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Abstract: Employing a simple hydrophobic-polar heteropolymer model, we compare thermodynamic quantities
obtained from Andersen and Nosé-Hoover molecular dynamics as well as replica-exchange Monte Carlo methods. We
find qualitative correspondence in the results, but serious quantitative differences using the Nosé-Hoover chain thermostat.
For analyzing the deviations, we study different parameterizations of the Nosé-Hoover chain thermostat. Autocorrelations
from molecular dynamics and Metropolis Monte Carlo runs are also investigated.
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Introduction

Understanding protein folding is one of the most complex challenges
of science. The main reason is the characteristic property common to
all proteins that the individual biological function strongly correlates
with the three-dimensional geometry of the native fold. Proteins
are functional ingredients in all biological systems and misfolding,
mutational, or nonfunctional aggregation typically entail influential
disturbances in biological networks which frequently lead to still
incurable diseases. For this reason, there is an enormously grow-
ing interdisciplinary interest in understanding the often spontaneous
structure formation of proteins, which generally depends on the lin-
ear sequence of amino acids building up the macromolecule. Most
of the proteins consist of hundreds of amino acids and, therefore,
thousands of atoms. The folding process is guided by usual noncova-
lent physical and chemical interactions, such as Coulomb forces due
to residual charges, hydrogen bonding, submolecular van der Waals
potentials, energetic torsional barriers, and the effective hydropho-
bic force, which results as an effective interaction with the aqueous
solvent surrounding most of the non-membrane proteins.

Beside the extensive bioanalytical efforts in the past few decades
to resolve by X-ray and NMR techniques native folds of tens of
thousands of bioproteins, computational simulation methods have
become very popular tools for studying experimentally hardly man-
ageable dynamical and thermodynamic properties accompanying

the folding kinetics. In particular, this incorporates the central
question of the cooperative conformational transitions the protein
experiences in the formation of secondary structures (e.g., helices,
sheets) and tertiary folds (e.g., hydrophobic-core domains).

In computational chemistry and physics, three main simulation
techniques are used, which primarily focus on different aspects.
Dynamical quantities of a process are frequently addressed by means
of molecular dynamics (MD) methods,1, 2 where the phase-space tra-
jectory of a system is numerically calculated employing a discrete,
but symplectic integration scheme for the system’s equations of
motion. One of the essential properties of Hamiltonian dynamics in
continuum is that the phase-space density is constant in time. Thus,
a necessary condition for a discrete symplectic integration is that the
Jacobian of the transformation from the system’s state at time t to
the state at time t +�t is unity. Conversely, Monte Carlo (MC) sim-
ulations are typically used to reveal the thermodynamic equilibrium
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properties of a system by sampling system conformations in the ther-
mally relevant region of the phase space.3, 4 Since configurational
updates in MC are in fact based on a Markov process, MC also pos-
sesses a kind of pseudo-dynamics. The third frequently used method
is based on the density functional and therefore provides a tool for
ab-initio quantum-chemical calculations of electronic structures of
many-particle systems.5

From a statistical physics point of view, conventional MD sam-
ples a microcanonical ensemble,6 as the system energy is kept
constant. However, thermal fluctuations in the physiological temper-
ature interval are of essential importance for biological processes.
Therefore, in more realistic simulations, the energy should fluc-
tuate according to a certain, e.g., Boltzmannian distribution. In
consequence, the system’s degrees of freedom have to be coupled
to an environment, e.g., a heat-bath to provide constant temper-
ature. In our MD simulations, we used the stochastic Andersen
thermostat2, 7 and the deterministic Nosé-Hoover chain (NHC) ther-
mostat.2, 8–10 It was shown for polymer systems that ensemble
averages of dynamic properties are unaffected by coupling New-
tonian dynamics with Nosé-Hoover thermostats.11, 12 Thermostats
were introduced to ensure that the system trajectory in principle
samples the phase space according to the Boltzmann distribution.
This means that canonical statistics should be exactly satisfied in
an infinitely long thermostated MD run. In practice, however, the
question is what is a sufficiently long run to accumulate reliable
statistics. By definition, MD generates an extremely local “update”
within a single time step, whereas MC sweeps provide larger jumps
in the phase space. Therefore, it is to be expected that correlations
decay much slower in MD, compared to MC.

In this paper, we aim at a comparative study of thermostated
MD2, 7–10 and replica-exchange MC.13 To this end, we consider
a simplified coarse-grained bead-spring heteropolymer model and
concentrate on thermodynamic properties. The paper is organized
as follows. In Models and Methods, the AB model, modified by
flexible virtual bonds, is revisited. Furthermore, we summarize the
essentials of the Andersen and the NHC thermostat used in our
constant-temperature MD simulations, and the replica-exchange
generalized-ensemble MC method which is used for generating ref-
erence data. The results obtained with these methods are discussed
and the deviations are analysed in Thermodynamics of S1: Compari-
son of Results from MD and MC Simulations. The paper is concluded
by a summary.

