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Abstract. In this work we investigate the structural properties of native states of a simple model for short
flexible homopolymers, where the steric influence of monomeric side chains is effectively introduced by a
thickness constraint. This geometric constraint is implemented through the concept of the global radius of
curvature and affects the conformational topology of ground-state structures. A systematic analysis allows
for a thickness-dependent classification of the dominant ground-state topologies. It turns out that helical
structures, strands, rings, and coils are natural, intrinsic geometries of such tubelike objects.

PACS. 05.10.-a Computational methods in statistical physics and nonlinear dynamics – 87.15.A- Theory,
modeling, and computer simulation – 87.15.Cc Folding: thermodynamics, statistical mechanics, models,
and pathways

1 Introduction

The structural properties of macromolecules composed of
covalently bound atomic complexes are of major interest
as the functionality of these molecules, e.g., biopolymers,
strongly depends on the formation of stable ground-state
conformations with several substructures. One can resolve
these structures by means of several experimental tech-
niques like molecular microscopy, NMR or X-ray analyses.

As these techniques are relatively costly and often can
hardly be generalized, the structural behavior of polymers
and its modeling got into the focus of computer simula-
tions, too. In early approaches, polymers were modeled
as topologically one-dimensional strongly coarse-grained
bead-spring systems, which were treated by means of
Monte Carlo and molecular dynamics computer simula-
tions [1–3]. Later, all-atom peptide simulations were per-
formed with the intention to study real biopolymers, in
particular their native states and the folding pathway to
native states [4,5]. As this is still a great challenge and
moreover restricted to comparatively short objects, the
interest in the earlier simple models continues until today.
There is still a great variety of one-dimensional stringlike
models of flexible polymers under current investigation
(see, e.g. [6–9]).
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b e-mail: t.neuhaus@fz-juelich.de
c e-mail: m.bachmann@fz-juelich.de
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However, biopolymers do have side chains, which are
responsible for the variety of forms and functions. As
these side chains involve strict steric constraints for the
structure of the polymer, the central question is therefore:
What degree of abstraction (coarse-graining) is reasonable
to treat certain features of real (bio)polymers or, the other
way around, which features can we reliably study with a
certain degree of abstraction? One can, for example, un-
derstand certain universal properties of the well-known
coil-globule transition by studying the simplest stringlike
models [10,11], whereas the formation of secondary struc-
tures will generally not be answered satisfactorily1.

We are going to approach this problem in the present
work by studying in detail some kind of “intermediate”
model. It is derived from a linelike model where addition-
ally the steric influence of monomeric side chains in real
biopolymers will be effectively introduced, without taking
into account further microscopical details, by a geomet-
ric thickness constraint, extending the model to a three-
dimensional tube [16–18]. An elegant possibility to imple-
ment the thickness constraint is provided by the concept
of the global radius of curvature which “provides a concise

1 We refer here mainly to ground states of models for flex-
ible polymers with a single length scale. Of course, there are
studies of simple polymer models dealing with the problem
of secondary structure formation, where helices were found for
example as (long-living) transient states during the folding pro-
cess, as ground states for stiff polymers, or at special ratios of
different length scales in the system [12–15].
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characterization of the thickness of a curve” [19]. We will
see that we already get quite interesting qualitative and
quantitative answers to the question of secondary struc-
ture formation under these conditions2.

The structure of this paper is as follows: In sect. 2.1
we first introduce the model we use and shortly describe
our methods, and in sect. 2.2 we explain in more detail
how the thickness is implemented in our model. After in-
troducing briefly some observables in sect. 3.1, we study
in sect. 3.2 the ground states of the model in great detail,
depending on the thickness with inter-monomer interac-
tion parameters kept fixed. Furthermore, in sect. 3.3 we
look at special problems like crystallization into regular
lattice structures and the appearance of biologically rele-
vant structures depending on a variable interaction length
scale. The paper concludes in sect. 4 with a summary of
our main findings.

