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In detailed microcanonical analyses of densities of states obtained by extensive multicanonical

Monte Carlo computer simulations, we investigate the caloric properties of conformational

transitions that adsorbing polymers experience near attractive substrates. For short chains and

strong surface attraction, the microcanonical entropy turns out to be a convex function of energy

in the transition regime, indicating that surface-entropic effects are relevant. Albeit known to

be a continuous transition in the thermodynamic limit of infinitely long chains, the adsorption

transition of nongrafted finite-length polymers thus exhibits a clear signature of a first-order-like

transition, with coexisting phases of adsorbed and desorbed conformations. Another remarkable

consequence of the convexity of the microcanonical entropy is that the transition is accompanied

by a decrease of the microcanonical temperature with increasing energy. Since this is a

characteristic physical effect it might not be ignored in analyses of cooperative macrostate

transitions in finite systems.

1 Introduction

The advances in processing and manipulating molecules at

solid substrates on the nanometre scale opens up new vistas

for technological applications of hybrid organic-inorganic

interfaces. This includes, e.g., the fabrication of nano-

structured transistors being sensitive to specific biomolecules1,2

and the application of organic electronic devices based on

polymers such as organic light-emitting diodes3 and molecular

storage cells.4 Therefore, the investigation of molecular self-

assembly5,6 near substrates has recently been the subject of

numerous experimental and computational studies, e.g.,

for peptide adhesion to metals and semiconductors.7–13 The

understanding of the cooperative effects of structure formation at

substrates requires systematic studies of mesoscopic aspects of

adsorption transitions. This includes scaling properties near

the adsorption/desorption transition in the thermodynamic

limit of large polymer systems at planar surfaces,14–17 also

under pulling force.18,19 Adhesion studies of polymers were

also performed at curved surfaces such as nanotubes20 and

nanoparticles.21 Particular attention has been dedicated to the

complete phase structure of adsorbed macromolecules which

has been investigated by means of simple lattice models for

polymers22–27 and peptides,28,29 as well as by employing an

off-lattice polymer model.30

Hybrid systems on the nanoscopic scale must basically be

considered as being ‘‘small’’. Thus, the study of finite-size

effects in the formation of polymer assemblies in a thermal

environment is relevant. Here, we are going to discuss

thermodynamic properties of the adsorption transition of a

flexible, interacting polymer at an attractive substrate. The

polymer is not anchored at the surface and can therefore freely

move as long as it does not get into contact with the substrate.

Statistical analysis is performed in the microcanonical ensemble

in order to retain characteristic, non-negligible surface effects.

This approach has already proven quite useful for a deeper

understanding of first-order-like structural transitions such as

molecular aggregation processes31,32 and protein folding.33,34

A particularly striking result was the recent identification of

intrinsic hierarchies of subphase transitions that accompany

the overall cooperative process of assembly.32 The relevance of

microcanonical thermodynamics35 in small-system transitions

has also been stated in simulational and experimental atomic

clustering studies,36,37 fragmenting nuclei,38 and for scaling

analyses in magnetic systems employing discrete or continuous

spin models.39–43 A more exotic example is the seminal

application of this approach to astrophysical systems,44 which

manifests its broad universality.

The central quantity in the microcanonical formalism is the

number (or density) of states g(E) with system energy E, or the

microcanonical entropy defined as

S(E) = kBln g(E), (1)

where kB is the Boltzmann constant. In contrast to canonical

(NVT) statistics, where the temperature T is an externally fixed

control parameter, in the microcanonical (NVE) ensemble it is

derived from the entropy,

T(E) = [qS(E)/qE]�1N,V . (2)

In both ensembles, the particle number N and the volume V

are kept fixed. Particularly interesting microcanonical effects

occur in the transition regime, if the entropy is a convex

function of energy in this region. The physical consequence

is that with increasing system energy the temperature

decreases. This can only be explained by the fact that

conformational transitions of small systems are governed by
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their surfaces, whereas volume effects become only relevant for

large systems [even a perfectly icosahedral atomic cluster with

309 atoms still contains more atoms in the outer shell (162)

than in the interior (147)].