Model and Methods

In this section, we introduce the model employed in our comparative
study and summarize the details of the methods used.

Hydrophobic-Polar Heteropolymer with Flexible Covalent Bonds

Our study is based on a simple coarse-grained heteropolymer model,
which is strongly related to the AB model,14 where only hydropho-
bic (A) and hydrophilic (B) monomers are distinguished. In the
original AB model, covalent bonds between adjacent monomers
have a fixed length. This corresponds to the known stiffness of these
virtual bonds. In fact, a “covalent” bond in the AB model between
successive monomers is a virtual bond as it actually corresponds to
the distance of the Cα atoms of adjacent amino acids. This virtual

bond comprises three covalent bonds (Cα
n –C′

n–Nn+1–Cα
n+1) and its

length is nearly constant in real peptides (≈ 3.8 Å). Here, we relax
this constraint through replacing the stiff bond by a harmonic spring.
The reason is of rather technical nature as it drastically simplifies the
MD implementation using Cartesian coordinates. MD simulations
of polymers with stiff bonds are in principle possible, e.g., by using
the standard Shake15 or Rattle16 algorithms.

Denoting the set of coordinates for the N monomers by R =
{r1, . . . , rN }, we define our bead-spring variant of the AB model
with ε0 being an overall energy scale as

V(R) = ε0[vbend(R) + vLJ(R) + vharm(R)], (1)

where

vbend = 1

4

N−2∑
k=1

(1 − cos ϑk) (2)

is the bending energy and the sum runs over the (N − 2) bending
angles of successive bond vectors. The monomer-type dependent
intramolecular potential between nonbonded monomers i and j with
distance rij = |ri − rj| is of Lennard-Jones form:

vLJ = 4
N−2∑
i=1

N∑
j=i+2

(
1

r12
ij

− C(σi, σj)

r6
ij

)
. (3)

The monomer-type dependence of this contribution is expressed by
the parameter C:

C(σi, σj) =



+1, σi, σj = A,
+1/2, σi, σj = B,
−1/2, σi �= σj .

(4)

The third term in eq. (1) is the harmonic-spring extension of the AB
model and reads:

vharm = α

N−1∑
l=1

(rll+1 − b0)
2. (5)

The sum is taken over the N − 1 bonds and therefore the spring
energy is related to the square deviation of the bond length from the
minimum-potential distance b0, which sets the characteristic length
scale. The parameter α controls the bond strength and in the strong-
coupling limit α → ∞, the fixed-bond behavior of the original AB
model is approached.

The kinetic energy is Ekin(P) = PT P/2m, where P =
{p1, . . . , pN } is the set of the N monomer momentum vectors. Inde-
pendent of their type, all monomers shall have the same mass m of
the order of the average mass of an amino acid. The Hamiltonian

H(P, R) = Ekin(P) + V(R) (6)
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is equivalent to the total energy of the system and constant in time,
H(P, R) ≡ E = const. Throughout the heteropolymer simulations,
natural units are employed, in which ε0 = b0 = m = kB = 1.

In this comparative study, we concentrate ourselves on the exem-
plified AB heteropolymer sequence S1: BA2BA4BABA2BA5B with
20 monomers [14 being hydrophobic (A) and 6 polar (B)]. The ther-
modynamic properties of the fixed-bond heteropolymer with this
sequence have been analysed in detail in Ref. 17. The AB model
with fixed bond lengths has also proven quite useful in a system-
atic characterisation of heteropolymer folding channels known from
realistic proteins.18

Molecular Dynamics with Andersen and Nosé-Hoover Thermostat

Conventional molecular dynamics is governed by Newton’s equa-
tions of motion, which read in Hamiltonian form for the ith
particle

ṙi = ∇pi H(P, R) = pi

m
, (7)

ṗi = −∇ri H(P, R) = −∇ri V(R). (8)

System trajectories lie on a constant-energy surface, E = const.
To conserve the energy in molecular dynamics simulations with
discretized time steps, symplectic integrators are required, which
provide the stability of the phase-space trajectory under time
reversal.

