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We analyze the crystallization and collapse transition of a simple model for flexible polymer chains on
simple-cubic and face-centered-cubic lattices by means of sophisticated chain-growth methods. In contrast to
the bond-fluctuation polymer model in certain parameter ranges, where these two conformational transitions
were found to merge in the thermodynamic limit, we conclude from our results that the two transitions remain
well separated in the limit of infinite chain lengths. The reason for this qualitatively distinct behavior is
presumably due to the ultrashort attractive interaction range in the lattice models considered here.
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I. INTRODUCTION

The analysis of conformational transitions that a single
polymer in solvent can experience is surprisingly difficult. In
good solvent �or high temperatures�, solvent molecules oc-
cupy binding sites of the polymer and, therefore, the prob-
ability of noncovalent bonds between attractive segments of
the polymer is small. The dominating structures in this phase
are dissolved or random coils. Approaching the critical point
at the � temperature, the polymer collapses and in a coop-
erative arrangement of the monomers, globular conforma-
tions are favorably formed. At the � point, which has al-
ready been studied over many decades, the infinitely long
polymer behaves like a Gaussian chain, i.e., the effective
repulsion due to the volume exclusion constraint is exactly
balanced by the attractive monomer-monomer interaction.
Below the � temperature, the polymer enters the globular
phase, where the influence of the solvent is small. Globules
are very compact conformations, but there is little internal
structure, i.e., the globular phase is still entropy-dominated.
For this reason, a further transition toward low-degenerate
energetic states is expected to happen: the freezing or crys-
tallization of the polymer. Since this transition can be con-
sidered as a liquid-solid phase separation process, it is ex-
pected to be of first order, in contrast to the � transition,
which exhibits characteristics of a second-order phase tran-
sition �1,2�.

The complexity of this problem appears in the quantita-
tive description of these processes. From the analysis of the
corresponding field theory �3� it is known that the � transi-
tion is a tricritical point with upper critical dimension dc=3,
i.e., multiplicative and additive logarithmic corrections to the
Gaussian scaling are expected and, indeed, predicted by field
theory �4–7�. However, until now neither experiments nor
computer simulations could convincingly provide evidence

for these logarithmic corrections. This not only regards
analyses of different single-polymer models �8–14�, but also
the related problem of critical mixing and unmixing in poly-
mer solutions �15–19�.

In a remarkable recent study of a bond-fluctuation poly-
mer model, it was shown that, depending on the intramolecu-
lar interaction range, collapse and freezing transition can fall
together in the thermodynamic limit �12,13�. This surprising
phenomenon is, however, not general. For an off-lattice
bead-spring polymer with finitely extensible nonlinear elastic
�FENE� bond potential and intramonomer Lennard-Jones in-
teraction, for example, it could be shown that both transitions
remain well separated in the limit of infinitely long chains
�14�.

In our study, we investigate collapse and freezing of a
single homopolymer restricted to simple-cubic �sc� and face-
centered-cubic �fcc� lattices. We primarily focus on the freez-
ing transition, where comparatively little is known as most of
the analytical and computational studies in the past were
devoted to the controversially discussed collapse transition;
see, e.g., Refs. �8,11,16–18,20–26�. A precise statistical
analysis of the conformational space relevant in this low-
temperature transition regime is difficult as it is widely domi-
nated by highly compact low-energy conformations which
are entropically suppressed. Most promising for these studies
appear sophisticated chain-growth methods based on Rosen-
bluth sampling �27� combined with improved pruning-
enrichment strategies �11,28� which, in their original formu-
lation, are particularly useful for the sampling in the �
regime. For the analysis of the freezing transition, we apply
in our simulations generalized-ensemble contact-density
variants �29,30�, which have proven to be very successful in
the low-energy sampling of proteinlike heteropolymers �29�
and the adsorption of polymers and peptides to solid sub-
strates �31,32�. The precision of these algorithms when ap-
plied to lattice polymers as in the present study, is manifested
by unraveling even finite-length effects induced by symme-
tries of the underlying lattice.

The rest of the paper is organized as follows. In Sec. II,
the lattice model for flexible polymers and the employed
chain-growth methods, which allow for a precise statistical
sampling even in the low-temperature regime, are described.
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The conformational transitions the polymers experience on
sc and fcc lattices are discussed in Sec. III. Here, we also
present our results for the scaling of the collapse transition
temperature in comparison with various approaches known
from the literature. Eventually, in Sec. IV, the paper is con-
cluded by a summary of our findings.