Thus, as long as the surface-to-volume ratio is large enough

to suppress a concave increase of the microcanonical entropy

and the energetic separation of the two distinct phases [one of

which is entropy-dominated (e.g., liquid) and the other energy-

dominated (e.g., solid)] is sufficiently large to establish a

kinetic barrier, microcanonical effects matter. This regards

all first-order phase transitions and two-state systems

(e.g., proteins with two-state folding characteristics). It also

matters for transitions, where phase co-existence is completely

absent in the thermodynamic limit, but not for the finite

systems. The latter case is what we would like to consider in

more detail in the following: the adsorption transition of

flexible polymers to an attractive substrate, known to be a

second-order phase transition in the thermodynamic limit.

However, as we will show here, the adsorption of nongrafted

polymers with finite lengths exhibits signals of a first-order

transition which we find to vanish in the thermodynamic limit.

2 Model and methods

For our analysis, we consider a single flexible and nongrafted

linear homopolymer with N monomers that interacts with an

attractive planar substrate. In ref. 30, we have already

employed this hybrid model for the strictly canonical

identification of conformational adsorption phases. Here, we

concentrate ourselves on the adsorption/desorption transition

between desorbed (DE) and three-dimensional adsorbed

(AE2) expanded conformations (see Fig. 1), where

‘‘three-dimensional’’ refers to the topology of the dominant

adsorbed conformations in AE2, extending into directions

parallel and perpendicular to the substrate (in contrast to

the preferably planar structures in AE1).

The polymer is represented by a bead-stick model with

standard Lennard-Jones (LJ) interaction between nonbonded

monomers, mimicking short-range volume exclusion and long-

range van der Waals (vdW) attraction. Bond lengths between

adjacent monomers are normalized to unity. Since the

original model (called the ‘‘AB model’’)45,46 was designed for

mesoscopic heteropolymers, an additional weak bending

energy was introduced which is kept here. The only degrees

of freedom in our polymer model are thus the angles between

successive bonds. Center-of-mass translation is restricted to a

cavity bounded by the attractive substrate located at z=0 and

a sufficiently distant steric wall at z = Lz to prevent the

polymer from escaping. Later in this paper we will discuss

the dependence of the microcanonical results on Lz in detail.

If not mentioned otherwise, the monomer density is kept

constant, i.e., Lz scales linearly with the length of the chain

N (we chose Lz = 3N, i.e., a constant concentration of

monomers). Translation in the xy-plane parallel to the walls

is irrelevant here.

The interaction of a monomer with the continuous flat

surface of a substrate filling the half-space z r 0 is obtained

by integrating a 12-6-LJ potential over this half-space, which

results in a 9-3-LJ-like potential.30,47 In our simulations, all

lengths are measured in units of the vdW radius s= 2�1/6rmin,

where rmin is the minimum of the 12-6-LJ potential, and

energies in units of a global energy scale e0. Thus, the

temperature scale is given by e0/kB. Accordingly, for simplicity,

we set in the following s = e0 = kB � 1. The energy of the

hybrid system is then written as:

E ¼ 4
XN�2
i¼1

XN
j¼iþ2

ðr�12ij � r�6ij Þ þ
1

4

XN�2
i¼1
½1� cosðWiÞ�

þ es
XN
i¼1

2

15
z�9i � z�3i

� �
;

ð3Þ

where 0r Wi r p denotes the bending angle between monomers

i, i+ 1, and i+ 2. The distance between the monomers i and j

is rij = |~rj � ~ri| and zi is the distance of the ith monomer

from the substrate. The free parameter es represents the

surface attraction strength and weighs the energy scales of

monomer–surface (Esurf) and intrinsic monomer–monomer

(Ebulk) interaction.