In this standard form of molecular dynamics, the states of the
system form a microcanonical ensemble in an energy shell E−�E <

E < E + �E with �E/E � 1. The temperature does not serve as
an external control parameter and is defined as T = (∂S(E)/∂E)−1

via the microcanonical entropy S(E) = kB ln
∫ E

Emin
dE′g(E′), where

g(E) is the density of states with energy E.19

In many applications, however, it is desirable to adjust the
system temperature T by a heat bath. Consequently, the total ener-
gies of system states follow the canonical Boltzmann distribution
pcan(E) ∼ g(E) exp(−E/kBT). Typically, the folding temperature
of a peptide determines the characteristic energy scale. There are
mainly two classes of approaches to introduce thermostats into
Hamilton’s equation of motion: by stochastic collision forces or
via virtual deterministic extensions of the phase space. In our MD
simulations, we have used the stochastic Andersen thermostat7 and
the deterministic Nosé-Hoover chain.10

Using the Andersen thermostat, a monomer experiences a ran-
dom collision with a fictitious heat-bath particle after each time
step δt with probability pcoll = νδt, where ν is the collision fre-
quency. Therefore, for uncorrelated random forces, the probability
for a collision at time t is Poissonian, pcoll(ν, t) = ν exp(−νt).
In case of a collision, each component of the new momen-
tum p = p(j)

i , j = 1, 2, 3, of the selected monomer is drawn
from the canonical Maxwell-Boltzmann distribution pkin

can(p) =
exp(−p2/2mkBT)/

√
2πmkBT , whose width is determined by the

temperature T . In Andersen dynamics, each monomer behaves
like a Brownian particle under the influence of the external field
induced by the other nonbonded monomers and the springs. After
infinitely long time t, the phase-space trajectory, consisting of a
set of nonconnected deterministic fragments, will have covered the

complete accessible phase space, which is sampled according to the
Boltzmann distribution pcan(E).

Nosé-Hoover dynamics is more complex, as the phase space
is extended by 2M additional degrees of freedom, ξk and pξk ,
k = 1, . . . , M. These dynamical variables effectively represent the
coupling of the system to the heat bath. The idea is that the high-
dimensional phase space provides the particles with more flexibility
to leave the E = const. trajectory in the “true” (P, R) phase space in
a completely deterministic “extended” dynamics. The Nosé-Hoover
energy

HNHC = H(P, R) +
M∑

k=1

p2
ξk

2Qk
+ 3NkBTξ1 + kBT

M∑
k=2

ξk , (9)

which is conserved in the multi-dimensional phase space, HNHC =
const., is defined in such a way that by integrating out the fluctuations
of the additional degrees of freedom, the (P, R) states are distributed
according to the canonical ensemble. However, the extended system
is not Hamiltonian anymore and the derivation of the equations of
motion requires some care. Extending the Hamiltonian equations of
motion (7) and (8), the Nosé-Hoover equations of motion read2, 8:

ṙi = pi

m
, (10)

ṗi = −∇ri V(R) − pξ1

Q1
pi, (11)

ξ̇k = pξk

Qk
, (12)

ṗξ1 =
(

N∑
i=1

p2
i

m
− 3NkBT

)
− pξ2

Q2
pξ1 , (13)

ṗξk = p2
ξk−1

Qk−1
− kBT − pξk+1

Qk+1
pξk (1 − δkM). (14)

The numerical values of the virtual masses Qk of the coupling vari-
ables influence the dynamics but, in principle, not the statistical
averages. For systems, where the total energy is the only conserved
quantity in the dynamics, the choice of a single coupling coordinate
M = 1 is sufficient. To destroy additional symmetries, however,
M > 1 couplings are required and their Nosé-Hoover equations of
motion form the linear Nosé-Hoover chain.2, 10 A prominent excep-
tional example is the one-dimensional harmonic oscillator, where
two coupling degrees of freedom are necessary.

The numerical integration of the equations of motion in our sim-
ulations with Andersen and Nosé-Hoover thermostat was performed
with the standard Störmer-Verlet algorithm.2, 20

Implementation Details of the NHC Thermostat

In Nosé-Hoover dynamics, the temporal propagation for a time step
δt of the system and the heat-bath coupling degrees of freedom is
governed by the time evolution operator UNHC(δt), which can be
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decomposed into the Trotter factorized form

UNHC(δt) = eiLCδt/2 eiLRδt/2

× eiLPδteiLRδt/2 eiLCδt/2 + O(δt3). (15)

In this expression, LP, LR, and LC are the Liouville operators of
the monomer momenta P, the monomer coordinates R, and the
heat-bath coupling chain degrees of freedom, respectively. In higher-
order integration schemes, the time step of heat-bath coupling
propagation is divided further into nc equidistant steps. Thus,

eiLCδt/2 =
nc∏

j=1

m∏
k=1

eiLC wkδt/2nc . (16)

In our NHC-MD simulations, we mainly followed the procedure
described in Ref. 21. We applied a 5th order integration scheme
(m = 3) and set nc = 1, i.e., the error is of order O(δt5). The
Yoshida-Suzuki parameters wk are w1,3 = 1/(2 − 21/3), w2 = 1 −
2w1.22, 23

The Choice of the Virtual Masses for the Heat-Bath-Coupling
Degrees of Freedom

The masses Qk (k = 1, . . . , M) of the virtual heat-bath “particles”
influence the coupling strength and, therefore, the dynamics of the
correlations between the degrees of freedom of the heat-bath and
the system. Large thermal inertia Qk cause a large time scale for the
fluctuations of the heat-bath degrees of freedom. Depending on the
fastest time scale of the system, the thermostat may not be capable
in balancing these fluctuations. On the other hand, too small values
of Qk induce high-frequency fluctuations into the system, which
equilibrates then very slowly.

