” is to employ
a modified statistical ensemble within the simulation rud smreweight the obtained statistics
after the simulation. The simulation is performed in anfizrl generalized ensemble

4.1 Replica-exchange Monte Carlo method (parallel tempeinig)

Although not being most efficient, parallel tempering is thest popular generalized-ensemble
method. Advantages are the simple implementation andlpkzation on computer systems
with many processor cores. The Metropolis method samplefooations of the system in
a single canonical ensemble at a fixed temperature, wheeglisa-exchange methods like
parallel tempering simulaté ensembles at temperaturés 71s, . .., 77 in parallel (and thud
replicas or instances of the system) [12-14]. In each oflthemperature threads, standard
Metropolis simulations are performed. A decrease of the@rtelation time, i.e., an increase
in efficiency, is achieved by exchanging replicas in neighigptemperature threads after a
certain number of Metropolis steps are performed indepetiga the individual threads. The
acceptance probability for the exchange of the currentaomhtionX at temperaturd; =
1/kgf3; and the conformatioX’ at 3; is given by

a(X + X; Bi, B;) = min(1, exp{—(8; — ﬁj)[E(X/) - E(X)]}), (22)

6At the lower limit, there is a numerical problem,libg — alng < 0 (or z = b/a < 1) is so small that the
minimumallowed floating-point number is underflown by This typically occurs ifa andb differ by many tens
to thousands orders of magnitude (depending on the flogiiigt number precision). In this case, the difference
betweerr anda cannot be resolved, as the errorigy = aiog + O(x) is smaller than the numerical resolution; in
which case we simply sef,q = aiog. If this is not acceptable and a higher resolution is readigaed, non-standard
concepts of handling numbers with arbitrary precision ddag an alternative.
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which satisfies the detailed balance condition in this gairad ensemblé. Since the tem-
perature of each thread is fixed, only a small section of thesithe of states can be sampled
in each thread because of the Metropolis limitations. Ireotd obtain an entire estimate of
the density of states, the pieces obtained in the diffeteetids must be combined in an opti-
mal way. This is achieved by subsequent multiple-histogeweighting. The main advantage
of parallel tempering is its high parallelizability. Howay the most efficient selection of the
temperature set can be a highly sophisticated task. Onessegecondition for reasonable
exchange probabilities is a sufficiently large overlap & tanonical energy distribution func-
tions in neighboring ensembles. At very low temperaturies,a@nergy distribution is typically
a sharp-peaked function. Thus, the density of temperatates be much higher in the regime
of an ordered phase, compared with high-temperature diseddphases. For this reason, the
application of the replica-exchange method is often noti@aarly useful for unraveling the
system behavior at very low temperatures or near first-ardessitions.

4.2 Multicanonical sampling

The powerful multicanonical method [15-17] makes it pokesib scan the whole phase space
within a single simulation with very high accuracy [18], evéfirst-order transitions occur. The
principle idea is to deform the Boltzmann energy distribnti..,(£; 7)) « g(E) exp(—SE) in
such a way that the notoriously difficult sampling of thedad increased and — particularly
useful — the sampling rate of the entropically strongly sepped lowest-energy conformations
is improved. In order to achieve this, the canonical Boltamdistribution is modified by the
multicanonical weightV,,.... (£; T') which, in the ideal case, flattens the energy distribution:

Wmuca(E§ T)pcan(E; T) ~ hmuca(E) = COI’]SE;T, (23)

wherehmuco E) denotes the (ideally flat) multicanonical histogram. Bystbonstruction, the
multicanonical simulation performs a random walk in enesgpace which rapidly decreases
the autocorrelation time in entropically suppressed nmegiorl his is particularly apparent and
important in the phase separation regime at first-orderdansitions, as it is schematically
illustrated in Fig. 1.

Recalling that the simulation temperatdreloes not possess any meaning in the multicanonical
ensemble as, according to Eq. (23), the energy distribigiatways constant, independently of
temperature. Actually, it is convenient to set it to infinitywhich casdimy_, o pean(E£;T) ~
g(E) and thudimy_, o Whuea(E; T) ~ g~ *(E). Then, the acceptance probability (10) is gov-
erned by

w(X = X') = Winued E(X"))/Winued E(X)) = g(E(X))/g9(E(X)). (24)
The weight function can suitably be parametrized as
Whuea E) ~ exp[—S(E)/kg| = exp{—B(E)[E — F(E)]}, (25)

whereS(FE) is the microcanonical entrop§(E) = kglng(F). Sincef(E) = 0S(E)/0E is
the microcanonical thermal energy (WithE) = 1/kgT'(E), wherel' (E) is the microcanonical

’In the generalized ensemble composed of two canonical éslesmat temperatures and7}, the probability
for a stateX atT; and a stat&’ at T readsp(X, X'; T3, T;) ~ exp{—[8:E(X) + 5; E(X')]}.
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Fig. 1: Typical scenario of a first-order transition at transitioarhperaturely,: Ordered and
disordered phases, represented by the peaked sectiong aationical energy distribution
pean(E; Tyy) at low and high energies, are separated by an entropicallgrgfly suppressed
energetic region. The multicanonical weight functidiy, F; Tt ) is chosen in such a way
that multicanonical sampling provides a random walk in gyespace, independently of (en-
ergetic) free-energy barriers. Thus, the energy distibut,,.( £) is ideally constant in the
multicanonical ensemble.

