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We discuss general thermodynamic properties of molecular structure formation pro-
cesses like protein folding by means of simplified, coarse-grained models. The confor-
mational transitions accompanying these processes exhibit similarities to thermodynamic
phase transitions, but also significant differences as the systems that we investigate here
are very small. The usefulness of a microcanonical statistical analysis of these transitions
in comparison with a canonical interpretation is emphasized. The results are obtained by
employing sophisticated generalized-ensemble Markov-chain Monte Carlo methodologies.

1. Polymers and proteins

In heterogeneous many-particle systems, where typically different energy scales, associ-
ated with the inter-particle interactions, compete with each other, the formation of stable
composites is a complex process. This is even more relevant if the many-particle system
exhibits constraints such as covalent chemical bonds restricting the mobility of atomistic
or monomeric subunits. Furthermore, the flexibility of the molecular system to adapt to
environmental conditions (solvent, temperature, pressure, etc.) is reduced. Non-covalent
interactions among such subunits which are due, for example, to dipole–dipole interactions
(van der Waals “bonds”, hydrogen bonds), cause additional limitations [1].

Concentrating on linear, linelike molecules in solvent, two major classes are discrimi-
nated: homopolymers and heteropolymers. Homopolymers are chains of repeated iden-
tical subunits, i.e., chemical groups (“monomers”); a typical example is polyethylene
(-[CH2]-)N , where N is the degree of polymerization. The “two ends” of the backbone
of the characteristic monomers (in the case of polyethylene this is the methylene group
CH2) are connected by covalent bonds (e.g., C-C) with the previous and the next group,
respectively.

In general, depending on symmetry and stability, covalent bonds strongly differ in their
response to excitations, which, for example, can be induced by external fields or thermal
fluctuations. If, under present environmental conditions and external fields, these bonds
are hardly excited to perform fluctuations, then they are rather “stiff”, i.e., the contour
length of the chain is widely conserved. Thus, depending on the backbone stiffness,
longitudinal degrees of freedom are frozen and thus result in constraints of the tangential
monomeric mobility. In other cases, polymers can be elastic and due to the longitudinal
flexibility, the contour length fluctuates upon excitation.
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Basic backbone geometries that can be associated with such linelike objects are helices,
strands, rodlike, and “random” wormlike conformations. Helices and sheets belong to the
class of secondary structures and are stabilized by hydrogen bonds formed by dipole–dipole
interactions of polar groups (e.g., -CO, -NH, -OH) in the polymer backbone. However,
it should be noted that the formation of hydrogen bonds is not a necessary condition for
the onset of secondary structures which are rather elementary intrinsic geometries of such
linear monomeric chains. This is particularly visible, if the monomers contain side chains
which can be modeled as tubelike polymers [2,3].

If the monomers have a larger chemical complexity, e.g., by the existence of side chains
(e.g., polar groups, aromatic rings, etc.) protruding from the backbone, repulsive volume
exclusion effects and attractive interactions among side chains (caused by electrostatic,
van der Waals, or hydrophobic forces), higher-order (“tertiary”), i.e., crystalline or amor-
phous, glassy structures can form. These interactions entail a further, not necessarily
uniform, limitation of the individual monomeric mobility. Typically, the energy of in-
dividual non-covalent bonds among side chains of different monomers is comparatively
small and thus they already break by correspondingly weak changes of the environmen-
tal conditions. Therefore, stable tertiary structures require the cooperative formation of
many of these non-covalent bonds. Consequently, conformational stability depends on ex-
ternal parameters such as temperature, polymer concentration, solvent quality, pressure,
presence of external fields, etc., which control the different structural phases of polymers.

Despite the huge number of natural and technologically important synthesized polymers
with their different chemical compositions, a rough classification of linear polymers into
groups of flexible, semiflexible, and stiff polymers is possible. Thus, only a few system
parameters, based on the fundamental length and energy scales associated with covalent
bonds and non-covalent interactions, are necessary to describe the generic phase behavior
of classes of polymers [1]. Conformational transitions of single homopolymers can be
understood as thermodynamic phase transitions if the degree of polymerization, i.e., the
length of the chain or the number of monomers N , is huge [4,5]. The general structural
behavior of polymers is typically described by geometric quantities such as the end-to-
end distance Ree and the radius of gyration Rgyr, the latter being a measure for the
compactness of polymers. For very long chains, i.e., in the limit N → ∞, the ensemble
average has a power-law form, 〈R2