For the one-dimensional harmonic oscillator H = p2/2m +
mω2x2/2 with m = 2 and ω2 = 1/2, Figure 1 shows for different
choices of Q1 and Q2 the relative errors of the canonical position and
momentum distributions as measured in NHC-MD simulations with
M = 2 Nosé-Hoover thermostats, compared with the exact distribu-
tions. The data were obtained by performing 107 time steps of width
δt = 0.01 at T = 5. The relative error of the measured histogram
compared with the exact distribution is noticeably dependent on the
values of Q1 and Q2. The biggest errors are found for very small and
very large Q-values, whereas fluctuations and response seem to be
balanced much better for moderate choices of order Q1,2 ∼ O(1).
This qualitatively confirms the suggestion in Ref. 10 to relate the
Qk’s to the fastest time scales of the heat-bath (as induced by the
thermal energy ∼ kBT ) and the system (τ = 1/ω) by choosing

Qk = fkkBTτ 2, (17)

where f1 = DN (D is the spatial dimension) and fk>1 = 1. As we can
also infer from Figure 1, our NHC-MD implementation works quite
well for the one-dimensional harmonic oscillator with the properly
adjusted virtual masses (Q1 = Q2 = 10 in our units).

For more complex systems, the identification of τ is not obvious.
It can be related, e.g., to the fastest fluctuations and thus the largest

mode in the spectrum of autocorrelation functions. The normalized
autocorrelation function of a time-dependent quantity s(t) is defined
as

As(�t) = 〈s(t)s(t + �t)〉 − 〈s(t)〉2

〈s(t)2〉 − 〈s(t)〉2
, (18)

where 〈. . .〉 is the temporal average over the time series, which in
equilibrium is identical with the statistical ensemble average.

In Figure 2, the Fourier transforms, i.e., the frequency spectra,
of the velocity autocorrelation function, Ãv(ω), and of the bond-
length autocorrelations, Ãrii+1(ω), are shown for the heteropolymer
sequence S1. Assuming that the fluctuations of the harmonic springs
(5) are of shortest time scale, the bond strength α = mω2

bond/2
defines the time scale:

τbond = ω−1
bond =

√
m

2α
. (19)

The results for the autocorrelations obtained with an exemplified
NHC-MD run at T = 1.0 with M = 2 Nosé-Hoover thermostats
as shown in Figure 2 justify this assumption. Both autocorrelation
functions have a peak close to ω/ωbond = 1, which is the highest-
frequency mode. Therefore, we use τbond for adjusting the virtual
masses in eq. (17) in our NHC-MD heteropolymer simulations.

Replica-Exchange Monte Carlo Method

For verifying the statistical results obtained with NHC-MD of the
heteropolymer model, a comparison with exact results is not pos-
sible. Therefore, we use a standard Markov chain Monte Carlo
algorithm as reference method. Since the dynamics of conventional
Metropolis sampling at fixed temperature notoriously slows down
close to temperatures, where conformational transitions occur and
also, in the dense polymer limit, a generalized-ensemble method
is more appropriate for a comprising study of thermodynamics. A
simple and efficient sampling scheme is provided by the replica-
exchange or parallel tempering method.13 In this method, threads of
Markov chains at different, deliberately chosen temperatures run in
parallel and frequent trials to exchange conformations between the
threads ensure a reasonable sampling of the accessible conforma-
tional space. In most applications, MC methods serve to accumulate
statistics by sampling regions of the configurational space that dom-
inate the ensemble at a given temperature. Although sometimes also
employed for kinetic studies, the MC dynamics of the system is typ-
ically of less importance. For most quantities of interest, the kinetic
part in the Hamiltonian (6) does not influence statistical averages,
i.e., the momentum fluctuations can be integrated out exactly. There-
fore, in our MC simulations, the system experiences only coordinate
updates. In a replica-exchange step, the actual conformation R with
reciprocal thermal energy β = 1/kBT is tried to be exchanged with
the polymer conformation R′ being currently present in a neighbor
thread running at β ′ = 1/kBT ′. The acceptance probability for this
exchange is simply given by

w(R ↔ R′; β, β ′) = min(1, e−�), (20)
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Figure 1. Relative errors |pMD
can /pex

can − 1| of the canonical position (solid line) and momentum
(dashed line) distributions pcan(x) and pcan(p) for a one-dimensional harmonic oscillator, estimated in
NHC-MD simulations with M = 2 for different choices of virtual masses Q1 and Q2 at T = 5.