II. MODEL AND METHODS

For our studies, we employ the interacting self-avoiding
walk �ISAW� model for lattice polymers. In this model, the
polymer chain is not allowed to cross itself, i.e., a lattice site
can only be occupied by a single monomer. In order to
mimic the “poor solvent” behavior in the energetic regime,
i.e., at low temperatures, nearest-neighbor contacts of nonad-
jacent monomers reduce the energy. Thus, the most compact
conformations possess the lowest energy. Formally, the total
energy of a conformation X= �x1 ,x2 , . . . ,xN� of a chain with
N beads is simply given as

E�X� = − �0nNN�X� , �1�

where �0 is an unimportant energy scale �which is set �0
�1 in the following� and nNN�X� is the number of nearest-
neighbor contacts between nonbonded monomers.

The total number of self-avoiding lattice conformations
with m=N−1 bonds scales as �33,34�

Cm � �mm�−1, �2�

where � is the effective coordination number of the lattice
and �	1.16 is a universal exponent. For the sc lattice, the
connectivity constant is �sc	4.684 and in the fcc case
�fcc	10.036 �35–41�. Due to this exponential growth of the
number of conformations, the investigation of all conforma-
tional transitions a homopolymer of a given length can ex-
perience requires employing numerical methods being ca-
pable of estimating the density of states for all possible
energies with high precision. There exist mainly two strate-
gies for generating and updating conformations within the
stochastic search schemes typically used. Applying standard
Markov chain Monte Carlo methods, conformational updates
include semilocal changes of bond orientations as, among
others, corner and end flips, crankshaft moves, and more
nonlocal updates such as pivot rotations. In our work, we
have used the alternative concept of chain growth. Depend-
ing on the lattice constraints, a new monomer is tried to be
attached to an end of the already existing chain until the total
length or a “dead end” is reached, i.e., all neighbors are
already occupied and, thus, the chain end is trapped. In an
early approach, the Rosenbluth method �27�, first the number
of free nearest neighbors k for the possible placements of the
lth monomer is determined. Then, one of the possibilities �if
any� is selected randomly. The peculiarity is that this algo-
rithm introduces a bias as the �athermal� probability of gen-
erating a certain chain conformation X of length N, p�X�
=
l=2

N kl
−1, depends on the growth direction. Thus, identical

walks can possess different construction probabilities, if
they, e.g., were grown “forward” or “backward.” For correct
statistics, this bias must be corrected by introducing Rosen-

bluth weights w�X�= p−1�X�. Actually, this bias can be uti-
lized to increase the efficiency of the method in generating
self-avoiding walks which is particularly useful for the
ISAW model of lattice polymers. For this purpose it is con-
venient to introduce for each chain a thermal Rosenbluth
weight W�X�=
l=2

N kl exp�−�E�xl�−E�xl−1�� /kBT� �where kB

is the Boltzmann constant which we set to kB�1 in our
analysis�. Since this method is a clever kind of simple sam-
pling, the partition sum can be estimated absolutely as ZN

	�i=1
IN W�Xi� /M, where IN is the number of successfully gen-

erated polymer chains of length N in M growth starts �11�. In
principle, since ZN=�EgN�E�exp�−E /kBT�, an absolute esti-
mate of the density of states gN�E�, i.e., the degeneracy of
energetic states E, is then also known. This is particularly
important for heteropolymers, where the ground-state degen-
eracy is considered as a measure for the stability of native
folds of lattice proteins �29�. An essential improvement of
the efficiency of this chain-growth approach was reached by
the introduction of the pruned-enriched Rosenbluth method
�PERM� �11� and its enhanced variants �28�, which combine
Rosenbluth chain growth with a “Go with the Winners” �42�
strategy. In these algorithms, at each stage of the growth
process copies of the already existing chain segment are cre-
ated and continue growing independently, if the accumulated
Rosenbluth weight is larger than an upper threshold. If the
weight falls below a lower bound, the chain is pruned with a
certain probability �which is typically chosen 1/2�. Other-
wise, the growth of the single chain simply continues. This
method has frequently been applied in studies of the � point
�8,11,16,26�. In our study, we use the nPERMss �new PERM
with simple sampling� variant �28� for the simulation of �
polymers with chain lengths of up to 32 000 �sc� and 4000
�fcc� monomers, respectively.