ee,gyr〉 ∼ N2ν , where ν is a universal exponent which
is a characteristic constant in the structural phase the polymer resides in. For a flexible
interacting polymer in good solvent (or temperatures T above the Θ point at TΘ), for
example, ν ≈ 3/5. This corresponds to the behavior of self-avoiding walks (random coils
with pure steric volume exclusion). At the Θ point that separates good from poor solvent
conditions, or alternatively, the random-coil phase from the globular phase of compact
conformations at TΘ, ν = 1/2. The polymer behaves like a random walk – repulsive
volume exclusion and attractive monomer–monomer interaction cancel each other. In
the globular and crystalline phase (T < TΘ), very compact (or spherical) conformations
dominate and thus ν ≈ 1/3.

However, it should be noted that the interest in polymers of rather small length N � ∞
has increased in the past years with the onset of nowadays available high-resolution ex-
perimental techniques and the demand for nanofabrication of molecular applications. The
investigation of the finite-length behavior of single polymers sheds some new light on the
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conformational transitions of polymers. Nucleation effects are governed by the compe-
tition of likewise surface and volume effects as well as entropic ambiguity and energetic
significance of polymer conformations in a certain macrostate (“pseudophase”) and close
to transitions between different macrostates (“pseudophase transitions”). The thermody-
namic limit is not of relevance anymore and thus is not the asymptotic critical behavior,
too. The understanding of subphases and transitions in-between becomes crucial, but
this is challenging because of the high specificity of small polymers. Thus, a generic
classification of conformational subphases is an intricate problem as details of monomeric
properties – even down to the atomistic level – can essentially influence the overall pseu-
dophase behavior. The description of structural behavior by means of theoretical models
is, therefore, difficult and one has to be aware that results of studies of the same polymer
can differ from model to model. Thus, model studies of finite-length polymers are of
highly qualitative nature and results have to be interpreted as “possible scenarios” rather
than definite answers [6].

This is particularly relevant for a special class of polymers, the heteropolymers. The
most prominent representatives are the proteins which are the workhorses in all biological
cell systems. Proteins are synthesized by the ribosomes in the cell, where the genetic
code is translated into a sequence of amino acids. The folding of a synthesized protein
into its three-dimensional structure is typically a spontaneous process that takes place in
an aqueous environment. In a complex biological system, the large variety of processes
which are necessary to keep an organism alive requires an ensemble of different functional
proteins. In the human body, for example, about 100 000 different proteins fulfill specific
functions. However, this number is extremely small, compared to the huge number of
possible amino acid sequences (= 20N , where N is the number of amino acids, typically in
the range 100 to 3000). The reason is that bioproteins have to obey very specific demands.
Most important are stability, uniqueness, and functionality.

2. Folding transitions of proteins

The structural changes a protein experiences in the folding process are of different na-
ture. There are rather local, but nonetheless cooperative arrangements of monomeric
subunits in helical or sheetlike segments. These are secondary structures (the amino
acid sequence is the primary structure). The formation of secondary structures is a con-
formational transition; a very prominent one is the helix-coil transition: In a collective
effect of orientational ordering, an unfolded segment of adjacent amino acids transforms
into a helical substructure. Molecular helix-coil transitions are typically accompanied by
hydrogen-bond formation. Hydrogen bonds stabilize the symmetry of secondary struc-
tures. A famous example is the Watson-Crick α-helix with 3.6 amino acids per winding
(see Fig. 1).

In proteins, the size of individual secondary-structure segments is typically rather small.
The reason is that proteins are “interacting polymers”, i.e., the amino acids interact with
each other and form a globular or tertiary shape. This is due to the fact that amino acids
possess a uniform backbone and differ only in their side chains. Adjacent amino acid
backbones are connected via the peptide bond and electric dipoles formed by backbone
atoms are typically involved in hydrogen-bond formation. Backbone-backbone interaction
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Figure 1. The C-peptide of ribonuclease A consists of 13 amino acids and is a typical α-helix
former.

provides the symmetry of secondary structures. However, the interaction between the
non-bonded side chains is non-uniform and strongly dependent of the side chain type.
Roughly, two significantly different classes of side chains occur: hydrophilic ones that
favor contact with a surrounding polar solvent like water and hydrophobic side chains
which are non-polar, thus disfavoring contact with water molecules (for representatives of
the two classes see Fig. 2). Therefore, the effective force that leads to the formation of a
compact hydrophobic core surrounded by a screening shell of polar amino acids is called
hydrophobic force. For spontaneously folding single-domain proteins it is the essential
driving force in the tertiary folding process.

