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Structural Arrangements of Polymers Adsorbed at Nanostrings
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Abstract

We study ground states of a hybrid system consisting of a polymer and an attractive nanowire
by means of computer simulations. Depending on structural and energetic properties of the sub-
strate, we find different adsorbed polymer conformations, amongst which are spherical droplets
attached to the wire and monolayer tubes surrounding it. We construct the complete confor-
mational phase diagram and analyze in more detail particularly interesting polymer-tube
conformations.
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1. Introduction

The study of the interaction between organic and inorganic matter, or in other words, the
behavior of organic–inorganic systems, generates fascinating findings with potential for novel
applications in bio- and nanotechnology. One of the basic steps in the understanding of such
systems is the study of the adsorption of soft materials like polymers at inorganic matter like
solid substrates. In the past, numerous computational studies gave general insights in the adsorp-
tion behavior of polymers on planar surfaces [1–5]. A particularly surprising fact for example,
predicted by computer simulations and verified by experiments recently, is that a single spe-
cific mutation in a short peptide can substantially change the binding behavior to semiconductor
substrates [6, 7].

A special class of such hybrid systems are nanotubes or nanocylinders interacting with poly-
mers. Carbon nanotubes, for example, are themselves quite interesting nanostructures with sur-
prising electronic and mechanical properties [8], but nanotube–polymer composites promise to
enlarge the number of possible novel applications dramatically, for example in photonics and
molecular sensor technologies [9, 10]. Theoretically, experimentally and computationally well
studied is the wetting of cylindrical substrates by liquids or polymer droplets. This transition
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can be described by the crossover of barrel-like and clamshell-like droplets [11–13]. In another
study, the adsorption behavior of individual polymer chains on nanotubes has been studied, where
a helical-like winding of flexible and semi-flexible chains around the tubes was found [14].

In contrast, we will here develop a general picture of the adsorption behavior of polymers at
nanowires depending on the properties of the substrate [15]. For this purpose, we apply a model,
where the effective thickness and the attraction strength of the linelike substrate are variable
parameters. The above mentioned transitions and adsorbed polymer structures are included as
special cases in this picture.

2. Model and method

In our study the polymer is represented by a coarse-grained off-lattice bead–stick model,
i.e., monomers do not have any inner structure and are connected by stiff bonds. The polymer
is embedded into a three-dimensional simulation box which includes an attractive thin string
pointing into the z-direction. The chain is not grafted to the string and may move freely. The
monomers interact with each other via a standard Lennard-Jones potential

VLJ(ri j; εm, σm) = 4εm
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where ri j is the geometrical distance between two monomers i and j and εm and σm are set to 1,
such that VLJ(rmin = 21/6) = −1. As a remnant of the origin of the model [16] and in order to
facilitate future enhancements and the comparison with previous studies, we introduce a weak
bending stiffness, i.e., the polymer is not flexible in a strict way, but may be considered to be
flexible in practice:

Vbend(cos θi) = κ (1 − cos θi) , (2)

where θi is the angle defined by the two bonds at monomer i and the bending stiffness parameter
κ is here set to 1/4. The interaction between monomers and the string is also based on a simple
Lennard-Jones potential, but we neglect, as usual [5, 13], the internal structure of the substrate,
i.e., we assume a homogeneous “charge” distribution along the z-axis. We hence simply integrate
to get
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where rz;i is the distance of the ith monomer perpendicular to the string and the potential is
scaled by setting a ≈ 0.528 for convenience [15, 17]. εf and σf are free parameters and can be
considered as the string attraction strength and the effective “thickness” of the string, which is
proportional to the equilibrium distance of the string potential, respectively. The overall energy
of the system finally reads

E =
N−2∑

i=1, j>i+1

VLJ(ri j) +
N−1∑

i=2

Vbend(cos θi) +
N∑

i=1

Vstring(rz;i) . (4)

For estimating the ground-state energies, we apply generalized-ensemble Monte Carlo meth-
ods [18, 19]. Conformational changes are forced by applying a variety of update moves, in-
cluding local crankshaft and slithering-snake moves and global spherical-cap and translation
moves [17].
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3. Results

We now discuss low-energy structures of the above described system for different values of
the string-potential parameters σf and εf . Based on the simulation of more than hundred system
parametrizations, we construct the full conformational phase-diagram which is shown in Fig. 1.