For the analysis of the conformational behavior below the
� point, we use even more sophisticated, generalized-
ensemble variants which are independent of the temperature
and yield an improved estimate for the density of states g�E�
within a single simulation. These algorithms combine
PERM-based chain growth with multicanonical �29� or flat-
histogram techniques �30� and increase, in particular, the
sampling of entropically suppressed �“rare”� conformations,
which are, for example, essential for the study of the freezing
transition. Due to the much higher demands in this regime,
maximum chain lengths, for which precise results were reli-
ably obtained, are N=125 �sc� and 56 �fcc�, respectively.

For our statistical analysis, it is convenient to define en-
ergetic statistical expectation values via the density of states,
i.e., �O�E�=�EgN�E�O�E�exp�−E /kBT� /ZN. The main re-
sults of our analysis are based on the peak structure of the
specific heat which is defined as CV�T�=d�E /dT= ��E2
− �E2� /kBT2.

III. RESULTS AND DISCUSSION

It was recently found for a bond-fluctuation model with
intermonomeric interaction radius r=�6 that in the infinite
chain-length limit collapse and freezing are indistinguishable
phase transitions appearing at the same temperature �the �
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temperature T�� �12,13�. In a bead-spring FENE model
analysis �14�, this phenomenon could not be observed: Both
transitions exist in the thermodynamic limit and the cross-
over peaks in the specific heat remain well separated. The
same observation was made independently in Ref. �13� for
the bond-fluctuation model with increased interaction range.
In the following, we perform for the lattice polymer model
�1� a detailed analysis of these transitions on regular sc and
fcc lattices and discuss the expected behavior in the thermo-
dynamic limit.

A. The expected peak structure of the specific heat

Statistical fluctuations of the energy, as expressed by the
specific heat, can signalize thermodynamic activity. Peaks of
the specific heat as a function of temperature are indicators
for transitions or crossovers between physically different
macrostates of the system. In the thermodynamic limit, the
collective activity, which influences typically most of the
system particles, corresponds to thermodynamic phase tran-
sitions. For a flexible polymer, three main phases are ex-
pected: The random-coil phase for temperatures T�T�,
where conformations are unstructured and dissolved; the
globular phase in the temperature interval Tm�T�T� �Tm,
melting temperature� with condensed, but unstructured �“liq-
uid”� conformations dominating; and for T�Tm the “solid”
phase characterized by locally crystalline or amorphous
metastable structures. In computer simulations, only poly-
mers of finite length are accessible and, therefore, the spe-
cific heat possesses typically a less pronounced peak struc-
ture, as finite-length effects can induce additional signals of
structural activity and shift the transition temperatures. These
effects, which are typically connected with surface-reducing
monomer rearrangements, are even amplified by steric con-
straints in lattice models as used in our study. Although these
pseudotransitions are undesired in the analysis of the thermo-
dynamic transitions, their importance in realistic systems is
currently increasing with the high-resolution equipment
available in experiment and technology. The miniaturization
of electronic circuits on polymer basis and possible nanosen-
sory applications in biomedicine will, therefore, require a
more emphasized analysis of the finite-length effects in the
future.

B. Simple-cubic lattice polymers

Figure 1 shows typical examples of specific heats for very
short chains on the sc lattice and documents the difficulty of
identifying the phase structure of flexible homopolymers.
The 27-mer exhibits only a single dominating peak—which
is actually only an sc lattice effect. The reason is that the
ground states are cubic �3�3�3� and the energy gap to-
ward the first excited states is 	E=2 �43�. Actually, also the
most pronounced peaks for N=48 �4�4�3� and N=64
�4�4�4� are due to the excitation of perfectly cuboid and
cubic ground states, respectively. The first significant onset
of the collapse transition is seen for the 48-mer close to
T	1.4. A clear discrimination between the excitation and
the melting transition is virtually impossible. In these ex-

amples, solely for N=64 three separate peaks are present.
The plots in Figs. 2�a�–2�c� show representative conforma-
tions in the different pseudophases of the 64-mer. Due to the
energy gap, the excitations of the cubic ground state with
energy E=−81 �not shown� to conformations with E=−79
�Fig. 2�a�� result in a pseudotransition which is represented
by the first specific-heat peak in Fig. 1. The second less-
pronounced peak in Fig. 1 around T	0.6–0.7 signalizes the
melting into globular structures, whereas at still higher tem-
peratures T	1.5 the well-known collapse peak indicates the
dissolution into the random-coil phase.

The distribution of the maximum values of the specific
heat CV

max with respect to the maximum temperatures TCV
max is

shown in Fig. 3. Not surprisingly, the peaks belonging to the
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FIG. 1. Examples of specific-heat curves �per monomer� for a
few exemplified short homopolymers on the sc lattice. Absolute
errors �not shown� are smaller than 0.03 in the vicinity of the low-
temperature peaks and smaller than 10−5 in the onset of the
�-transition region near T	1.5.