The folded structure of a functional bioprotein is thermodynamically stable under phys-
iological conditions, i.e., thermal fluctuations do not lead to significant globular confor-
mational changes. To force tertiary unfolding requires an activation energy that is much
larger than the energy of the thermal fluctuations. This activation barrier can be drasti-
cally reduced by the influence of other proteins, the prions. The Creutzfeld-Jakob disease
is an example for the disastrous consequences prion-mediated degeneration of proteins
can cause in the brain. The folded structure and the statistical ensemble of native-like
structures, which are morphologically identical to the native fold, form a macrostate. It
represents a conformational phase which is energy-dominated. Functionality of the native
structure is only assured if entropic effects are of little relevance.

A significant change of the environmental conditions such as temperature, pH value, or,
following the above example, the prion concentration, can destabilize the folded phase.
Entropy becomes relevant, the entropic contribution to the free energy starts dominat-
ing over energy. Consequently, the hydrophobic core decays. This does not necessarily
lead to a globular unfolding of the protein. A rather compact intermediate conforma-
tional phase can be stable [7]. However, further imbalancing the conditions will finally
lead to the phase of randomly unstructured coils. The latter transition is often called
“folding/unfolding transition”, whereas the hydrophobic core formation is referred to as
“glassy transition”, as unresolvable competing energetic effects may result in frustration.
The primary structure, i.e., the sequence of different amino acids lining up in proteins, is
already sort of quenched disorder.

A simple example for these transitions accompanying a lattice peptide [8] folding process
is shown in Fig. 3, where the specific heat CV and the fluctuations of end-to-end distance
and radius of gyration, d〈Ree,gyr〉/dT , are plotted as functions of temperature. Above
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Figure 2. (a) Tyrosine (Tyr) is an amino acid with an OH group in the side chain. Thus, it is
hydrophilic as the OH dipole can form a hydrogen bond with a polar solvent molecule (water).
(b) Phenylalanine (Phe), on the other hand, is a typical example for a hydrophobic amino acid.
The CH2-C6H5 side chain does not contain a polar group. Phe in the surface-accessible protein
shell would disturb the hydrogen-bond network of the solvent which is energetically disfavored.

the folding transition, structureless conformations dominate the “vapor phase”. Below
the folding transition, but above the hydrophobic-core collapse, very compact “globular”
structures form the “liquid phase”. When, for lower temperatures, the hydrophobic-core
formation proceeds, the fluctuations get smaller. Finally, the native state with maximally
compact hydrophobic core has formed. As in this example, the native state is not neces-
sarily the overall most compact conformation. This is obvious from the negativity of the
gyration radius fluctuations in this transition region. Although all fluctuating quantities
clearly signalize the transitions, the peak temperatures do not perfectly coincide. This
is a typical indication for the finiteness of the system. There are no transition points
in protein structure-formation processes, but rather transition regions [6,9]. This sepa-
rates conformational transitions of finite-length polymers (pseudophase transitions) from
thermodynamic phase transitions being considered in the thermodynamic limit.

3. Microcanonical vs. canonical interpretation

The smallness of such systems can cause surprising side-effects in nucleation processes
which protein folding belongs to. Since the formation of the solvent-accessible hydrophilic
surface and the bulky hydrophobic core is crucial for the whole tertiary folding process,
the competition between surface and volume effects significantly influences the thermo-
dynamics of nucleation [10–14]. For this reason, it is not obvious at all, which statistical
ensemble represents the appropriate frame for the thermodynamic analysis of folding pro-
cesses. This is even more intricate, as one may think. It is, for example, quite common
to interpret phase transitions by means of fluctuating quantities calculated within the
canonical formalism. Transition points are characterized by divergences in the fluctua-
tions (second-order phase transitions) or entropy discontinuities (first-order transitions),
occurring at unique transition temperatures. This standard analysis is based on the
assumption that the temperature is a well-defined quantity, as it seems to be an eas-
ily accessible control parameter in experiments. This assumption is true for very large
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Figure 3. Folding thermodynamics of a 42-residue peptide using a simple hydrophobic-polar
lattice peptide model [9]. Shown are the specific heat and fluctuations of structural quantities
such as end-to-end distance and radius of gyration.