temperature), the microcanonical free-energy s¢éle) = g(E£)F(E) andj(E) are related to
each other by the differential equation

Of(E) _ 0B(E)
OE —  0OF
Since(F) and f(E) are unknown in the beginning of the simulation, this relatioust be
solved recursively. This can be done in an efficient way [I619]. If not already being discrete
by the model definition, the energy spectrum must be diseétii.e., neighboring energy bins
are separated by an energetic step sizeThus, for the estimation of(E) and f(F), the
following system of difference equations needs to be soteedrsively ¢(E) = S(F)/kg):

E. (26)

SD(E) = Ing" D(E) =~ In Wi (F)

BOE) = [s"I(E) - s (E - e))fe

FONE) = fOE = &)+ [57(E) — B(E - )|(E - ) @7
SP(E) = BO(E)E - ()

Wik B) = expl—s"(E)]

The superscriptn) refers to the index of the iteration. If no better initial gsds available, one
typically setsg®(E) = 1 in the beginning, implying® (E) = Wi E) = 0. The zeroth
iteration thus corresponds to a Metropolis run at infinitaperature, yielding the first estimate
for the multicanonical weight functioWélu)ca(E), which is used to initiate the second recursion,
etc. The recursion procedure based on Eq. (27) can be stafiged recursions, if the weight
function has sufficiently converged. The number of necgsssnursions and also the number
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of sweeps to be performed within each recursion is modelm#gra. Since the sampled energy
space increases from recursion to recursion and the eféestatistics of the histogram in each
energy bin depends on the number of sweeps, it is a good ideer&ase the number of sweeps
successively from recursion to recursion. Since the enbigfpgram should be “flat” after the
simulation run at a certain recursion level, an alternatag to control the length of the run is
based on a flatness criterion. If, for example, minimum andimam value of the histogram
deviate from the mean histogram value by less than 20%, thesrstopped.

Finally, after the best possible estimate for the multicaca weight function is obtained, a
long multicanonical production run is performed, inclugliall measurements of quantities of
interest. From the multicanonical trajectory, the estenatthe canonical expectation value of
a quantityO is then obtained at any (canonical) temperaflitey:

6 — ZtO(Xt)Wn?&C’a(E(Xt)e*E(xt)/kBT
o Zt Wn:L}ca(E(Xt)e_E(Xt)/kBT

(28)

Since the accuracy of multicanonical sampling is indepahdgthe canonical temperature and
represents a random walk in the entire energy space, thecapph of reweighting procedures
is lossless. This is a great advantage of the multicanome#thod, compared with Metropolis
Monte Carlo simulations. Virtually, a multicanonical silation samples the system behavior at
all temperatures simultaneously, or, in other words, the testtmation of the density of states
is another advantage, because multiple-histogram rewegis not needed for this (in contrast
to replica-exchange methods).

4.3 Wang-Landau method

In multicanonical simulations, the weight functions arelafed after each iteration, i.e., the
weight and thus the current estimate of the density of statekept constant at a given recursion
level. For this reason, the precise estimation of the mantomical weights in combination with
the recursion scheme (27) can be a complex and not very effiprecedure. In the method
introduced by Wang and Landau [20], the density of statamast is changed by a so-called
modification factora after each sweegy(E) — o™ g(E), wherea™ > 1 is kept constant
in the nth recursion, but it is reduced from iteration to iteratioA. frequently used ad hoc
modification factor is given by = Va-D = (o()V/2" n = 1,2,... I, where often
al®) = ¢! =2.718 ... is chosen. The acceptance probability and histogram flatrrieria are
the same as in multicanonical sampling.

Since the dynamic modification of the density of states inrtiming simulation violates the
detailed balance condition (7), the advantage of the hjpged scan of the energy space is paid
by a systematic error. However, since the modification fasteeduced with increasing iteration
level until it is very small (the iteration process is tydlgastopped ifa < 1.0 + 1078), the
simulation dynamics is supposed to sample the phase speaelsng to the stationary solution
of the master equation such that detailed balance is (aJrsatisfied. Since it is difficult to
keep this convergence under control, the optimal method issé the Wang-Landau method
for a very efficient generation of the multicanonical wegtbllowed by a long multicanonical
production run (i.e., at exactly = 1) to obtain the statistical data.
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5 Summary

Monte Carlo computer simulations are virtually the only wayanalyze the thermodynamic
behavior of a system in a precise way. However, the varioigtieg methods exhibit extreme
differences in their efficiency, depending on model detaild relevant questions. The original
standard method, Metropolis Monte Carlo, which providely ogliable statistical information
at a given (not too low) temperature has meanwhile beence@lay more sophisticated meth-
ods which are typically far more efficient (the differencegime scales can be compared with
the age of the universe). However, none of the methods yalttsmatically accurate results,
i.e., a system-specific adaptation and control is alwaydeakeT hus, as in any good experiment,
the most important part of the data analysis is statistical @stimation.
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