(a) (b)

(c)

E = −79 E = −60

E = 0

FIG. 2. �Color online� Representative conformations of a 64-
mer in the different pseudophases: �a� Excitation from the perfect
4�4�4 cubic ground state �not shown, E=−81� to the first excited
crystal state, �b� transition toward globular states, and �c� dissolu-
tion into random-coil conformations.
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excitation and freezing transitions �+� appear to be irregu-
larly “scattered” in the low-temperature interval 0�TCV

max

�0.8. The height of the peaks indicating the collapse transi-
tion of the finite-length polymers ��� is, on the other hand,
monotonously increasing with the collapse-peak tempera-
ture.

Figures 4�a� and 4�b�, showing the respective chain-length
dependence of the maximum temperatures and maximum
specific-heat values, reveal a more systematic picture. At
least from the results for the short chains shown, general
scaling properties for the freezing transition cannot be read
off at all. The reason is that the low-temperature behavior of
these short chains is widely governed by lattice effects. This
is clearly seen by the “sawtooth” segments. Whenever the sc
chain possesses a “magic” length Nc such that the ground
state is cubic or cuboid �i.e., Nc�Nc= �8,12,18,27,36,
48,64,80,100,125, . . .��, the energy gap 	E=2 between the
ground-state conformation and the first excited state entails a
virtual energetic barrier which results in an excitation transi-
tion. Since entropy is less relevant in this regime, this ener-
getic effect is not “averaged out” and, therefore, causes a
pronounced peak in the specific heat �see Fig. 4�b�� at com-
paratively low temperatures �Fig. 4�a��. This peculiar sc lat-
tice effect vanishes widely by increasing the length by unity,
i.e., for chain lengths Nc+1. In this case, the excitation peak
either vanishes or remains as a remnant of less thermody-
namic significance. The latter appears particularly in those
cases, where N=Nc+1 with Nc=L3 �with L being any posi-
tive integer� is a chain length allowing for perfectly cubic
ground states. Increasing the polymer length further, the
freezing peak dominates at low temperatures. Its peak in-
creases with the chain length, whereas the peak temperature
decreases. Actually, with increasing chain length, the charac-
ter of the transition converts from freezing to excitation, i.e.,
the entropic freedom that still accompanies the melting-
freezing process decreases with increasing chain length. In
other words, cooperativity is lost: only a small fraction of

monomers—residing in the surface hull—is entropically suf-
ficiently flexible to compete the energetic gain of highly
compact conformations. This flexibility is reduced the more,
the closer the chain length N approaches a number in the
“magic” set Nc. If the next length belonging to Nc is
reached, the next discontinuity in the monotonic behavior
occurs. Since noticeable “jumps” are only present for chain
lengths whose ground states are close to cubes �Nc=L3� or
cuboids with Nc=L2�L±1�, the length of the branches in be-
tween scales with 	Nc�L2�Nc

2/3. Therefore, only for very
long chains on the sc lattice, for which, however, a precise
analysis of the low-temperature behavior is extremely diffi-
cult, a reasonable scaling analysis for TCV

max�N� and CV
max�N�

could be performed.
Exemplified for chains of lengths N=Nc−1, Nc, and

Nc+1 with Nc=36,64, specific heats and densities of states
are shown in Figs. 5�a�–5�d�, which exhibit the length-
dependent characteristic properties discussed above. While
in Fig. 5�a� for chain lengths around N=36 only some low-
temperature activity is visible and the collapse transition is
vaguely indicated by a broad shoulder, the transition charac-
teristics are better resolved for N=64 shown in Fig. 5�c�. The
most pronounced low-temperature peak of the specific heat
of the 64-mer, for example, is the excitation peak, the second
peak belongs to the freezing transition, and the third, still
very shallow peak signals the collapse transition. The low-
temperature behaviors of the 63-mer and the 65-mer are
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FIG. 3. Map of specific-heat maxima for several chain lengths
taken from the interval N� �8,125�. Circles ��� symbolize the
peaks �if any� identified as signals of the collapse �TCV

max�1�. The
low-temperature peaks �+� belong to the excitation-freezing transi-
tions �TCV