systems (N → ∞) with vanishing surface/volume ratio in equilibrium, where surface
fluctuations are irrelevant. The microcanonical Hertz entropy S(E) = ln G(E) (with
kB = 1 in our units), where G(E) =

∫ E
Emin

dE′g(E ′) is the integrated density of states,
is a concave function and thus the microcanonical temperature, defined by the mapping
F : E 	→ T =: T (E) = [∂S(E)/∂E]−1, never decreases with increasing energy E. A
discrimination of the parameter “temperature” in the canonical ensemble and the micro-
canonical (caloric) temperature T (E) is not necessary, as energetic fluctuations vanish and
thus the canonical and the microcanonical ensemble are equivalent in the thermodynamic
limit.

But what if surface fluctuations are non-negligible? In this case, the canonical tem-
perature can be a badly defined control parameter for studies of nucleation transitions
with phase separation.1 This becomes apparent in the following microcanonical folding
analysis of an exemplified off-lattice hydrophobic-polar heteropolymer with 20 monomers
and sequence H3P2HP2HPHP2HPHPHPH, as described by the AB model [15–17].

From multicanonical [18] computer simulations, an accurate estimate of the density of
states g(E) can be obtained. For this particular heteropolymer, it turns out that the
entropy S(E) exhibits a convex region, i.e., a tangent with two touching points, at Efold

and Eunf > Efold, can be constructed. This so-called Gibbs hull is then parametrized by
H(E) = S(Efold) + E/Tfold, where Tfold = [∂H(E)/∂E]−1 = [(∂S(E)/∂E)Efold,Eunf

]−1 is
the microcanonically defined folding temperature, which is here Tfold ≈ 0.36. As shown in
Fig. 4, the difference S(E) − H(E) has two zeros at Efold and Eunf , and a noticeable well
in-between with the local minimum at Esep. The deviation ΔS = H(Esep) − S(Esep) is
called surface entropy as the convexity of the entropy in this region is caused by surface

1Folding or “nucleation” processes of proteins are strongly dependent on the sequence of amino acids.
Thus, folding is no generic phase transition and terms like “nucleation” should be used with some care.
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Figure 4. Folding transition as a phase-separation process for an exemplified 20mer in the AB
model. In the transition region, the caloric temperature T (E) of the protein decreases with
increasing total energy. Folded and unfolded conformations coexist at the folding transition
temperature, where S(E) = H(E), corresponding to Tfold ≈ 0.36. The energetic transition
region is bounded by the energies Efold ≈ −6.3 and Eunf ≈ 0.15. Folding and unfolding regions
are separated at Esep ≈ −2.0.

effects.
However, the most striking feature in Fig. 4 is the qualitative change of the micro-

canonical temperature T (E) in the transition region: Approaching from small energies
(folded phase), the curve passes the folding temperature Tfold and follows the overheating
branch. It then decreases with increasing energy (passing again Tfold) before following the
undercooling branch in reverse direction, crossing Tfold for the third time. In the unfolded
phase, temperature and energy increase as expected. The unusual backbending of the
caloric temperature curve within the transition region is not an artifact of the theory. It
is a physical effect and has been confirmed in sodium cluster formation experiments [19],
where a similar behavior was observed.2

In Fig. 5, results from the canonical calculations (mean energy 〈E〉 and specific heat per
monomer cV ) are shown as functions of the temperature. The specific heat exhibits a clear
peak near T = 0.35 which is close to the folding temperature Tfold, as defined before in
the microcanonical analysis. The loss of information by the canonical averaging process is
apparent by comparing 〈E〉 and the inverse, non-unique mapping F −1 of microcanonical