2 Technical details

2.1 Model and methods

To model flexible homopolymers we use a thick, tubelike
off-lattice chain with fixed bond length and pure Lennard-
Jones (LJ) interaction between all, except for the neigh-
boring, monomers

VLJ(rij) = 4

(

(

σ

rij

)12

−
(

σ

rij

)6
)

, (1)

where rij = |xi − xj | is the distance between two
monomers at positions xi and xj . Note that VLJ(rij) = 0
for rij = σ and that the potential minimum VLJ(rij) = −1

is located at rmin
ij = 21/6 σ. The bond length ri,i+1 is set

to 1.
We investigate the model by means of Monte Carlo

computer simulations and numerical methods. For the
ground-state search, one may use for example the mul-
ticanonical method [23,24,?], the efficient random walk
algorithm introduced by Wang and Landau [25,26] or par-
allel tempering [27,28]. For this purpose, all methods work
nearly equally well as one does not have to care about
the quality of the sampling of the whole configuration
space and the performance depends mainly on the pa-
rameters of the methods. Additionally, we use standard
conjugate gradient methods to refine the results [29]. For
the methodologically more challenging task of studying
the thermodynamic behavior [30,31], we use the multi-
canonical method, calculating the multicanonical weights
with the help of the Wang-Landau algorithm. Chains with
different thicknesses have always been simulated indepen-
dently from each other, not at least to avoid uncontrollable
correlations.

2 There are recent, interesting studies of a tube model, show-
ing that helices can emerge by entropic effects. In these studies,
however, solvent particles and solvent effects are explicitly in-
troduced and play an important role [20–22].

2.2 Thickness and global radius of curvature

What precisely motivates us to simulate coarse-grained
homopolymer models with geometric constraints like
“thickness”? And, how is this realized in the model? Poly-
mers in biology are not thin strings. Amino acids, and
thus proteins, do have rather extended side chains ster-
ically avoiding each other. It might therefore be useful
to introduce a constraint that mimics this volume ex-
clusion. Furthermore, it has been shown [32] that tube
models for polymers allow for the formation of stable re-
gions of biologically relevant (sub)structures like helices
or sheets, in contrast to simpler linelike polymer mod-
els [33]. In addition, the introduction of such a geomet-
ric constraint restricting the conformational space might
even lead to some technical advantages for finding minimal
energy conformations in sophisticated stochastic ground-
state searches [31].

To define the self-avoiding tube, we use the concept
of the global radius of curvature rgc, which is a concise
characterization of the thickness of a curve [19,33]. The
global radius of curvature is defined as the minimal radius
of all circumcircles rc of any three monomers in the chain:

rgc(X) := min{rc(xi,xj ,xk), ∀ 1 ≤ i < j < k ≤ N}. (2)

The circumradius rc, i.e., the radius of curvature, of three
points located at positions xi, xj and xk can be calculated
as

rc(xi,xj ,xk) =
rij rik rjk

4A∆(xi,xj ,xk)
, (3)

where A∆(xi,xj ,xk) is the area of the triangle spanned
by the three points at xi, xj and xk. Note, that the
model uses a three-point interaction between monomers,
in contrast to two-point interactions typically used in
hard-sphere models to incorporate volume exclusion ef-
fects. Given a polymer conformation X = (x1, . . . ,xN )
with N monomers, we then define as its thickness d twice
the global radius of curvature rgc(X): d(X) = 2rgc(X).

The other way around, given a thickness constraint
ρ such that d ≥ 2ρ, one can construct an excluded vol-
ume depending on ρ around two monomers, which is “for-
bidden” for any other monomer. A polymer conformation
then complies with the thickness constraint if any other
monomer resides outside these circles. The partition func-
tion reads in this case

Zρ =

∫

DXΘ(rgc(X) − ρ) e−E(X)/T , (4)

where Θ(z) is the Heaviside function and

E(X) =
∑

i,j>i+1

VLJ(rij) (5)

is the energy of the conformation X.
Intuitive illustrations of this approach can be found

in [18], where it has been chosen for the analysis of ringlike
tube polymers. It is used as well in [30,31] where the pseu-
dophases of secondary structures for tubelike polymers are
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investigated. As a remark: Even though some universal
properties (such as, e.g., critical exponents) do not depend
on the exact definition of the thickness, the model may be-
have differently by imposing the hard constraint d = 2ρ,
i.e., by replacing Θ(rgc(X)− ρ) with δ(rgc(X)− ρ) in the
partition function (4) [18].

3 Results and discussion

In the following, we first analyze in detail the ground
states and ground-state regions of tubelike polymers for
chain lengths 8 ≤ N ≤ 13 with Lennard-Jones parameter
σ = 1, where VLJ = 0 for covalently bound monomers.
Furthermore, we investigate the influence of the tube
thickness in connection with the length scale σ of the non-
bonded LJ interaction on the formation of different classes
of structures. In this analysis, particular emphasis will
be dedicated to secondary structures such as helices and
strands, being most relevant for segments of biomolecules.

3.1 Conformational classification observables

We characterize and identify conformations by their en-
ergy E(X), but naturally also by geometrical properties
such as the end-to-end distance rend or radius of gyration
rgyr. However, as this turns out to be not sufficient to
distinguish between all conformations, we also take into
account local radii of curvature rlc,i := rc(xi,xi+1,xi+2),
which are related to the bending angles between two bonds
ϑ via ϑ = 1/rlc + O(r−2

lc ) for small ϑ, as well as torsion
angles φ ∈ (−π, π].