max�0.8�. The group of points in the lower left-hand cor-
ner correspond to polymers with Nc+1 monomers, where Nc de-
notes the “magic” lengths allowing for cubic or cuboid ground-state
conformations �see Fig. 4 and text�.
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FIG. 4. �a� Collapse ��� and crystallization-excitation �+� peak
temperatures of the specific heat for all chain lengths in the interval
N� �8,125�. �b� Values of the specific-heat maxima in the same
interval. Error bars for the collapse transition data �not shown� are
much smaller than the symbol size. � peaks appear starting from
N=41. For the sake of clarity, not all intermediate � data points are
shown �only for N=41,45,50, . . .�.
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quite different: While the low-temperature peak of the 63-
mer close to T	0.4 is due to excitation as is indicated by the
E=−79 “dip” in the density of states in Fig. 5�d� �similar to
the 35-mer in Fig. 5�b� at E=−38�, the relevant peak for the
65-mer is the freezing peak close to T	0.6. In this case, the
excitation is of much less relevance �although it is still re-
flected by a small peak near T	0.3�. This is a consequence
of the missing convex lowest-energy dip in the density of
states �or microcanonical entropy�. The convex monotony is
a signal of a strong first-order phase separation �44,45�. This
is confirmed by analyzing the canonical energy distributions
for the examples N=Nc−1, Nc, and Nc+1 with Nc=36,64
shown in Figs. 6�a�–6�c� for temperatures close to the re-
spective excitation and freezing transitions. For Nc−1
=35,63 �Fig. 6�a��, the pronounced excitation transition is
expressed by the respective double peaks with the strong gap
in between, which are for the polymers with chain lengths
Nc=36,64 �Fig. 6�b�� due to the energy gap between ground
state and first excited state. This induces the first-order-like
character of this pseudotransition. The energy distributions
for various temperatures shown in Fig. 6�c� for the case
N=Nc+1=65 do not exhibit, on the other hand, pronounced
double-peaked shapes. The excitation transition at extremely
low energies is still weakly present as a small shoulder in the
distribution at the corresponding temperature. The freezing
transition is associated with slightly larger energies �and tem-
perature� and visible in the distribution with a weak tendency
to a double-peaked shape.

The collapse transitions of the finite-length polymers are
not affected by the intricate low-energy conformations on the

sc lattice and exhibit a continuous monotony. This will be
analyzed in Sec. III D in more detail.

C. Polymers on the fcc lattice

The general behavior of polymers on the fcc lattice is
comparable to what we found for the sc polymers. The main
difference is that excitations play only a minor role, and the
freezing transition dominates the conformational behavior of
the fcc polymers at low temperatures. Nonetheless, finite-
length effects are still apparent as can be seen in the chain-
length dependence of the peak temperatures and peak values
of the specific heats plotted in Fig. 7�a� and Fig. 7�b�, respec-
tively. Figure 7�a� shows that the locations of the freezing
and collapse transitions clearly deviate with increasing chain
lengths and we hence can conclude that also for fcc polymers
there is no obvious indication that freezing and collapse
could fall together in the thermodynamic limit.

Similar to the sc polymers, the finite-length effects at very
low temperatures are apparently caused by the usual compro-
mise between maximum compactness, i.e., maximum num-
ber of energetic �nearest-neighbor� contacts, and steric con-
straints of the underlying rigid lattice. The effects are smaller
than in the case of the sc lattice, as there are no obvious
“magic” topologies in the fcc case. Ground-state conforma-
tions for a few small polymers on the fcc lattice are shown in
Fig. 8. The general tendency is that the lowest-energy con-
formations consist of layers of net planes with �111� orienta-
tion, i.e., the layers themselves possess triangular pattern
with side lengths equal to the fcc nearest-neighbor distance
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FIG. 5. Examples of specific heats for polymers with �a� Nc=4�3�3=36 and Nc±1 and �c� Nc=4�4�4=64 and Nc±1 monomers. In
�b� and �d�, the respective densities of states are shown �lines are only guides to the eye�. Symbols �, +, and � emphasize the lowest-energy
states. Note the energy gaps between the ground and the first excited states in the compact cases Nc=36,64 and the dip for N=35,63.
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�2 �in units of the lattice constant�. This is not surprising, as
these conformations are tightly packed which ensures a
maximum number of nearest-neighbor contacts and, there-
fore, lowest conformational energy. An obvious example is
the ground-state conformation of the 13-mer as shown in
Fig. 8�a� which corresponds to the intuitive guess for the
most closely packed structure on an fcc lattice: a monomer
with its 12 nearest neighbors �“3-7-3” layer structure�. A
simple contact counting yields 36 nearest-neighbor contacts
which, by subtracting the N−1=12 covalent �nonenergetic�
bonds, is equivalent to an energy E=−24. However, this
lowest-energy conformation is degenerate. There is another
conformation �not shown� consisting of only two “layers,”
one containing six �a triangle� and the other seven �a hexa-
gon� monomers �“6-7” structure�, with the same number of
contacts.