In order to improve the sampling of entropically suppressed

energetic states, simulations of this model were performed

with the multicanonical Monte Carlo method,48 which is

based on a generalized ensemble where the energy histogram

is constant and hence directly yields an estimate for the density

of states g(E). This can be achieved by Monte Carlo sampling

of polymer conformations X with the transition probability

o(X - X0) = min[Wmuca(E(X
0))/Wmuca(E(X)), 1], (4)

where Wmuca(E(X)) = g�1(E(X)) is the multicanonical weight

function. Since g(E) is obviously unknown in the beginning,

Fig. 1 Pseudo-phase diagram of a homopolymer with 20 monomers

as obtained in extensive simulations; details are discussed in ref. 30.

The bands separate the individual conformational phases, the band

width indicates the statistical uncertainty. DE, DG, and DC denote

bulk phases of expanded coils, globular, and crystalline structures,

respectively. DE and DG are separated by the Y-transition. AE1 is

dominated by adsorbed single-layer (two-dimensional) expanded

structures, AE2 by adsorbed conformations extending into the bulk.

AG denotes the adsorbed globular regime and the crystalline phases differ

in their topology (AC1: two-dimensional, AC2a,b: three-dimensional).

In this work, we will primarily focus on the adsorption transition

between DE and AE2. Vertical lines are placed at values of surface-

attraction strengths es chosen for the subsequent discussion of micro-

canonical effects accompanying this transition.
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Wmuca(E(X)) has to be determined recursively. Starting, e.g.,

with W(0)
muca(E) = const, the energy distribution is almost

‘‘flat’’, if the estimate for the density of states after the nth

run, ĝ(n)(E), satisfies

ĝ(n)(E)W(n�1)
muca(E) E const. (5)

An efficient, error-weighted estimation method forWmuca(E) is

discussed in ref. 49. The recursion scheme can be stopped if the

weight function estimate has stabilized. Then, the density of

states g(E) can finally be measured in a long multicanonical

production run based on these weights.

Exemplified for a polymer with 20 monomers and a surface

attraction strength es = 5, we have plotted in Fig. 2 the

microcanonical entropy per monomer s(e) = N�1lng(e) as a

function of the energy per monomer e = E/N. It shows the

characteristic microcanonical features of a transition with

phase coexistence in a small system. For energies right below

eads, the system is in the adsorbed phase AE2 (cf. Fig. 1),

i.e., the polymer is in contact with the substrate, but

monomer–monomer contacts are not particularly favored

and thus expanded conformations dominate. For energies

between eads and edes, the system is in the transition region,

where s(e) is convex. This is clearly seen by constructing the

Gibbs hull

Hs(e) = s(eads)+e(qs/qe)e=eads
(6)

as the tangent that touches s(eads) and s(edes). Thus,

Tads ¼
@Hs

@e

� ��1
¼ @s

@e

� ��1
e¼eads

¼ @s

@e

� ��1
e¼edes

ð7Þ

is the microcanonical definition of the adsorption temperature,

which coincides with the temperature determined in canonical

simulations by the frequently employed criterion of two equal-

height peaks in the energy distribution.40 However, due to the

convex well of s(e), the definition of a single transition

temperature is misleading; the transition rather spans a region

of temperatures. Equivalently, for small systems in the

canonical ensemble, fluctuation maxima or two equal-weight

peaks are located at different temperatures50 which also

renders the definition of a unique transition temperature

impossible. This is obvious for finite systems like proteins,

where the thermodynamic limit is unreachable.51 A unique

definition of the transition point is in general only possible in

the thermodynamic limit.

Let us define the deviation between s(e) and Hs(e) by

Ds(e) = Hs(e) � s(e). (8)

Then, the surface (or interfacial) entropy, which represents the

entropic barrier of the two-state transition, is defined as the

maximum deviation

Dssurf = max{Ds(e)|eads r e r edes}. (9)

The peak is located at e= esep and defines the energetic phase-

separation point. Finally, the energetic gap between the two

macrostates is the latent heat per monomer,

Dq = edes � eads = Tads[s(edes) � s(eads)]. (10)

In the thermodynamic limit, a first-order phase transition will

be characterized as usual by limN-NDq= const4 0, whereas

limN-NDq = 0 in the case of a second-order transition.