where � = (β ′ − β)[V(R) − V(R′)]. Hence, for � < 0, the
exchange is always accepted. If � > 0, the exchange is accepted
with the Boltzmann-like probability e−�. A reasonable acceptance
rate can only be achieved, if the canonical histograms of the sys-
tem have sufficient overlap at the exchange temperatures T and T ′.
Therefore, the efficiency of the method strongly depends on the care-
ful choice of the number of threads and the associated temperatures.
Conformational updates between the exchange trials within a thread
at constant temperature are accepted according to the Metropo-
lis transition probability. In fixed-bond simulations conformational
changes were performed using spherical-cap updates.17 For simula-
tions of the spring model, we used simple Cartesian updates, where
a monomer or a bond is moved. An enormous advantage of the
method is that it can easily be parallelized as only the temperatures
between the threads, running on individual processors, have to be
communicated.

Thermodynamics of S1: Comparison of Results from MD
and MC Simulations

In the following, we analyse the thermodynamic behavior of
the flexible-bond model for the heteropolymer sequence S1

Figure 2. Frequency spectra of the velocity autocorrelation func-

tion Ãv(ω) (upper, solid line) and of the bond-length autocorrelation
Ãri i+1 (ω) (lower, dashed line) for bond strength α = 50 at T = 1.

from results obtained with Andersen MD (A-MD), Nosé-Hoover
chain MD (NHC-MD), standard Metropolis MC (M-MC),
and replica-exchange MC (RE-MC) simulations. The methods

Journal of Computational Chemistry DOI 10.1002/jcc
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Table 1. Methods and Specifications used in this Study.

Method Label M Equilibration Run length

Metropolis MC M-MC 1 × 107 1 × 108

Replica-Exchange MC RE-MC 1 × 105 3 × 108

MD with Andersen
thermostat

A-MD 1 × 108 3 × 108

MD with Nosé-Hoover 2NHC-MDs 2 1 × 108 3 × 108

chain thermostat 2NHC-MDl 2 1 × 109 6 × 109

3NHC-MD 3 1 × 109 6 × 109

4NHC-MD 4 1 × 109 6 × 109

Equilibration times and run lengths are given in MC sweeps or MD steps,
respectively.

and their specifications in the simulations are listed in
Table 1.

Energetic and Conformational Fluctuations

Energetic fluctuations are expressed by the specific heat per
monomer via CV (T) = (〈H2〉 − 〈H〉2)/NkBT2. For Hamiltonian
systems in three dimensions (6), this can be written as

CV (T) = Ckin
V + 1

NkBT2
(〈V(R)2〉 − 〈V(R)〉2), (21)

with the constant kinetic contribution Ckin
V = 3kB/2. In our analyses,

we consider only the potential energy contribution allowing for a
direct comparison with results from MC simulations.

Frequently used conformational quantities in polymer physics
are the end-to-end distance

Ree(R) = |rN − r1| (22)

and the radius of gyration

Rgyr(R) =
√√√√ 1

N

N∑
i=1

(ri − r0)2, r0 = 1

N

N∑
i=1

ri, (23)

which is a measure for the compactness of the polymer. In particular,
the fluctuations

∂

∂T
〈Ree,gyr〉 = 1

kBT2
(〈Ree,gyrE〉 − 〈Ree,gyr〉〈E〉) (24)

are of interest, as divergences or extremal points in their temperature
dependence are signals for cooperative conformational activity, i.e.,
they indicate conformational transitions. It should be noted that for
finite-length systems, as protein like heteropolymers definitely are,
the fluctuations do not collapse at a certain transition temperature.
Rather, different quantities signalize activity typically at different
temperatures forming a transition region.24

Thermodynamic Properties of S1

As a first application, we discuss how the thermodynamic behavior
of the heteropolymer with sequence S1 depends on the flexibility
of the virtual covalent bonds. In Figures 3a–3c, the specific heat as
well as the fluctuations of gyration radius and end-to-end distance

Figure 3. RE-MC results for the heteropolymer S1: (a) specific heat per
monomer, fluctuations of (b) gyration radius and (c) end-to-end distance
as functions of the temperature for different strengths α of the harmonic
bonds. For comparison, also the results for a stiff polymer (fixed bond
length) are shown [for CV , the effect of the reduced number of degrees
of freedom is artificially compensated by a constant offset (N −1)/2N].
Jackknife error bars are also shown, but are very small.

