
11 October 1999

Ž .Physics Letters A 261 1999 127–133
www.elsevier.nlrlocaterphysleta

Strong-coupling calculation of fluctuation pressure of a
membrane between walls

Michael Bachmann ), Hagen Kleinert 1, Axel Pelster 2

Institut fur Theoretische Physik, Freie UniÕersitat Berlin, Arnimallee 14, 14195 Berlin, Germany¨ ¨

Received 2 June 1999; received in revised form 26 June 1999; accepted 26 June 1999
Communicated by P.R. Holland

Abstract

We calculate analytically the proportionality constant in the pressure law of a membrane between parallel walls from the
strong-coupling limit of variational perturbation theory up to third order. Extrapolating the zeroth to third approximations to
infinity yields the pressure constant as0.0797149. This result lies well within the error bounds of the most accurate
available Monte Carlo result a MCs0.0798"0.0003. q 1999 Elsevier Science B.V. All rights reserved.

1. Membrane between walls

The violent thermal out-of-plane fluctuations of a
membrane between parallel walls generate a pressure
p following the law

k 2 T 2
B

psa , 1.1Ž .3
k dr2Ž .

w xwhose form was first derived by Helfrich 1 . Here,
k denotes the elasticity constant of the membrane,
and d the distance between the walls. The exact
value of the prefactor a is unknown, but estimates
have been derived from crude theoretical approxima-
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w x w xtions by Helfrich 1 and by Janke and Kleinert 2
which yielded

a th f0.0242, a th f0.0625. 1.2Ž .H JK

More precise values were found from Monte Carlo
w xsimulations by Janke and Kleinert 2 and by Gomp-

w xper and Kroll 3 which gave

a MC f0.079"0.002, a MC f0.0798"0.0003.JK GK

1.3Ž .

w xIn previous work 4 , a systematic method was devel-
oped for calculating a with any desired high accu-
racy. Basis for this method is the strong-coupling

w xversion of variational perturbation theory 5 . In that
theory, the free energy of the membrane is expanded
into a sum of connected loop diagrams, which is
eventually taken to infinite coupling strength to ac-
count for the hard walls. As a first approximation, an
infinite set of diagrams was calculated, others were
estimated by invoking a mathematical analogy with a

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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similar one-dimensional system of a quantum me-
chanical particle between walls. The result of this
procedure was a pressure constant

p 2
tha s s0.0771063 . . . , 1.4Ž .K 128

Ž .very close to 1.3 .
It is the purpose of this Letter to go beyond this

estimate by calculating all diagrams up to four loops
exactly. In this way, we improve the analytic approx-

Ž .imation 1.4 and obtain a value

a th f0.0797149, 1.5Ž .

which is in excellent agreement with the precise MC
MC Ž .value a in Eq. 1.3 .GK

2. The smooth potential model of the membrane
between walls

To set up the theory, we let the membrane lie in
the x-plane and fluctuate in the z-direction with

Ž .vertical displacements w x . The walls at zs"dr2
restrict the displacements to the interval w g
Ž .ydr2,dr2 . Near zero temperature, the thermal

Ž .fluctuations are small, w x f0. The curvature en-
ergy E of the membrane has the harmonic approxi-

w xmation 1

21 2 2Es k dx E w x . 2.1Ž . Ž .H2

The thermodynamic partition function Z of the
membrane is given by the sum over all Boltzmann

Ž .factors of field configurations w x

dw xŽ .qdr2
ZsŁ H

2p k Trk(ydr2x B

=
k 22 2exp y d x E w x . 2.2Ž . Ž .H½ 52k TB

This simple harmonic functional integral poses the
problem of dealing with a finite range of fluctua-

tions. This problem is solved by the strong-coupling
w xtheory of Ref. 4 as follows.

If the area of the membrane is denoted by A, the
Ž .partition function 2.6 determines the free energy

per area as

1
fsy ln Z. 2.3Ž .

A

By differentiating f with respect to the distance d of
the walls, we obtain the pressure psyE frE d.