However, in both cases we expect the surface entropy to

vanish in this limit, limN-NDssurf = 0, i.e., the microcanonical

entropy is always a concave function of energy for infinitely

large systems. Before we show for the adsorption transition

that the latent heat indeed decreases with system size, we first

investigate the origin of the phase separation for chains of

finite length and discuss the adhesion strength dependence of

surface entropy and microcanonical temperature.

3 Results

3.1 Dependence on the surface attraction strength

In Fig. 3(a), the microcanonical entropy s(e) is shown for a

20mer, parametrized by the surface attraction strength es.
Since the high-energy regime is dominated by desorbed

conformations, the density of states and hence s(e) are hardly

affected by changing the values of es. The low-energy tail, on

the other hand, increases significantly with es. Thus, it is useful
to split the density of states into the contributions of desorbed

and adsorbed conformations, gdes(e) and gads(e), respectively,

such that g(e) = gdes(e) + gads(e) and sdes,ads(e) =N�1lngdes,ads(e).

We define the polymer to be adsorbed if its total surface

energy is Esurf o �0.1esN. Since sdes(e) corresponds to ses=0(e),

for es 4 0 only the sads(e) curves were added in Fig. 3(a). Both,

sads(e) and sdes(e), are concave in the whole energy range of the

adsorption transition. Thus, convex entropic monotony can

only occur in the most sensitive region where adsorbed and

desorbed conformations have equal entropic weight, i.e., at the

entropic transition point. Note that for a polymer grafted at

the substrate the translational entropy would be very small.

The thus far less pronounced increase of sdes(e) at the entropic

transition point is not sufficient to induce the convex intruder

and no microcanonical peculiarities appear in this case.

Fig. 2 Microcanonical entropy s(e) (up to an unimportant constant)

for a 20mer at es = 5, the Gibbs hullHs(e), and the difference Ds(e) =
Hs(e) � s(e) as functions of the energy per monomer e. The convex

adsorption regime is bounded by the energies eads = �2.412 and

edes = �0.369 of the coexisting phases of adsorbed and desorbed

conformations at the adsorption temperature Tads = 3.885, as defined

via the slope of Hs(e). The maximum of Ds(e), called surface entropy

Dssurf, is found at esep = �0.962, which defines the energy of phase

separation. The latent heat Dq is defined as the energy being necessary

to cross the transition region at the transition temperature Tads.
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Depending on es and thus on the energetic location of the

crossing point, the adsorption transition appears to be second-

order-like (Dq=0 for es �o 2) or first-order-like (Dq4 0 for es �4 2)

for a finite, nongrafted chain. Referring to the phase diagram in

Fig. 1, the first scenario corresponds to the docking/wetting

transition from desorbed globules (DG) to adsorbed globules

(AG). The T�1(e) curves for es = 0,1 in Fig. 3(c) do not exhibit

microcanonical signatures for a first-order-like character

of the adsorption transition which occurs for es = 1, e.g., near

Tads E 0.7 (see Fig. 1). Noticeably, the inflection points near

T�1Y E 0.77 (TY E 1.3) indicate the Y-transition that separates

coil-like and globular conformations in the bulk (DE/DG). It is a

surprising observation that the adsorption transition becomes

first-order-like at the point where it falls together with the

Y-transition (es E 1.8, T E 1.3). This is signaled by the saddle

point of the corresponding T�1 curve in Fig. 3(c).