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 4. Comparison of results from RE-MC, 2NHC-MDs, and A-
MD simulations with bond strength α = 50 for the heteropolymer S1:
(a) specific heat per monomer, fluctuations of (b) gyration radius and
(c) end-to-end distance as functions of the temperature. Jackknife error
bars are of symbol sizes or smaller.

are shown for different choices of the harmonic coupling strengths
α = 5, 10, 50. These results were obtained from RE-MC simulations
with high precision and serve as reliable reference data. For large
coupling strengths, these data reproduce former results obtained in
studies for heteropolymers with stiff bonds, where other sophisti-
cated MC techniques were employed.17, 18 Error bars shown were
calculated using the jackknife binning method.25 In all plots, there is
a peak around T ≈ 0.8. Although the maximum values depend on α,
the peak temperature does not. In fact, these peaks are indications

for the conformational transition between random-coil structures
and globular conformations and is, therefore, seen in all fluctua-
tions. There is also a second region of activity at lower temperatures,
with a comparatively weak signal in ∂〈Rgyr〉/∂T . Actually, the het-
eropolymer does not experience a further collapse, but rather an
energetically favorable rearrangement of the monomers. This is an
indication for the typical heteropolymer-specific effect of the for-
mation of a compact hydrophobic core. The increasing strength of
this signal for stiffer bonds can thus be explained with the larger
barrier associated with the monomer rearrangement. This is not sur-
prising as the fluctuation width of the springs decreases, i.e., the
N − 1 bond degrees of freedom are “frozen”. This effect is max-
imal for fixed bonds,17 where the heteropolymer possesses only
3N − (N − 1) = 2N + 1 degrees of freedom. It should be noted
that, due to the different number of degrees of freedom, the specific
heat even for the spring model with extremely stiff, but not fixed,
bond lengths α → ∞ differs from the fixed-bond case by kB/2 per
bond. In Figure 3, the curves for the fixed-bond case17 are included
for comparison (for the associated specific heat including the “fici-
tious” constant offset per monomer, (N − 1)kB/2N , compensating
the frozen-bond constraint).

For comparing thermodynamic quantities, we performed RE-
MC simulations and respective A-MD and 2NHC-MDs for S1 with
relatively stiff bonds, α = 50. The results for the specific heat
and the fluctuations of gyration radius and end-to-end distance are
shown in Figures 4a–4c, respectively. As can clearly be seen, RE-
MC and A-MD results coincide for all quantities for a wide range
of temperatures. This is obviously not the case for the 2NHC-MDs
data points which deviate for temperatures T > 0.4 seriously from
the RE-MC results. The qualitative thermodynamic behavior, i.e.,
the occurrence of conformational transitions, is still identified in all
cases and the peak temperatures are comparable, but the quantita-
tive agreement for the fluctuating quantities between RE-MC and
2NHC-MDs is very poor.

In order to see whether the deviation is due to a too small length
of the Nosé-Hoover chain, we repeated the NHC-MD simulations
with M = 3 and M = 4 thermostats. A noticeable change of the
results was, however, not expected as no model-specific additional
conserved quantities were identified. The simplicity of the model
allowed for extremely long equilibration times and run lengths, as
listed in Table 1. Differences between the independent MD runs,
worth to be discussed in detail, were not found. This is confirmed
by the results shown in Figure 5, where the output of the sev-
eral tested NHC-MD variants for the specific heat is plotted. In
particular, increasing the run time of 2NHC-MDs by a factor of 20
(2NHC-MDl) does not improve the results noticeably.

Another check we performed was to change the virtual masses.
From the analysis of the dependence of the statistical results on the
masses for the one-dimensional harmonic oscillator in The Choice
of the Virtual Masses for the Heat-Bath-Coupling Degrees of Free-
dom, it is clear that a careful choice of the Qk values is required to
obtain reliable results. The simulations leading to the 2NHC-MDs
results shown in Figures 4a–4c and Figure 5 were based on the rela-
tion (17) as suggested in Ref. 10. In order to see the influence of
the virtual masses on the results, we used in additional simulations
different simple rescalings of the Qk values given by eqs. (17) and
(19), i.e., for our polymer with α = 50, m = 1, and N = 20,
we chose as reference values Q1(T) = 0.6T and Q2(T) = 0.01T .

Journal of Computational Chemistry DOI 10.1002/jcc



2610 Schluttig, Bachmann, and Janke • Vol. 29, No. 15 • Journal of Computational Chemistry

Figure 5. Results for the specific heat as obtained with the variants
2NHC-MDs, 2NHC-MDl, 3NHC-MD, and 4NHC-MD. For compari-
son, the RE-MC curve is also shown.