2.1. Smooth potential adapting walls

We introduce some smooth potential restricting
Ž . Ž .the fluctuations w x to the interval ydr2,dr2 ,

for instance

d2 p
4 2V w x sm tan w xŽ . Ž .Ž . 2 dp

p 2
4 2'm w x q V w x , 2.4Ž . Ž . Ž .Ž .int2d

where we have split the potential into harmonic and
interacting part

2p
4 4 6V w x sm ´ w x q´ w xŽ . Ž . Ž .Ž .int 4 6 ž /d

4p
8q´ w x q . . . , 2.5Ž . Ž .8 ž /d

with ´ s2r3,´ s17r45,´ s62r315, . . . . Thus4 6 8

we are left with the functional integral

1 22 2Zs DDw x exp y d x E w xŽ . Ž .E H ½ž 2

p 2
4 2qm w x q V w x , 2.6Ž . Ž . Ž .Ž .int2 5 /d

where we have set ksk Ts1. After truncating theB

Taylor expansion around the origin, the periodicity
of the trigonometric function is lost and the integrals

Ž . Ž .over w x in 2.2 can be taken from y` to q`.
The interacting part is treated perturbatively. Then,

Ž Ž ))the harmonic part of V w x leads to an exactly
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integrable partition function Z 2 . The mass parame-m

ter m is arbitrary at the moment, but will eventually
taken to zero, in which case the potential
Ž Ž ))V w x describes two hard walls at ws"dr2.

We shall now calculate a perturbation expansion
for Z up to four loops. This will serve as a basis for
the limit m™0, which will require the strong-cou-

w xpling theory of Ref. 4 .

2.2. Perturbation expansion for free energy

The perturbation expansion proceeds from the
Ž .harmonic part of Eq. 2.20 :

Z 2 s DDw x eyAAm2w w xr2 seyA f m2 , 2.7Ž . Ž .Em

with

22 2 4 2w x2AA w s d x E w x qm w x . 2.8Ž . Ž . Ž .H ½ 5m

w xFrom Refs. 2,4 , the harmonic free energy per unit
area f 2 is known asm

1 2
2f s m . 2.9Ž .m 8

The harmonic correlation functions associated with
Ž .2.7 are

² : 2O w x O w x PPPŽ . Ž .Ž . Ž . m1 1 2 2

1
s DDw x O w xŽ . Ž .Ž .E 1 1

2Zm

=O w x PPP eyAAm2w w xr2 , 2.10Ž . Ž .Ž .2 2

Ž Ž ..where the functions O w x may be arbitraryi j
Ž .polynomials of w x . The basic harmonic correla-j

tion function

² : 22G x , x s w x w x 2.11Ž . Ž . Ž . Ž .mm 1 2 1 2

determines, by Wick’s rule, all correlation functions
Ž . Ž .2.10 as sums of products of 2.11 :

² : 2w x PPP w xŽ . Ž . m1 n

s G 2 x , x PPP G 2 x , x ,Ž . Ž .Ý m P Ž1. P Ž2. m P Žny1. P Žn.
pairs

2.12Ž .

where the sum runs over all pair contractions, and P
denotes the associated index permutations. The har-

Ž .monic correlation function 2.11 is in momentum
space

1 i 1 1
2G k s s y ,Ž .m 4 4 2 2 2 2 2k qm 2m k q im k y im

2.13Ž .

thus being proportional to the difference of two
Ž 2 2 .y1ordinary correlation functions p ym with an

imaginary square mass m2 s"im2. From their
known x-space form we have immediately

G 2 x , x sG 2 x yxŽ . Ž .m 1 2 m 1 2

i ' < <s K i m x yxŽ .0 1 224p m

' < <yK y i m x yx , 2.14Ž .Ž .0 1 2

Ž . w xwhere K z is a modified Bessel function 6 . At0

zero distance, the ordinary harmonic correlations are
logarithmically divergent, but the difference is finite

Ž . 2
2yielding G 0 s1r8m .m

Ž .We now expand the partition function 2.6 in
Ž Ž .. 2 2powers of gV f x , where g'p rd , and useint

Ž .2.10 to obtain a perturbation series for Z. Going
over to the cumulants, we find the free energy per
unit area

g
2

2² :2fs f q d x V w xŽ .Ž .H m ,cm int2 A

g 2 1
2 2 ²y d x d x V w xŽ .Ž .H 1 2 int 12! 4 A

= : 2V w x q . . . , 2.15Ž . Ž .Ž . m ,c2int

where the subscript c indicates the cumulants. Insert-
Ž . Ž . Ž .ing the expansion 2.5 and using 2.10 and 2.12 ,

the series can be written as

n` g
2fsm a q a , 2.16Ž .Ý0 n 2ž /mns1

where the coefficients a are dimensionless realn

numbers, starting with a s1r8. The higher expan-0
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sion coefficients a are combinations of integralsn

over the connected correlation functions:

m2
2 4

2² :a s´ d x w x , 2.17Ž . Ž .H m ,c1 4 2 A

m6
2 6

2² :a s´ d x w xŽ .H m ,c2 6 2 A

m10
2 2 2 4 4

2² :y´ d x d x w x w x ,Ž . Ž .H m ,c4 1 2 1 28 A
2.18Ž .