We identify four major conformational phases, which we denote Gi, B, C, and Ge. For small
values of both σf and εf , i.e., for weak string attraction and small effective radius of the string,
we find globular conformations with spherical symmetry surrounding the string (phase Gi). In-
creasing the string attraction strength, conformations stretch out along the string breaking the
spherical symmetry and barrel-like conformations with the string inside emerge (phase B). In
the case of very high string attraction we even find monolayer tubes with each monomer be-
ing in direct contact with the substrate. Due to the finite size of the system, these barrel-like
structures break when increasing the effective diameter of the string and low-energy structures
become clamshell-like (phase C), i.e., we find adsorbed conformations consisting of a few lay-
ers which are not wrapping the string completely. Finally, decreasing the string attraction at
this effective radius, conformations become spherical droplets sticked to the string (phase Ge).
Low-energy conformations from different regions are visualized exemplarily in Figs. 1 and 2.

Figure 1: The low-energy conformational phase diagram for polymers adsorbed at nanostrings. From bottom to top, the
string attraction strength εf increases, from left to right, the effective radius of the string σf becomes larger. Different
monomer colors or shadings encode different distances from the string. Monomers near the equilibrium distance from
the string (colored in red) are defined to be in contact with it.

Figure 2: Visualizations of low-energy conformations with N = 30, 100, and 200 monomers in phases (a) Gi, (b) B,
(c) C, and (d) Ge.
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Figure 3: Opening angle, data points with same
σ-value are connected by lines to guide the eyes.
See also Fig. 2(a) and (b) for closed conformations
(α/π ≈ 0) and 2(c) and (d) for open ones (α/π > 1).

We convinced ourselves by simulating chains with lengths N = 30 and 200 that the general,
qualitative structure of the conformational phase diagram does not depend on the actual length
of the polymer, see Fig. 2 for examples. Of course, details like the exact positions of transitions
lines may indeed depend on the actual polymer length.

To define the different phases and the crossover between them, we introduce observables
showing a peculiar behavior at the transitions. In Gi and B, for example, the polymer conforma-
tions surrounds the string completely, in contrast to the structures in Ge and C. For the localiza-
tion for the transition between Gi↔Ge and B↔C, we hence look at the opening angle α [15] of
the polymer conformation. The value of this angle shows a jump (low values for Gi and B, high
values for C and Ge) at the crossover between these phases, which is shown in Fig 3. See [15]
for more details on the localization of phase boundaries.

We finally would like to get at a deeper analysis of some structures in phase B. At very
high attraction strengths, low-energy conformations become regular monolayer conformations
wrapped around the string, i.e., single-walled tubes with an ordered arrangement of monomers
form. It is noticeable, that there is a competition between different chiral angles, i.e., orientations
of the wrapping. This behavior is of particular interest as it is in a similar manner known from
carbon nanotubes [8]. Figure 4 illustrates the distribution of the chiral or wrapping angles of such
a monolayer conformation. Therefore we unzip the structure, i.e., we project it onto a plane, and

φi

i

a) b)

Figure 4: a) Angular distribution function of a monolayer structure with σf = 1.569 (also shown as inset picture in Fig. 1,
phase B). Inset: Unzipped, planar representation. Different colors (red and blue, or light- and dark-gray, respectively)
represent main regions with different wrapping angles. b) Illustration of the definition of the wrapping angle. The arrow
points in the direction of the string.
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measure the angular distribution function (adf) of this unzipped structure, whereas we define
the chiral or wrapping angle φi of the ith monomer as the smallest angle between the vectors
pointing to its neighbors and the vector in the string direction (see Fig. 4 b). In the adf we clearly
see the signals from two different regions with different chiralities as well as from defects in
that structure. A detailed, systematic analysis of monolayer structures at high string attraction
strength and different effective string thicknesses is subject of ongoing studies [20].
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