The results for the specific-heat estimates are shown in Figure 6,
again compared with the replica-exchange MC values. Actually, the
results depend on the virtual masses, but simple rescaling obviously
does not solve the problem: The “best” choice for high temperatures,
Q̃k = Qk/1000, produces wrong results in the intermediate temper-
ature region. It seems that the temperature dependence of the optimal
Qk’s is nontrivial and the assumption of a linear T -dependence in
eq. (17) is insufficient. If no data are available for comparison, the
quality of the 2NHC-MDs results cannot be appraised. This is, of
course, a substantial problem.

In further tests, it also turned out that the 2NHC-MDs results
depend on the initially chosen conformation, i.e., the initial con-
dition for the Nosé-Hoover dynamics was not forgotten throughout
the run. In consequence, the thermodynamic equilibrium state space
was not sampled reliably. This aspect is directly connected with
the general MD heteropolymer folding problem: Starting from an
unfolded, denatured conformation, the native, folded state was rarely
found. On the other hand, also unfolding from the initialized native
conformation is slow, but the sampling in intermediate and high
temperature regions is clearly improved. From the above results, it
is not surprising that the strongest deviations, compared with the
RE-MC results, are noticed close to the collapse transition, where
an appropriate sampling of the collapsed and the random-coil phase
is required.

We have also repeated the simulations for a small polymer with
anharmonic interactions among non-bonded monomers in order to
find out whether systematic deviations of statistical quantities are
also present in this much simpler system. The potential energy of
this system,

V(R) = vharm(R) + vanharm(R), (25)

consists of the harmonic bond energy vharm as already defined in eq.
(5) and an anharmonic potential vanharm for the interaction between
non-bonded monomers:

vanharm =
N−1∑
l=1

N∑
m=l+1

[
γ1

(
rlm − bnon

0

)2 + γ2
(
rlm − bnon

0

)4]
. (26)

Figure 6. Collapse transition region of the specific heat as obtained
from 2NHC-MDs runs for different choices of the virtual masses Qk .
The reference values Q = Q1,2 are given by eq. (17) as suggested in
Ref. 10.

In our simulations, the model was parametrized by setting α = 50,
γ1 = 10, and γ2 = 1. The equilibrium distance between bonded
and nonbonded monomers was b0 = bnon

0 = 1. The simulations
were perfomed for a small homopolymer with N = 5 monomers
(sequence A5). Again, statistics of parallel tempering MC simu-
lations was compared to results from MD simulations with NHC
thermostat. The particular parameters and run lengths were cho-
sen according to the values given for RE-MC and 2NHC-MDl in
Table 1. Two types of initial conformations were used for the MD
simulations. In one set of simulations, we started from random con-
formations at each temperature, while in the other case low-energy
crystalline conformations were chosen, constructed from a tetrahe-
dron with an additional monomer mirrored at one face. In Figure 7,
results for the specific heats of the anharmonic 5-mer, obtained with
RE-MC and differently initialized 2NHC-MDl, are shown. Again,
the results of the Nosé-Hoover MD simulations deviate systemati-
cally from the MC output. As for the Lennard-Jones heteropolymer

Figure 7. Specific heats obtained from RE-MC and 2NHC-MDl
runs with random and ordered start conformations for a 5-mer with
anharmonic interaction (25), (26) between nonbonded monomers.
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Figure 8. Autocorrelation functions from M-MC, A-MD, and 2NHC-
MDs runs and fits ∼ exp(−�t/τexp) at temperatures T = 0.25 and
T = 1.0.

S1, the deviations become stronger at high temperatures, where the
NHC coupling to the heat-bath is more relevant.

Autocorrelation Time Analysis for MD and MC

For long time intervals �t, the autocorrelation function (18) decays
exponentially, As(�t) ∼ exp(−�t/τexp), where τexp is the expo-
nential autocorrelation time. Therefore, the autocorrelation time is
a measure for the decay rate of correlations in equilibrium and
depends on the dynamics of the algorithm which is employed to
generate the time series data. The statistical significance of a data
set is connected with small temporal correlations. This means that in
a time series with L entries only about neff ≈ L/τexp data points are
uncorrelated and determine the statistical error of the data. For this
analysis, the origin of the time series, i.e., the inherent algorithmic
time scale, is irrelevant and, therefore, the autocorrelation functions
of time series obtained with different methods can be compared. In
particular, the autocorrelation time is a good quantitative measure
for the efficiency of algorithms in sampling the relevant state space.