We speak of a κ0-conformation, if the chain has a
constant local curvature at all monomer positions, i.e.,
rlc,i = const, ∀i. Analogously, we call a structure with con-
stant torsion angles a τ0-conformation [34]. For example,
a prominent structure with both, κ0- and τ0-property, is
the perfect α-helix. A conformation is called “closed” if the
distance between both ends of the chain, i.e., rend, resides
in close vicinity of the Lennard-Jones minimum, whereas
a “symmetric” structure exhibits a symmetry of the tor-
sion angles with respect to the center of the chain. Nice
examples for “closed” κ0 conformations are twisted circles
of constant curvature (in German, so-called “windschiefe
Kreise” [35]). Finally, in “flat” conformations, the back-
bone has an almost two-dimensional, planar structure,

where all torsion angles converge to 0, i.e.,
∑

i φ
(i)
π/2 → 0,

where
φπ/2 := min(|φ|, π − |φ|). (6)

3.2 Thickness-dependent ground-state properties of
tubelike polymers

For our comprising study of the ground states of the
model, we first set the Lennard-Jones parameter to σ = 1.
In this case, the “natural thickness” rmin

gc , i.e., the global
radius of curvature of the ground state of a flexible LJ

polymer without thickness constraint, is about half the in-
teraction length rmin

ij /2 = 2−5/6 ≈ 0.56, which thus sets a

reasonable bound for the thickness constraint3. Below this
value, the thickness constraint does not influence ground-
state properties at all. Thus, in the following, we only
consider tube polymers with ρ > rmin

gc .
Figure 1 shows the energies of the ground states for

various chain lengths as a function of ρ in compari-
son to the energy of the corresponding calculated space-
filling (perfect) α-helix. This helix is defined as the helix
(x, y, z) = (r sin φ, r cos φ, pφ/2π) with a pitch p such that
the surface of the tube has a self-contact at the cylinder
with radius r and the radius r is minimal under the thick-
ness constraint. In other words, the optimally packed, i.e.,
space-filling, α-helix corresponds to the transition between
the two qualitatively different regimes of p/r > c∗ and
p/r ≪ 1 [36]. The computation of this helix is non-trivial,
as the critical ratio c∗ depends on the discretization level
and ranges from c∗ ≈ 2 for ρ ≈ 0.7 to c∗ = 2.512 for the
continuous case, which is equivalent to ρ → ∞. An inter-
esting and detailed discussion of compact helix formation
and the critical ratio c∗ can be found also in [21].

For two exemplified chain lengths, N = 8 and N = 10,
we have plotted in fig. 2 the derivatives dE/dρ in order to
emphasize regions of structural activity. In these regions,
where the derivative exhibits peaks, noticeable qualita-
tive conformational transitions occur. To describe and un-
derstand these different classes of ground-state conforma-
tions, we visualize in fig. 3 significant structures and plot
in fig. 4 the contact maps, where a contact is counted, if
the distance between two monomers rij < rmin

ij +ǫ. We set
ǫ ≈ 0.2 but, of course, the contact maps do not depend
on minor variations of ǫ, see footnote 4. In addition, in
figs. 5 and 6 end-to-end distances and mean torsional an-
gles discussed above are shown. Based on this data, we can
classify the generic behavior by introducing three general
regions: thin, intermediate, and thick tubes. Let us now
look at these regions in more detail.

3.2.1 Thin tubes

The thin-tubes region is, besides some singular points,
dominated by helical and helical-like conformations. We
call a conformation “helical”, if φ̄ = φ̄π/2, where x̄ is the
average along the chain, x̄ = (1/N)

∑

i xi, i.e., if all tor-
sion angles lie in a range 0 . . .±π/2 (cf. eq. (6) and fig. 6;
we do not distinguish between right- and left-handed he-
lices, but the sign must not change within the conforma-
tion). Furthermore, the entries in the contact map lie pre-
cisely parallel to the diagonal of the matrix in these cases,
a clear indication for helix structures (see, for example,
N = 8; ρ = 0.685 or N = 9; ρ = 0.73 in fig. 4). “Helical-
like” conformations share some properties with helical

3 Actually, due to the discrete nature of the bead-stick poly-
mer model, we measure a “natural thickness” � 0.59 for all
polymers considered.