m8
2 8

2² :a s´ d x Õ xŽ .H m ,c3 8 2 A

m12
2 2 6 4

2² :y´ ´ d x d x w x w xŽ . Ž .H m ,c4 6 1 2 1 24 A

m16
3 2 2 2 4²q´ d x d x d x w xŽ .H4 1 2 3 148 A

= 4 4 : 2w x w x . 2.19Ž . Ž . Ž .m ,c2 3

Ž .To find the free energy 2.16 between walls, we
2 w xmust go to the limit m ™0. Following 4,5 , we

substitute m2 by the variational parameter M 2, which
2 4(is introduced via the trivial identity m ' M ygr

Ž 4 4.with rs M ym rg, and expand this in powers
of g up to the order g N. In the limit m2 ™0, this
expansion reads

1 r 1 r 2
2 2 2 2m M sM y gy gŽ . 2 62 8M M

1 r 3
3y g y . . . . 2.20Ž .1016 M

Ž .Inserting this into 2.16 , reexpanding in powers of
g, and truncating after the Nth term, we arrive at the
free energy per unit area

N
2 2 n 2Ž1yn.f M ,d sM a b q a g M b ,Ž . ÝN 0 0 n n

ns1

2.21Ž .

with
Nyn 1yn r2Ž .kb s y1 2.22Ž . Ž .Ýn ž /kks0

Ž .Ž1yn.r2being the binomial expansion of 1y1 trun-
Ž . w xcated after the Nyn th term 4 . The optimization

Ž . w xof 2.21 is done as usual 5 by determining the
Ž 2 .minimum of f M ,d with respect to the varia-N

tional parameter M 2, i.e. by the condition

E f M 2 ,dŽ . !N
s 0, 2.23Ž .2E M

2Ž .whose solution gives the optimal value M d . Re-N
Ž .substituting this result into Eq. 2.21 produces the

Ž . Ž 2Ž . .optimized free energy f d s f M d ,d , whichN N N
Ž . 2only depends on the distance as f d s4a rd . ItsN N

derivative with respect to d yields the desired pres-
sure law with the Nth order approximation for the
constant a :N

y3d
p sa . 2.24Ž .N N ž /2

We must now calculate the cumulants occuring in
Ž .the expansion 2.16 .

3. Evaluation of the fluctuation pressure up to
four-loop order

Ž .The correlation functions appearing in 2.17 –
Ž .2.19 are conveniently represented by Feynman
graphs. Green functions are pictured as solid lines
and local interactions as dots, whose coordinates are
integrated over:

x –- x 'G 2 x , x , 3.1Ž . Ž .1 2 m 1 2

Ø' d2 x . 3.2Ž .H
These rules can be taken over to momentum space in
the usual way. One easily verifies that the integrals

Ž .over the connected correlation functions in 2.17 –
Ž . 2Ž nqVy1.2.19 have a dimension Arm , where V is
the number of the vertices of the associated Feynman
diagrams. Thus we parametrize each Feynman dia-
gram by ÕArm2Ž nqVy1., with a dimensionless num-
ber Õ, which includes the multiplicity. In Table 1,
we have listed the values Õ for all diagrams up to
four loops. No divergences are encountered. Exact
results are stated as fractional numbers. The other
numbers are obtained by numerical integration, which
are reliable up to the last written digit. The right-hand
column shows numbers Õ obtained by the earlierK

w xapproximation 4 , where all the Feynman diagrams
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Table 1
Feynman diagrams with loops L, multiplicities s, and their di-
mensionless values Õ. The last column shows the values Õ sK

L w xÕ r4 used in Ref. 4 .PB

were estimated by an analogy to the the problem of a
w xparticle in a box. In Ref. 4 , it was shown that the

value Õ of a large class of diagrams of the membrane
problem can be obtained by simply dividing the
value of the corresponding particle-in-a-box-diagram
Õ by a factor 1r4L, where L is the number ofPB

loops in the diagrams.
Ž .Inserting the numbers in Table 1 into 2.17 –

Ž .2.19 , we obtain the coefficients a ,a ,a of the1 2 3
Ž .free energy per area 2.21 , which is then extremized

in M 2. To see how the results evolve from order to
order, we start with the first order