For larger values of es, phase coexistence is apparent for the
transition between DE and AE2. Here, the corresponding

deviations Ds(e) from the Gibbs hulls, as plotted in

Fig. 3(b), become maximal at the crossing point. The curves

of the inverse microcanonical temperatures decrease [i.e., T�1

as plotted in Fig. 3(c) increases] with increasing energy in the

transition region. The temperature ‘‘bends back’’, i.e., in the

desorption process from AE2 to DE, the system is cooled

while energy is increased. This is a characteristic feature of

first-order-like transition behavior of a finite system (called the

‘‘backbending effect’’)35 and has also been observed in numerous

other systems, such as, e.g., peptide aggregation.31,32 In

Fig. 3(c), the Maxwell lines T�1ads [the slopes of the corresponding

Gibbs constructions in Fig. 3(a)] are also inserted. The

adsorption temperatures Tads found with this construction

depend roughly linearly on the surface attraction strengths,

as it has already been suggested by our formerly constructed

phase diagram in ref. 30. Thus, the intersections of the

Maxwell lines and the T�1 curves are identical with the

extremal points in Fig. 3(b) and are located at the respective

energies eads, esep, and edes. Since the desorption energies per

monomer, edes, converge very quickly to a constant value

ees!1des � �0:35 with increasing adhesion strength, while the

adsorption energies eads still change rapidly, the latent heat per

monomer, Dq, increases with es. The same holds true for Dssurf
[cf. Fig. 3(b)]. Hence, both, the energetic gap between the

coexisting macrostates as well as the surface-entropic barrier,

increase with es and trivially diverge for es - N.

3.2 Chain-length dependence

Since the adsorption transition between DE and AE2 is

expected to be of second order in the thermodynamic limit,15

first-order signatures found for the finite system must

disappear for the infinitely large system N - N. Therefore,

we now investigate the chain-length dependence of the micro-

canonical effects. Figure 4(a) shows the microcanonical

entropies s(e), the adsorption entropies sads(e), and the

desorption entropies sdes(e) for chain lengths N = 10,. . .,40.

The respective slopes of sads(e) and sdes(e) near the crossing

points converge to each other with increasing chain length.

Hence, the depth of the convex well is getting smaller and thus

also the surface entropy decreases [Fig. 4(b)]. Interestingly, the

separation energies esep E �0.95 [which corresponds to the

maxima of Ds in Fig. 4(b) and approximately to the location of

the intersection points of sads(e) and sdes(e) in Fig. 4(a)] do not

depend noticeably on N. The desorption energies edes move a

little, but the adsorption energies eads shift much more rapidly

towards the separation point, i.e., the latent heat decreases

with increasing chain length. Consequently, in Fig. 4(c), the

backbending of the (reciprocal) caloric temperatures is getting

weaker; the adsorption temperatures converge towards a

constant. Note that the microcanonical temperature of these

finitely long chains is negative in the high-energy region.

This is another characteristic feature of finite systems in the

microcanonical analysis and disappears with increasing chain

lengths, as can be seen in Fig. 4(c).

Putting all this information together, we indeed observe a

clear tendency of the reduction of the microcanonical effects

Fig. 3 (a) Microcanonical entropies and its fraction for adsorbed

conformations sads(e) at various surface attraction strengths es =

0,1,. . .,6 for a 20mer [the fraction of desorbed structures corresponds

to s(e) for es = 0]; (b) deviations Ds(e) from the respective Gibbs hulls

(not shown) to illustrate the increase of the surface entropy Dssurf and
the latent heat Dqwith the attraction strength es. Note thatDssurf = Dq=0

for es = 0,1; (c) caloric inverse temperature curves T�1(e) andMaxwell

lines at respective reciprocal transition temperatures T�1ads.
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for larger chains. The rapid decreases of latent heat and

surface entropy qualitatively indicate that the adsorption

transition of expanded polymers (DE to AE2) crosses over

from bimodal first-order-like behavior towards a second-order

phase transition in the thermodynamic limit.

In Fig. 5, the chain-length dependences of the surface

entropies Dssurf and of the latent heats Dq are plotted,

parametrized by the surface attraction strength es. The chains
considered in our study are too short for a detailed finite-size

scaling analysis. However, for es 4 2, the plots suggest a

power-law dependence of these quantities in this regime.