4 Furthermore, due to the small size of the systems, the con-
tact maps do not become more meaningful by scaling ǫ with
the thickness in some way, instead of keeping ǫ constant.
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Fig. 1. Energies of ground states depending on the thickness constraint ρ. Dashed lines show for comparison the energy for
exact α-helices.
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Fig. 2. Numerical derivatives of the energies in fig. 1 with
respect to ρ for N = 8 and 10.

structures, e.g., they exhibit a large, slightly increasing
end-to-end distance (cf. fig. 5) with increasing thickness,
but the torsion-angle criterion above may be violated (typ-
ically in a periodical manner) and the contact-map entries
do not form an exact parallel, but a line roughly parallel
to the diagonal (for example, at N = 8; ρ = 0.6 or N = 9;
ρ = 0.78). Generally, we find three interesting effects look-
ing at the contact maps in fig. 4, which have been men-
tioned above or will be discussed later again: First we see
that polymer chains without thickness constraint (see the
maps for N = 8 and N = 9 with ρ = 0.6) do not have a

pronounced structure. Just by increasing the thickness a
bit, clear helical structures emerge, indicated by straight
“lines” parallel to the diagonal of the map (cf. N = 8
with ρ = 0.685 and N = 9 with ρ = 0.6855). Secondly,
by increasing the thickness further, we see, for example
for N = 9, that these parallel “lines” move away from the
diagonal, i.e., the helical conformations are “untwisting”.
Finally, looking at the contact maps for N = 13, we see
that tertiary effects come into play, indicated by “disrupt-
ing” vertical “lines”, which is typically an indication for
sheetlike structures.

Remarkably, within certain intervals (N = 8: 0.63 ≤
ρ ≤ 0.688; N = 9: 0.673 ≤ ρ ≤ 0.6855), the ground-state
conformations expand with increasing thickness to a per-
fect space-filling helix with κ0- and τ0-property, i.e., an
α-helix with constant bond and torsion angles (φ̄2 − φ̄ φ̄
and r̄2

lc− r̄lcr̄lc vanish5). The comparison of measured ob-
servables with the data for the exact α-helix is emphasized
in the insets of fig. 1 and furthermore exemplarily shown
in figs. 5 and 6. We will resume the discussion on this fact
in sect. 3.3.2 below.

5 A remark on the precision of the simulation: The values
of φ̄2 − φ̄ φ̄ and r̄2

lc − r̄lcr̄lc become even with the stochastic
methods smaller than 10−8 at this point, i.e., the difference
between any two torsion angles, for example, in the chain is
already less than 1.5 × 10−4π.
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N = 8

ρ = 0.60 0.685 0.72 0.73 0.91 0.94 1.023 1.10

N = 9

ρ = 0.60 0.6855 0.73 0.78 0.88 0.92 1.20

N = 10

ρ = 0.699 0.76 0.83 0.87 1.02 1.10 1.25

N = 13

ρ = 0.68 0.73 0.74 0.75 0.80 0.97 1.02 1.60

Fig. 3. Ground-state conformations for selected thickness parameters ρ for N = 8, 9, 10 and 13 (from top to bottom). The
second row for N = 8 shows the same ground states with appropriate thickness, to give a better idea of the “real” objects we
are investigating. The second rows for N = 9 and N = 13 show an alternative view of the same configuration. For reasons of
better visibility, the thickness is not shown in the proper scale (except for the second row).
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Fig. 4. Contact maps of the conformations shown in fig. 3. The axes show the monomer numbers i and j; the entries of the
matrix are set (•), if two monomers i and j are in contact with each other, i.e., if the distance between them in the three-
dimensional structure is shorter than a certain threshold value. This value is here slightly larger than the minimum distance of
the LJ potential rmin

ij .

As a remark: What is the motivation to call these
conformations α-helical in imitation of the real biologi-
cal α-helix? In natural proteins, α-helices possess about
3.6 amino acids per helix turn [37] and have mainly con-
stant bond and torsion angles. If we construct a perfect
space filling helix with exactly 3.6 monomers per turn, we
find that it has a global radius of curvature of rgc ≈ 0.69.
Or, the other way around in the region 0.6845 ≤ ρ ≤ 0.688
(example for N = 8), one counts 3.576 . . . 3.596 monomers
per turn, which is in very good agreement with natural α-
helices. We thus see the first biological relevant structure
realized by the simplest model with just Lennard-Jones
interaction and thickness but without any conformational
assumptions or additional input.