1 p 2
2 2f M ,d s a M qa , 3.3Ž . Ž .1 0 1 22 d

with a s1r8 and a s1r64. Here, an optimal0 1

value of M 2 does not exist. Thus we simply use the
Ž .perturbative result for ms0 which is equal to 3.3

Ž .for Ms0. Differentiating f 0,d with respect to d1
Ž .yields the pressure constant in 2.24 :

1 p 2 p 2

a s a s f0.038553. 3.4Ž .1 1 24 256d

This value is about half as big as the Monte Carlo
Ž .estimates 1.3 and agrees with the value found in

w x Ž .4 . To second order, the reexpansion 2.21 reads

3 p 2 p 4 1
2 2f M ,d s a M qa qa 3.5Ž . Ž .2 0 1 22 4 28 d d M

with a f1.0882P10y3 from Table 1. Minimizing2

this energy in M 2 yields an optimal value

2 28 a p p22M d s f0.152362 , 3.6Ž . Ž .2 2 2(3 a d d0

and

2p
3f d s a q a a . 3.7(Ž . Ž .ž /2 1 0 222d

Inserting a s1r8 and a ,a from Table 1, we0 1 2

obtain

a f0.073797, 3.8Ž .2

thus improving drastically the first-order estimate
Ž .3.4 This value is by a factor 1.026 larger than that

w xobtained in the approximation of Ref. 4 .
Continuing this proceeding to third order, we

must minimize

5 p 2 3 p 4 1
2 2f M ,d s a M qa q aŽ .3 0 1 22 4 216 2d d M

p 6 1
qa , 3.9Ž .3 6 4d M
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with a f2.7631P10y5. The optimal value of M 2
3

is

2 232 a 1 5 a a p2 0 32M d s cos arccosŽ . )3 3 2( 5 a 3 2 a d0 2

p 2

f0.219608 . 3.10Ž .2d
Ž .Inserted into 3.9 , we find the four-loop approxima-

tion for the proportionality constant a :

a f0.079472. 3.11Ž .3

This result is in very good agreement of the Monte
Ž .Carlo results in 1.3 . It differs from the approximate

w xvalue of the method presented in Ref. 4 by a factor
1.047.

An even better result will now be obtained by
extrapolating the sequence a ,a ,a to infinite or-1 2 3

der.

4. Extrapolation towards the exact constant

Variational perturbation theory exhibits typically
an exponentially fast convergence. This was exactly

w xproven for the anharmonic oscillator 5 . Other sys-
tems treated by variational perturbation theory show

w xa similar behavior 7 . Assuming that an exponential
convergence exists also here, we may extrapolate the
sequence of values a ,a ,a calculated above to1 2 3

infinite order. It is useful to extend this sequence by
one more value at the lower end, a s0, which0

Ž . 2follows from the one-loop energy 2.9 at m s0.
This sequence is now extrapolated towards a hypo-
thetical exact value a by parametrizing the ap-ex

proach as

a ya sexp yhyj N e . 4.1Ž . Ž .ex N

The parameters h, j , ´ , and the unknown value of
a are determined from the four values a , . . . ,a ,ex 0 3

with the result

hs2.529298, js0.660946, es1.976207,
4.2Ž .

and the extrapolated value for the exact constant:

a s0.0797149. 4.3Ž .ex

This is now in perfect agreement with the Monte
Ž .Carlo values 1.3 .

Fig. 1. Difference between the extrapolated pressure constant aex

and the optimized N-th order value a obtained from variationalN
Žperturbation theory for the method presented in this paper solid

.line and the first four values of the approximation scheme
w x Ž .introduced in Ref. 4 dashed line . Dots represent the values to

order N in these approximations.

The approach is graphically shown in Fig. 1
where the optimized values a , . . . ,a all lie on a0 3

Ž .straight line solid line . For comparison, we have
also extrapolated the first four values a 0 , . . . ,a 3 inK K

w xthe approach of Ref. 4 yielding a value a fex K
Ž .0.0759786, which is 4.9% smaller than 4.3 .

5. Summary

We have calculated the universal constant a oc-
Ž .curing in the pressure law 1.1 of a membrane

fluctuating between two walls. This has been done
by replacing the walls by a smooth potential with a
parameter m2. This potential approaches the wall
potential in the limit m2 ™0. The anharmonic part
of the smooth potential was treated perturbatively.
The limit m2 ™0 corresponds to a strong-coupling
limit of the power series, and was calculated by
variational perturbation theory. Extrapolating the
lowest four approximations to infinity yields a pres-
sure constant a , which is in very good agreement
with Monte Carlo values.
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