For two fixed temperatures, T = 0.25 and T = 1.0, we have
compared the autocorrelation functions and autocorrelation times
of standard M-MC simulations, A-MD, and 2NHC-MDs for the
Lennard-Jones heteropolymer S1. In the M-MC case, the time dif-
ference �t is measured in MC sweeps, where, within a single sweep,
the coordinates of all monomers are sequentially tried to be moved
randomly. The conformational changes are accepted according to
the Metropolis criterion, with the acceptance rate adjusted at around
50%. For the MD runs, �t is measured in units of time steps δt.

Figure 8 shows the respective autocorrelation functions of the
M-MC, A-MD, and 2NHC-MDs simulations for T = 0.25 and
T = 1.0. In Table 2, we have listed the autocorrelation times for
the two fixed temperatures. Similarly to the MC results, the auto-
correlation time in the MD runs also decreases with temperature.
The autocorrelation times differ noticeably for the three meth-
ods compared with each other. Not unexpectedly, autocorrelations
decay fastest for M-MC. The values of τexp, which are of the order
O(103−105) MC sweeps respective MD time steps for the two tem-
peratures considered, are much smaller than the run lengths of the

simulations (see Table 1). Thus, neff ∼ 104 . . . 105 data points are
uncorrelated in all MC and MD runs. For this reason, the statistical
error bars for all of our MC and MD results are very small. Thus,
the partly large deviations in the results for energetic and structural
fluctuations, in particular near the conformational transitions (see,
e.g., Figure 4) and for high temperatures (as in Figure 7), are not
of statistical nature. Rather, we conclude that the system behaves
non-ergodic in 2NHC-MD i.e., not all sections of the physical phase
space being thermodynamically relevant at the given temperature T
are covered by intersection points of the trajectory projected from the
extended Nosé-Hoover phase space. The almost constant part of the
T = 1 2NHC-MD curve in Figure 8 around �t = 10 000 . . . 20 000
is also an indication that the system got stuck in a local free-energy
minimum.

Summary

In this study, we have shown by explicit comparison with results
from Monte Carlo simulations that even for a minimalistic model at
mesoscopic length scales Nosé-Hoover chain molecular dynamics
simulations are not capable to reproduce the correct thermodynamic
behavior of heteropolymers. From our analysis, we conclude that
for the polymer systems investigated in our study, the proper stable
thermodynamic equilibrium cannot be reached in molecular dynam-
ics simulations with Nosé-Hoover chain thermostats and results
depend on the initialization of the systems. In consequence, the sam-
pling of folding and unfolding events is insufficient. Although the
results for low temperatures are comparable with replica-exchange
Monte Carlo data, it should be noted that in the NHC-MD runs fold-
ing events were hardly observed. Therefore, the correct formation
of the hydrophobic core towards the native fold did not happen and
sampling at very low temperatures, i.e., in the hydrophobic-core
dominated region, is only reasonable, if the MD run is initialized
with the native state. For intermediate and high temperatures, we
find a serious dependence of the results on the choice of the values
for the virtual masses of the heat-bath coupling degrees of freedom.

The exemplified heteropolymer used in our study possesses
only 20 monomers and is thus comparatively small. Its folding
characteristics is not particularly complex as the stiffness of the
virtual bonds has been relaxed to simplify the MD implementa-
tion. It should be noted, however, that substituting the Nosé-Hoover
thermostat against the Andersen thermostat with random collisions
significantly improves the MD results.

Table 2. Exponential Autocorrelation Times from M-MC, A-MD, and
2NHC-MDs Runs at T = 0.25 and T = 1.0.

T τexp

M-MC 0.25 27 × 103

A-MD 0.25 60 × 103

2NHC-MDs 0.25 124 × 103

M-MC 1.0 1 × 103

A-MD 1.0 18 × 103

2NHC-MDs 1.0 7 × 103
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In consequence, for statistical analyses of heteropolymers in a
wide range of temperatures, the applicability of canonical constant-
temperature molecular dynamics simulations with deterministic
thermostats is rather limited. For realistic models, the complex-
ity of the microscopic description at the atomic scale is known to
extremely slow down NHC-MD folding simulations. Here, however,
we used a much simpler coarse-grained model and folding events
have also not been adequately recovered.

It should be noted, however, that NHC-MD has proven to be
quite successful in explaining dynamic processes at time scales
much shorter than folding times, where, e.g., selected biological
functions of proteins under physiological conditions can be studied.
Interesting examples, where the application of NHC-MD methods
proved very useful, are water penetration into a cell through the
aquaporin membrane protein26 and the ATP synthase, where the
catalytic subunits of F1, embedded into the membrane F0 proton
channel, partially act as rotating “molecular motor” that promotes
dehydration of ADP and P to ATP.27 Such studies require that the
native folds of the proteins must be known as these are used as input.
Substantial conformational changes of the proteins do not occur or
are limited to small segments of a few amino acids.
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