A special case is the 18-mer. As Fig. 8�b� shows, its
ground state is formed by a complete triangle with six mono-
mers, a hexagon in the intermediate layer with seven mono-
mers, and an incomplete triangle �possessing a “hole” at a
corner� with five monomers �“6-7-5” structure�. Although
this imperfection seems to destroy all rotational symmetries,
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FIG. 6. Energy distributions P�E� at low temperatures for sc
lattice polymers with �a� N=Nc−1=35 and 63, �b� N=Nc=36 and
64 monomers. In �c�, P�E� is shown for the chain with length N
=Nc+1=65 for several temperatures T=0.2,0.3, . . . ,0.9. The distri-
butions for N=37 �not shown� are similar. Note that lines are only
guides to the eyes.

(a)

N

T
C

�
�

�

V
(N

)

� �� �� �� �� �� �� �� �	 �	 �

� 
 �

� 
 �

� 
 �

� 
 �

�

	 
 

	 
 �

	 
 	

� 
 �

� 
 �

� 
 �

(b)

N

C
�

�
�

V
(N

)/
N

� �� �� �� �� �� �� �� �	 �	 �

� 
 

� 
 �

� 
 �

� 
 �

� 
 �

� 
 �

FIG. 7. �a� Peak temperatures and �b� peak values of the specific
heat for all chain lengths N=8, . . . ,56 of polymers on the fcc lat-
tice. Circles ��� symbolize the collapse peaks and low-temperature
peaks �+� signalize the excitation-freezing transitions. The error
bars for the collapse transition are typically much smaller than the
symbol size. Only for the freezing transition of longer chains, the
statistical uncertainties are a little bit larger and visible in the plots.
� peaks appear starting from N=19. For clarity, � data points are
only shown for N=19,25,30, . . ..

(a) (b) (c)

(d) (e)

N = 13
E0 = −24

N = 18
E0 = −39

N = 19
E0 = −42

N = 27
E0 = −67

N = 30
E0 = −77

FIG. 8. �Color online� Ground-state conformations and energies
of the �a� 13-, �b� 18-, �c� 19-, �d� 27-, and �e� 30-mer on the fcc
lattice �bonds not shown�.
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it is compensated by an additional symmetry: Exchanging
any of the triangle corners with the hole does not change the
conformation at all. Thus, the seeming imperfection has a
similar effect as the energetic excitation and causes a trivial
entropic transition. This explains, at least partly, why the
18-mer exclusively exhibits an additional peak in the specific
heat at very low temperatures �see Fig. 7�a��. A similar rea-
soning presumably also applies to the anomalous low-
temperature peaks of the 32-, 46-, and 56-mers, but for these
larger ground-state conformations it does not make much
sense to go into such intricate details.

The expectation that the 19-mer, which can form a perfect
shape without any “holes” �“6-7-6” structure�, is a prototype
of peculiar behavior is, however, wrong. This is due to the
existence of degenerate less symmetric ground-state confor-
mations �as the exemplified conformation in Fig. 8�c��.

The described geometric peculiarities are, however, only
properties of very short chains. One of the largest of the
“small” chains that still possesses a nonspherical ground
state, is the 27-mer with the ground-state conformation
shown in Fig. 8�d�. For larger systems, the relative impor-
tance of the interior monomers will increase, because of the
larger number of possible contacts. This requires the number
of surface monomers to be as small as possible which results
in compact, spherelike shapes. A representative example is
the 30-mer shown in Fig. 8�e�.

D. The � transition revisited

The scaling behavior of several quantities at and close
to the � point in three dimensions has been the subject
of a large number of field-theoretic and computational stud-
ies �8,11,16–18,20–26�. Nonetheless, the somewhat annoy-
ing result is that the nature of this phase transition is not
yet completely understood. The associated tricritical
limn→0 O�n� field theory has an upper critical dimension
dc=3, but the predicted logarithmic corrections �4–6� could
not yet be clearly confirmed from the numerical data pro-
duced so far. In our study of freezing and collapse on regular
lattices, we mainly focused on the critical temperature T� for
polymers on the sc and on the fcc lattice. The sc value of T�

has already been precisely estimated in several studies, but
only a few values are known for the fcc case. Some previous
estimates in the literature are compiled in Table I.