2It is sometimes argued that proteins fold in solvent, where the solvent serves as heat bath. This would
provide a fixed canonical temperature such that the canonical interpretation is sufficient to understand the
transition. However, the solvent-protein interaction is actually implicitly contained in the heteropoly-
mer model and, nonetheless, the microcanonical analysis reveals this effect which is simply “lost” by
integrating out the energetic fluctuations in the canonical ensemble (see Fig. 5).
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Figure 5. Comparison of canonical and microcanonical analysis for the folding transition:
The fluctuations of energy as represented by the specific heat per monomer, cV (T ), exhibit a
sharp peak near T ≈ 0.35. The canonical mean energy 〈E〉(T ) crosses over from the folded
to the unfolded conformations. However, the canonical calculation averages out the overheat-
ing/undercooling branches and the backbending effect which are clearly signaled by the mi-
crocanonical analysis of the (inverse) mapping between temperature and energy. The micro-
canonically defined “folding temperature” Tfold is close to the peak temperature of the specific
heat.

temperature and energy. The temperature decrease in the transition region from the
folded to the unfolded structures is unseen in the plot of 〈E〉.

Eventually, as we had already mentioned when discussing the results shown in Fig. 3,
there is also no unique canonical folding temperature signaled by peaks of fluctuating
quantities; there are rather transition regions. Therefore, for small systems, the definition
of transitions based on the canonical temperature is indeed little useful. Consequently,
the microcanonical analysis is at least a powerful alternative for discussing conforma-
tional transitions of “small” systems. This also applies to molecular aggregation [13] and
adsorption transitions [20], where similar phenomena can occur.

4. Conclusions

As we have exemplarily shown for the folding of proteins, conformational transitions
of molecular systems can be well-described by analysis techniques known from statistical
physics. However, the interpretation of these cooperative effects as thermodynamic phase
transitions has noticeable limitations. This not only regards the impossibility to precisely
identify definite transition points. It is even more fundamental to ask the question which
of the typically used statistical ensembles provides the most comprehensive interpretation
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of finite-system structure formation processes. We have shown that the microcanonical
analysis of folding thermodynamics is particularly advantageous, as, e.g., the remarkable
temperature backbending effect is averaged out in the canonical ensembles, where the
temperature is considered as an external control parameter which seems to be questionable
for small systems [10–14].
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REFERENCES

1. M. Rubinstein and R.H. Colby, Polymer Physics, Oxford University Press, New York,
2003.

2. A. Maritan, C. Micheletti, A. Trovato, and J.R. Banavar, Nature 406 (2000) 287.
3. T. Vogel, T. Neuhaus, M. Bachmann, and W. Janke, Europhys. Lett. 85 (2009) 10003.
4. P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press,

Ithaca, 1979.
5. P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953.
6. M. Bachmann and W. Janke, Lect. Notes Phys. 736 (2008) 203.
7. S. Schnabel, M. Bachmann, and W. Janke, Phys. Rev. Lett. 98 (2007) 048103; J.

Chem. Phys. 126 (2007) 105102.
8. K.F. Lau and K.A. Dill, Macromolecules 22 (1989) 3986.
9. M. Bachmann and W. Janke, Phys. Rev. Lett. 91 (2003) 208105; J. Chem. Phys. 120

(2004) 6779.
10. D.H.E. Gross, Microcanonical Thermodynamics, World Scientific, Singapore, 2001.
11. S. Hilbert and J. Dunkel, Phys. Rev. E 74 (2006) 011120; J. Dunkel and S. Hilbert,

Physica A 370 (2006) 390.
12. H. Behringer and M. Pleimling, Phys. Rev. E 74 (2006) 011108.
13. C. Junghans, M. Bachmann, and W. Janke, Phys. Rev. Lett. 97 (2006) 218103;

J. Chem. Phys. 128 (2008) 085103; Europhys. Lett., in print (2009).
14. T. Chen, X. Lin, Y. Liu, and H. Liang, Phys. Rev. E 76 (2007) 046110.
15. F.H. Stillinger and T. Head-Gordon, Phys. Rev. E 52 (1995) 2872.
16. H.-P. Hsu, V. Mehra, and P. Grassberger, Phys. Rev. E 68 (2003) 037703.
17. M. Bachmann, H. Arkın, and W. Janke, Phys. Rev. E 71 (2005) 031906.
18. B.A. Berg and T. Neuhaus, Phys. Lett. B 267 (1991) 249; Phys. Rev. Lett. 68 (1992) 9.
19. M. Schmidt, R. Kusche, T. Hippler, J. Donges, W. Kronmüller, B. von Issendorff, and

H. Haberland, Phys. Rev. Lett. 86 (2001) 1191.
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