An above-mentioned singular point is located in the
vicinity of the perfect helices at ρ ≈ 1/

√
2 ≈ 0.71, where

ground states attempt to crystallize in a regular simple cu-
bic (sc) lattice structure. We find for example for N = 8
at ρ = 0.73 a κ0-conformation almost fitting the sc lat-
tice (elsewhere called “simple cubic lattice helix” [38]),
which then untwists with increasing thickness. We see the
same tendency for longer chains as well (see fig. 3 for vi-

sualizations and sect. 3.3.2 for further discussion). Note
that a perfect cube will not be a ground state at any
thickness, as the Lennard-Jones interaction length scale is
larger than the bond length. If we reconfigure the potential
such that its minimum value equals the bond length, i.e.
set rmin

ij = 1, we find indeed that the ground-state con-
formations fit exactly into the simple cubic lattice (i.e.
are exact cubes for adequate monomer numbers) up to
lengths of ≈ 30 monomers. We will show this in more
detail in sect. 3.3.1.

At larger thickness we observe in fig. 3 extended
helical-like conformations, which may overlap due to the
shortness of the chains only at the end bonds.

3.2.2 Intermediate tubes

In the interval 0.9 � ρ � 1.0, we observe an abrupt
switch to almost flat (cf. fig. 6) and mostly closed (cf.
fig. 5) conformations. One finds bended double rings, hair-
pins, and even conformations that are “crystallized” on a
two-dimensional honeycomb lattice (cf. fig. 3, N = 8, 13,
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Fig. 5. End-to-end distances of ground-state conformations depending on the thickness constraint ρ. The dashed line for N = 9
shows for comparison the end-to-end distance for the exact α-helix.

ρ ≈ 1.02). These curves are, of course, κ0-curves as well
and have apparent similarities to β-sheets known from sec-
ondary structures of biopolymers. We find in some small
regions competitions between mesomeric structures, i.e.

structures with the same monomer positions but differ-
ent bond distributions (see, for example, fig. 3, N = 10,
ρ ≈ 1.1).

3.2.3 Thick tubes

At ρ ≈ 1.1, the ground-state conformation is (again)
“closed” for all chain lengths. Here begins the region of
the twisted circles of constant curvature (“windschiefe
Kreise”) [34,35]. With increasing thickness, the rings be-
come more and more flat until they reach the two-dimen-
sional ring at ρ ≈ N/2π, which is again a κ0- and τ0-curve.
Increasing thickness just pushes apart the ring, which can
clearly be seen in the end-to-end distance and the torsion
angles (see figs. 5 and 6). For the somehow pathological
case of ρ → ∞ one would reach the limit of stiff rods.

For purposes of illustration we display two examples
from the class “windschiefe Kreise”. The first kind is
composed of 4 half-circles, which form a closed three-
dimensional curve. The left side of fig. 7 displays a N = 32
chain, which is a ground state of the theory and has
been obtained from simulations at rgc = 2.562915 and

rmin
ij = 1.6. As can be seen, each of the half-circles con-

sists of eight monomers. The second kind of “windschiefe
Kreise” constains four helix sections, that are joined to-
gether in such a way that the resulting curve is closed
again. The right side of fig. 7 displays such a N = 32 chain,
which was obtained from simulations at rgc = 3.624510
and rmin

ij = 1.6.

3.2.4 General remarks

It is not surprising that the situation becomes more com-
plex with increasing chain length. At least some of the
described “nice-looking phases” above are artificial in the
sense that they occur at exactly one short length, or are fa-
vored just by that very short length, respectively. We see,
for example, for N = 10 and N = 13 no exact (α-) helices
anymore, it rather seems that at these lengths “tertiary”
effects already play a role in the sense, that two small
secondary structures are formed which are then arranged
“side by side”. An indication for this trend may be that
conformations with low thickness are often “symmetric”6,

6 With “symmetric” we mean a somehow defined symmetry
of torsion angles, e.g., torsion angles are pairwise equal rela-
tive to the center of the chain. It is generally not essential for
defining or distinguishing different “phases”, but it is an inter-
esting property and helps the understanding. Corresponding
symmetry observables are not shown.
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Fig. 6. Mean torsional angles of ground-state conformations depending on the thickness constraint ρ. Shown are absolute mean
values of φ and φπ/2 := min(|φ|, π − |φ|). The short-dashed line for N = 9 shows the behavior for the exact α-helix.

Fig. 7. Two examples for twisted circles of constant curvature
rc ≈ 2.6 (left) and rc ≈ 3.6 (right) with N = 32 monomers.
See text for details.

i.e., the conformations get buckled and turn back at some
point (generally in the middle). See, for example, the heli-
cal region for N = 13 in fig. 3. Anyhow, the helical struc-
tures being present for shorter chains indeed exist “very
close” to the ground states, i.e., with a slightly higher
energy. Two of these conformations are depicted in fig. 8.