A simple scaling ansatz for the surface entropy is Dssurf B N�ks,

while for the latent heat that trivially scales with es, we

choose Dq/es B N�kq. The least-square fits to the data yield

ks = 1.65(1.36,1.24,1.17) and kq = 0.39(0.37,0.37,0.36) for

es = 3(4,5,6). The fit curves are also inserted into Fig. 5. The fit

results for the exponents depend on es, but seem to converge to

constant positive values for es - N. The surface entropy

vanishes in the thermodynamic limit independently of the

transition characteristics. However, that our data suggest

limN-N Dq = 0 is support for the assumption of the

second-order nature of the adsorption transition. This is

consistent with results discussed in ref. 14.

3.3 Variation of the box size

Finally, after noticing that there is a considerable influence of

the simulation box size on the microcanonical properties of the

adsorption transition, we also want to investigate this effect in

more detail. To this end, simulations with es = 5 for a fixed

chain length (N = 20) were performed for different distances

Lz of the steric wall to the attractive substrate. Note that fixing

the chain length N, but changing Lz will also change the

density. Hence, the limit of Lz - N considered in the

following does not correspond to the thermodynamic limit.

Analogously to Figs. 3 and 4, the corresponding microcanonical

results are displayed in Fig. 6. Because the number of adsorbed

conformations cannot depend on the amount of space

available far away from the substrate, the unknown additive

constants to s(e), sads(e), and sdes(e) are chosen in such a way

that sads(e) coincides for all Lz in Fig. 6(a). It is also possible to

Fig. 4 (a) Microcanonical entropy s(e), adsorption entropy sads(e),

and desorption entropy sdes(e) for polymers with different chain

lengths N = 10,. . .,40 and fixed surface attraction strength es = 5 in

the adsorption transition regime. The maximum of s(e) and the

‘‘convex intruder’’ begin to disappear with increasing chain length—an

indication of the tendency of the adsorption transition to change its

characteristics from first-order-like to second-order behavior in the

thermodynamic limit; (b) deviations Ds(e) of s(e) from the Gibbs

construction; (c) caloric inverse temperature curves T�1(e) and

Maxwell lines at T�1ads, parametrized by chain length N.

Fig. 5 Scaling with polymer length N: (a) Latent heat per monomer

normalized by the surface attraction Dq/es vs. inverse chain length 1/N

for several surface attraction strengths es and least-square fit curves to

Dq/es B N�kq. The data collapse to a single straight line for not too

small es. (b) Surface entropy per monomer Dssurf vs. inverse chain

length 1/N and fits to Dssurf B N�ks.
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overlap all sdes(e) via a suitable additive constant. Hence, the

conformational entropy does not depend on the simulation box

size as long as the simulation box exceeds the chain size. This

should not be surprising, since once all possible conformations

can be adopted, there is nothing more to gain. All that should

happen is a gain of translational entropy proportional to the

logarithm of the simulation box size for desorbed conformations.

This is exactly what the data confirm. In Fig. 6(b) the

consequence of this on Ds(e) is shown. Both, the surface

entropy Dssurf and the latent heat Dq increase with Lz.

It is a significant qualitative difference compared to the

previous analysis of the limit N - N that the latent heat

remains finite for large box sizes, i.e., limLz-N Dq a 0. Thus,

the adsorption transition of the finite polymer preserves its

first-order-like character in this limit. The entropic barrier can

grow arbitrarily large for large simulation boxes since the

part of the phase space in proximity of the attractive substrate

gets arbitrarily small. It is interesting to note here that in

simulations of the grafted case no intruder was observed.

The resultant caloric inverse temperature curves T�1(e) in

Fig. 6(c) only differ in the energy regime, where both entropic

contributions, sads(e) and sdes(e), are of the same order of

magnitude—the coexistence region. Once again, the effect of

the intruder gets enhanced with Lz and only in this regime T(e)

changes with Lz. In Fig. 6(c), also the Maxwell lines representing

the adsorption temperatures are shown.