As our main interest is devoted to the expected difference
of the collapse and freezing temperatures, we will focus here
on the scaling behavior of the finite-size deviation of the
maximum specific-heat temperature of a finite-length poly-
mer from the � temperature, Tc�N�−T�, as it has also been
studied for the bond-fluctuation model �12,13� and the off-
lattice FENE polymer �14�, as well as for polymer solution
models �15,17,18�. In the latter case, Flory-Huggins mean-
field theory �46� suggests

1

Tcrit�N�
−

1

T�

�
1

�N
+

1

2N
, �3�

where Tcrit�N� is the critical temperature of a solution of
chains of finite length N and T�=limN→
 Tcrit�N� is the col-
lapse transition temperature. In this case, field theory �4� pre-

dicts a multiplicative logarithmic correction of the form
Tcrit�N�−T��N−1/2�ln N�−3/11. Logarithmic corrections to
the mean-field theory of single chains are known, for ex-
ample, for the finite-chain Boyle temperature TB�N�, where
the second virial coefficient vanishes. The scaling of the de-
viation of TB�N� from T� reads as �8�

TB�N� − T� �
1

�N�ln N�7/11
. �4�

In Ref. �14�, it is claimed that, for their data obtained from
simulations with the FENE potential, this expression can also
be used as a fit ansatz for Tc�N�−T�. However, also the
mean-field-motivated fit without explicit logarithmic correc-
tions,

Tc�N� − T� =
a1

�N
+

a2

N
, �5�

has been found to be consistent with the off-lattice data �14�,
and also with the results obtained by means of the bond-
fluctuation model of single chains with up to 512 monomers
�12,13�. Up to corrections of order N−3/2, Eq. �5� is equiva-
lent to

1

Tc�N�
−

1

T�

=
ã1

�N
+

ã2

N
, �6�

which was found to be consistent with numerical data ob-
tained in grand canonical analyses of lattice homopolymers
and the bond-fluctuation model �15,17,18�.

The situation remains diffuse as there is still no striking
evidence for the predicted logarithmic corrections �i.e., for
the field-theoretical tricritical interpretation of the � point�
from experimental or numerical data. Using our data from
independent long-chain nPERMss �28� chain-growth simula-
tions �sc, Nmax=32 000; fcc, Nmax=4000� in the vicinity of
the collapse transition, we have performed a scaling analysis
of the N-dependent collapse transition temperatures Tc�N�,

TABLE I. T� values on the sc and fcc lattice from literature.

Lattice type T� Model Reference

sc 3.64–4.13 Single chain �20�
3.713±0.007 Single chain �21�
3.650±0.08 Single chain �23�

3.716±0.007 Single chain �8�
3.60±0.05a Single chain �9�
3.62±0.08b Single chain �10�

3.717±0.003 Single chain �11�
3.717±0.002 Polymer solution �16�

3.745 Lattice theory �25�
3.71±0.01 Polymer solution �17,18�

fcc 8.06–9.43 Single chain �20�
8.20±0.02 Single chain �22,24�

8.264 Lattice theory �25�
aIn Ref. �9� given as ��=0.2779±0.0041.
bIn Ref. �10� given as ��=0.276±0.006.
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identified as the collapse peak temperatures of the individual
specific-heat curves, and estimated from it the N→
 limit
T�. For the single-chain system, field theory �5� predicts the
specific heat to scale at the � point as CV�T=T�� /N
��ln N�3/11. Short-chain simulations �23� did not reveal a
logarithmic behavior at all, whereas for long chains a scaling
closer to ln N was read off �11�. The situation is similar for
structural quantities such as the end-to-end distance and the
gyration radius. Figure 9 shows our data points of the inverse
collapse temperature Tc

−1 from the simulations on the sc �left-
hand scale� and on the fcc lattice �right-hand scale�, plotted

against N−1/2. Error bars for the individual data points in
Fig. 9 were obtained by jackknife error estimation �47� from
several independent simulation runs. Also shown are respec-
tive fits according to the ansatz �6�. Optimal fit parameters
using the data in the intervals 200�N�32 000 �sc� and
100�N�4000 �fcc� were found to be T �

sc=3.72�1�, ã1
	2.5, and ã2	8.0 �sc� and T �

fcc=8.18�2�, ã1	1.0, and ã2
	5.5 �fcc�. In addition, we investigated also other fit func-
tions motivated by field theory and mean-field-like ap-
proaches, corresponding to Eqs. �3�–�6�, each of which also
with different fit ranges. These results are listed in Tables II
and III, respectively. In order to decide which of the fits is
consistent with our data, the 2 test is used. Depending on
the sizes of the data sets entering into the analyses and the
number of fit parameters, there are 2 to 6 degrees of freedom
df. We make the typical assumption that deviations of the fit
from the used data set are significant, if 2�df;0.05

2 , i.e., if
2 lies in the 5% tail of the pdf

�2� distribution of 2 values.
In this case, with 95% probability the deviations between
data and fit function are not random. The thresholds for the
different degrees of freedom lie between 2;0.05

2 /df =3.0 and
6;0.05

2 /df =2.1. The calculated 2 values associated with the
data sets and the fit functions used are also listed in Tables II
and III.