We will get further convincing arguments for this clas-
sification scheme by investigating the thermodynamic be-
havior of these polymers in the aforementioned general
structural phases [30,31]. The transition lines between the
phases then depend indeed on both thickness and temper-
ature. For low temperatures, the helical phase corresponds
to polymers with low thickness, the sheet phase to a lit-
tle higher thickness and the ring phase to the very thick
polymers.

Fig. 8. Two N = 13 conformations with ρ = 0.73 (left) and
ρ = 0.74 (right), which are not the ground-state conformations
but have a just slightly higher energy than these. The confor-
mations correspond to distinguished ground-state structures
at shorter lengths (helical and crystallized on the sc lattice,
cf. fig. 3). For reasons of better visibility, the thickness is not
shown on scale.

3.3 Selected problems: Deeper analysis and remarks

3.3.1 Simple cubic symmetry

One of the basic observations within our polymer model
relates to the fact that the theory’s parameter space of
thickness ρ and rmin

ij values possibly contains a likewise
finite set of isolated and special parametric points, for
which ground-state conformations exhibit a strict crys-
talline structure. These polymer conformations are char-
acterized by a point set of monomer positions, that is
frozen into a regular three-dimensional (3d) structure and
none positional degree of freedom is left over. Addition-
ally, these ground states inherit a finite and possibly large
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ground-state degeneracy as there exist many ways to ar-
range the polymer sequence of monomers onto the frozen
point set, without lifting the theory’s energy to larger val-
ues. Typically, we then expect a number of ground-state
configurations that increases exponentially, n0 ∝ exp(cN),
with the chain length for long chains. Furthermore, the
presence of crystalline ground states in the tube model
possibly is attached to a triplet of global radius of cur-
vature values rgc = 0.5774, 1/

√
2 = 0.7071, and rgc = 1,

which denote the radii of circular polymers, that have an
end-to-end distance of unity with exactly N = 3, 4 and
6 monomers on a circle. By numerical means it is then
easy to show that these particular radii result in triangu-
lar lattice (N = 3), simple square lattice (N = 4), and
honeycomb lattice (N = 6) ground-state polymer point
sets in two dimensions (2d), that is to say a dimensional
reduced tube polymer model. The phase space of 3d poly-
mers as such is much larger than in 2d and a search at
rgc = 0.5774 and rgc = 1 does not reveal any crystals
for 3d polymers that would persist in the thermodynamic
limit. However, at the particular value of rgc = 1/

√
2 and

for rij = 1, we find stable 3d ground-state conformations
with point sets of simple cubic symmetry and with large
ground-state degeneracy. These crystals are likely to ex-
tend in the thermodynamic limit for large N values.

The numerical simulations in the case of the 3d thick
tube model have been performed on chain length val-
ues N = 8, 9, . . . , 32, 36, 40, 44, 48, 52, 56, 60, and N = 64.
The global radius parameter was chosen to be ρ = 1/

√
2

with the value rmin
ij = 1 for the position of the Lennard-

Jones potential minimum7. We employed parallel temper-
ing simulations in the temperature interval 0.01 ≤ T ≤ 0.5
with a temperature partition that ensures acceptance
rates around 0.5 for parallel tempering swaps between
neighbors in the temperature. For a complete tempera-
ture interval coverage on a N = 32 chain, a total of 39
temperature replica was needed. A single Monte Carlo run
consists of 109 ×N monomer positional updates and from
the ensemble of configurations the minimum-energy con-
figuration was stored. A sequence of about 10 continuation
runs for each chain length N with identical run parame-
ters but with continued start configurations then yields
an ensemble of about 10 ground-state estimates, and also
the global ground-state estimate of the simulation. Finally,
an adapted conjugate-gradient method was applied for re-
finement. We found that the efficiency of the Monte Carlo
simulation in an attempt to populate statistically inde-
pendent ground states rapidly degrades for chain length
values N ≥ 36 and therefore the longest chains (except
the one at N = 36) are excluded from further analysis.

For a crystalline polymer conformation with simple cu-
bic symmetry one can find a set of transformations, i.e.,
translations and orthochroneous rotations, that map the

7 We also modified a single interaction term of the Lennard-
Jones interaction between the polymers end to end: V = ∞
for r ≤ 1 and V = 0 for r > 1. This facilitates a perfect
arrangement of the polymer monomers at the start and the end
on a simple cubic lattice, if they prefer to be direct neighbors
in space.