One can use the knowledge of the behavior of sads(e) and

sdes(e) to venture a simple estimate of Tads by performing a

Gibbs construction. In the adsorption phase, the contact point

of the Gibbs hull is independent of Lz,

s(eads) = strans,|| (eads) + sconf(eads), (11)

where strans,|| (eads) is the translational entropy parallel to the

substrate and sconf(eads) the conformational entropy of the

adsorbed conformations. The other contact point

s(edes,Lz) = strans,>(edes,Lz) + strans,||(edes) + sconf(edes),

(12)

corresponding to the entropy in the desorption phase, is a

decomposition of the Lz-dependent translational entropy

strans,>(edes,Lz) =N�1ln Lz, and the Lz-independent contributions

from the translation parallel to the substrate strans,||(edes)

and the conformational entropy sconf(edes). The adsorption

temperature is obtained as the inverse slope of the Gibbs hull

Tads ¼
edes � eads

sðedes;LzÞ � sðeadsÞ

¼ Dq
sconf ðedesÞ � sconfðeadsÞ þN�1 lnLz

:

ð13Þ

The conformational entropies and Dq also contain an

N-dependence, but since we fixed N this is of no interest here.

For practical purposes, relation (13) allows one to restrict

oneself to perform a single simulation within a sufficiently

large and finite box, and one only has to keep in mind the

simple ln(Lz) dependence on the simulation box size perpendicular

to the substrate.

4 Summary

In our multicanonical Monte Carlo simulation study, we have

investigated the adsorption transition of polymers at attractive

substrates with different binding strengths by means of micro-

canonical analyses. For short polymers our analysis revealed

that at the adsorption transition temperature, which is here

defined by a Maxwell construction, adsorbed and desorbed

conformations coexist. This supports the first-order character

of this transition for short polymers. The energetic separation

of these conformational phases is an estimate for the latent

heat which is, in principle, measurable in experiments. Thus,

beside the systematic qualitative investigation of the nature of

the conformational transitions, the microcanonical analysis

also enables quantitative predictions.

Fig. 6 (a) Microcanonical entropies and its fractions for adsorbed

and desorbed conformations, sads(e) and sdes(e), for increasing simulation

box size Lz = 20,. . .,150. The shape of both fractions remains

unchanged for different box sizes. Only the amount of desorbed

conformations increases relative to adsorbed ones for larger boxes;

(b) deviations from the respective Gibbs hulls Ds(e). An increased

sdes(e) induces an increase of the surface entropy Dssurf and also

slightly that of the latent heat Dq. (c) Caloric inverse temperature

curves T�1(e) andMaxwell lines, parametrized by the distance between

attractive and steric wall Lz.
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We have studied in detail how the character of the

conformational transitions depends on the surface attraction

strength, chain length, and concentration. It turned out that

the stronger the polymer is attracted by the substrate, the

larger is the separation of the adsorption and desorption

phases and the higher is the surface-entropic barrier, i.e., the

first-order character of the adsorption transition strengthens.

This is also found if the accessible volume is increased, in

which case primarily the translational entropy perpendicular

to the substrate controls the surface entropy. However, if the

monomer density is kept fixed, but the chain length is

increased, surface entropy and latent heat vanish and the

transition crosses over into a second-order phase transition

in the thermodynamic limit, as expected. We performed

scaling analyses for the decrease of these quantities and found

them to decay slower for larger surface attraction strengths.

To conclude, our study has shown the usefulness of the

microcanonical interpretation of the adsorption transition of

nongrafted polymers in the regime of the polymer–substrate

phase diagram30 that is dominated by expanded conformations.

This is substantial for the understanding of thermodynamic

properties in deposition and self-assembly processes of short

polymers or peptides at attractive substrates in good solvent.

In particular, the discovery of substrate and sequence

specificities in the binding of small proteins at semiconductor

substrates,8–13 with potential for nanotechnological applications,

has renewed the interest in and manifested the need of a more

fundamental and systematic investigation of adsorption

transitions.
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