Fig. 9. A ground-state conformation for the N = 27 polymer
with ρ = 1/

√
2 and rmin

ij = 1 (i.e., σ �= 1). The left picture
shows the conformation in the proper scale, the right side shows
the same conformation without proper thickness.

polymer point set to some point set of a simple hypercu-
bic lattice. Denoting by x

sc
i = mα

i eα with i = 1, . . . , N ,
α = 1, 2, 3, and with mα

i integer, a point set on a simple
cubic lattice, the mean squared distance to a simple cubic
lattice

d2
sc =

1

N

N
∑

i=1

(xpolymer
i − x

sc
i )2 (7)

can be transformed to d2
sc = 0, if also an appropriate set

of mα
i values is chosen. Our main numerical result con-

sists in the finding that all of our ground-state polymers
at N = 8, 9 and for N = 11, 12, . . . , 36 fulfill the numeri-
cally determined inequality d2

sc ≤ 0.000053 and therefore
we observe a blatant simple hypercubic symmetry in the
ground state of the theory for the considered chain length
values to a high degree of numerical precision. A partic-
ular impressive ground-state conformation is displayed in
fig. 9, where the N = 27 polymer folds onto a 3 × 3 × 3
cuboid: Cub(3 × 3 × 3). For the N = 27 chain, we per-
formed a total of eight different continuation runs, which
all yielded simple cubic symmetry in the ground-state es-
timates with values d2

sc ≤ 0.000053. From these eight con-
figurations, six were found with point sets isomorphic to
Cub(3 × 3 × 3), however with five different mappings of
the polymer sequence to the cuboid and with almost de-
generate energy close to the ground-state energy. Given
the numerical ability of the algorithm to identify different
ground-state and near-by ground-state conformations, it
appears unlikely that the true ground state has not been
identified for the N = 27 chain. A similar remark ap-
plies to all shorter chains. For purposes of future reference,
and as a yard stick of our numerical precision, we display
in table 1 ground-state energy density values e0 = E/N
from numerical simulations (second row) as a function of
the chain length N , as well as exactly calculated energy
densities for various cuboids. It is noteworthy that ground
states at N = 8, 12 and 18 also exhibit cuboidal point sets:
Cub(2×2×2), Cub(2×2×3) and Cub(2×3×3), respec-
tively. For the N = 36 chain the exactly calculated energy
density of the Cub(3× 3× 4) cuboid undershoots the nu-
merical value significantly and, in fact, the cuboid was not
found in the numerical simulations. This again indicates
the failure of our numerical algorithms for chains with
length N ≥ 36. Finally, it is also of interest to classify the
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Table 1. Ground-state energy density values e0 = E/N from
numerical simulations (second row) as a function of the chain
length N , as well as exactly calculated energy densities e0

(cuboids) for various cuboids (fourth row).

N e0 Manifold e0 (cuboids)

8 −1.0032 Cub(2 × 2 × 2) −1.0038

9 −0.9670

10 −1.0398

11 −1.1052

12 −1.2497 Cub(2 × 2 × 3) −1.2514

13 −1.2263

14 −1.2773

15 −1.3179

16 −1.4152

17 −1.4451

18 −1.5267 Cub(2 × 3 × 3) −1.5293

19 −1.5165

20 −1.5496

21 −1.5729

22 −1.6346

23 −1.6612

24 −1.7159

25 −1.7465

26 −1.7944

27 −1.8385 Cub(3 × 3 × 3) −1.8433

28 −1.8230

29 −1.8282

30 −1.8383

31 −1.8750

32 −1.8875

36 −1.9224 Cub(3 × 3 × 4) −2.0036

secondary structures of compactified ground-state confor-
mations for the case of simple cubic symmetries. In partic-
ular we may consider U-turns (planar), and simple cubic
helices (three-dimensional) [38], which both are chain seg-
ments of four monomers with bending angles of 90 degrees
between consecutive segments on the simple cubic lattice.
Using a pattern recognition program along the ideas of
Tenenbaum et al. [39] on a set of five different ground-state
conformations for the N = 27 polymer we obtain rather
low probabilities PU-turn ≈ 0.27 and Psc-helix ≈ 0.22 for
the occurrence of U-turns and sc-helices, respectively.

3.3.2 The α-helix region

For the N = 8 and 9 polymer, we found a thickness region,
where the α-helix is the ground-state conformation (see
sect. 3.2). Remember that we used the Lennard-Jones po-
tential with σ = 1 there, which sets the interaction length
scale. There is nothing special with it, except that the po-
tential just vanishes at the bond length, a fact that plays

just a “second order” role, as we are not counting energy
contribution from consecutive monomers at all.

Because of the special role of the α-helix in nature (be-
sides its geometrical elegance), we will here try to track
the α-helix not only in the thickness but also in the σ-
direction of the “phase space”, i.e. we vary ρ and σ inde-
pendently in the vicinity of the assumed “α-region”. Our
results are displayed, exemplarily for N = 8, in fig. 10. We
see that the α-helix occurs as ground-state conformation
in a small, bounded thickness interval (0.66 < ρ < 0.75)
right “before” an abrupt conformational change (depicted
by the solid line) to cubelike structures. The transition
line increases approximately linearly in the interaction-
length–thickness plane, a dependence which seems to hold
generally for structural transitions in the vicinity. Fol-
lowing a perpendicular path, i.e., with increasing interac-
tion lengths and decreasing thickness, the helices untwist
smoothly. The dash-dotted line together with the solid line
define the region where the α-helix is the ground state of
the system (cf. insets in fig. 1). Note that for ρ < 0.66 and
ρ > 0.75, α-helices are no ground states at all.

A further interesting transition is marked by the
dashed line in fig. 10. This line indicates the transition bet-
ween the so-called simple cubic “lattice helices (ii)” and
“(i)” [38], i.e., cuboidlike structures with parallel and an-

tiparallel tails (remember that for rmin
ij = 1 and ρ = 1/

√
2,

we observe the “crystallization” exactly at the simple cu-
bic lattice, as mentioned in sect. 3.2.1 and in detail dis-
cussed in sect. 3.3.1).

For the sake of completeness, the dotted line indicates
a conformational change to some less interesting interme-
diate structure “between” α- and lattice helices and the
arrows on the y-axes mark the line σ = 1 investigated in
the first part of this study.

4 Summary

The aim of this work was to take the simplest coarse-
grained model for off-lattice polymers with explicit vol-
ume exclusion and to show to which degree polymer crys-
tallization can be understood within this formulation. We
introduced the polymer volume using the concept of the
radius of curvature which is indeed, in the first instance,
a mathematical concept. In fact, it has been proven that
“[it] is connected to various physically appealing proper-
ties of a curve. In particular, [it] provides a concise char-
acterization of the thickness of a curve, [. . .] as have been
investigated within the context of DNA” [19]; this con-
cept was further successfully used in more complex mod-
els for proteins [16,17,33] and it was finally shown that it
is effectively equal to a volume exclusion using two-point
functions for polymers in good solvents [18].

Using sophisticated simulation techniques, we have an-
alyzed systematically and in detail ground-state structures
for the described model with fixed interaction length. We
have shown, for example, that already in this simplest
model basic secondary structures like helices and sheets
form. This statement is due to the simplicity of the model,
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Fig. 10. N = 8: The σ-ρ plane and ground-state conformations near the α-helix. The left and right coordinates are connected
just via rmin

ij = 21/6σ. See text for details.

valid for various classes of polymers. Of course, it should
be stated as well, that the mentioned structures are not
very stable against variations of the thickness, but this
was not expected either.

We investigated furthermore in detail the “neighbor-
hood” of the α-helix by varying both thickness and in-
teraction length. Affirming the above statement, it turned
out that the α-helix exists as ground state only in a small,
bounded area in the σ-ρ space, but is surrounded by other
helical and helical-like conformations.

It was of course known for a long time that helices
and sheets form within coarse-grained models including
a somehow defined volume exclusion, but to our knowl-
edge mainly for dedicated or less simple and not that
general models. In some interesting works, for example,
the strength of directionalized interactions [12], explicit
hydrogen bonds [40,41], solvent particles [20–22], or the
interplay between attractive interactions and packing [14]
play a role. In particular the findings of [14] also confirm
the existence of not too long helical structures in a specific
homopolymer model that is characterized by strong repul-
sive interactions between spheres. It is a common ansatz
to investigate and understand protein folding, stressing
that we do not speak only of proteins but of a general
class of polymers including proteins, at different abstrac-
tion (coarse grained) levels. It seems that at least parts
of the general secondary structure formation can be at-
tributed already to the simplest generic model for thick
polymers. Obviously, these secondary structure segments
have to be strengthened by further interactions in order to
reach, for example, biologically relevant structure sizes, as
tertiary effects set in at comparatively short chain lengths
in simple coarse-grained models [12,21,31].

The analysis of ground states is, of course, just a
first step to an understanding of the model. In a sub-
sequent work [31] we will, based on the knowledge of the

ground-state conformations, focus on the thermodynamic
behavior and conformational phases at finite tempera-
tures.

This work is partially supported by the DFG (German Sci-
ence Foundation) under Grant No. JA 483/24-1/2/3 and the
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