From the results in Table II for the polymers on the sc
lattice, we find that the two-parameter mean-field-like fits �5�
and �6� as well as the single-parameter fit according to �3�
are consistent with our data. Surprisingly poor, on the other
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FIG. 9. Inverse collapse temperatures for several chain lengths
on sc �N�32 000� and fcc lattices �N�4000�. Drawn lines are fits
according to Eq. �6�.

TABLE II. Values of T� on the sc lattice from different fits and their 2 tests with several degrees of
freedom df.

a,

respectively,

Fit function T� a1, a2 N 2 /df df

Tc�N�−T�=a /�N 3.6671±0.0051 −26.0 500–32 000 12.7 4

3.6741±0.0053 −26.5 1000–32 000 6.61 3

3.6898±0.0065 −28.3 2000–32 000 1.39 2

Tc�N�−T�=a�ln N�7/11 /�N 3.7353±0.0056 −8.24 500–32 000 0.57 4

3.7370±0.0057 −8.27 1000–32 000 0.21 3

3.7398±0.0072 −8.36 2000–32 000 0.10 2

Tc�N�−T�=a /�N�ln N�7/11 3.6164±0.0048 −83.0 500–32 000 39.5 4

3.6287±0.0049 −86.0 1000–32 000 20.7 3

3.6531±0.0059 −97.6 2000–32 000 4.14 2

1 /Tc�N�−1 /T�=a�1 /�N+1 /2N� 3.7255±0.0060 2.6 500–32 000 0.28 4

3.7245±0.0061 2.6 1000–32 000 0.11 3

3.7221±0.0076 2.6 2000–32 000 0.03 2

1 /Tc�N�−1 /T�=a1 /�N+a2 /2N 3.7173±0.0071 2.5, 8.0 200–32 000 0.05 4

3.7173±0.0104 2.5, 8.0 500–32 000 0.07 3

3.7194±0.0131 2.5, 6.3 1000–32 000 0.07 2

Tc�N�−T�=a1 /�N+a2 /N 3.7030±0.0059 −32, 135 200–32 000 0.53 4

3.7090±0.0078 −32, 161 500–32 000 0.25 3

3.7140±0.0104 −33, 186 1000–32 000 0.12 2
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hand, is the goodness of the fit against the logarithmic scal-
ing �4�. Even more astonishing is, however, the good coinci-
dence with a logarithmic fit of the “wrong” form
N−1/2�ln N�7/11 with the data. Summarizing these results, if
logarithmic corrections as predicted by tricritical field theory
are present at all, even chain lengths N=32 000 on an sc
lattice are too small to observe deviations from the mean-
field picture. At least, the goodness of the logarithmic fit with
the “wrong” exponent +7 /11 could lead to the speculative
conclusion that for N�32 000 multiplicative and additive
logarithmic corrections to scaling are hidden in the fit param-
eters of the “mean-field-like fits.” The subleading additive
corrections are expected to be of the form ln�ln N� / ln2 N �7�.
They thus not only disappear very slowly—they are also
even of the same size as the leading scaling behavior, which
makes it extremely unlikely to observe the logarithmic cor-
rections in computational studies at all �7�. Similar additive
logarithmic scaling is also known, for example, from studies

of the two-dimensional XY spin model �48�. The estimated sc
� temperatures from the good fits are in perfect agreement
with the most reliable estimates from literature.

The corresponding fcc results are listed in Table III. In
this case, only the fit function �6� is independent of the data
ranges used and, therefore, consistent with the data obtained
for all chain lengths. However, the noticeable improvement
of the goodness for the fits to �5� and �3�, and the “wrong”
N−1/2�ln N�7/11 form by excluding the very short chains from
the data sets considered, leads to the conclusion that even
chains with N=4000 monomers on the fcc lattice are also too
short to find evidence for the logarithmic corrections to
mean-field scaling. Our best estimates for the fcc � tempera-
ture agree nicely with the results from Refs. �22,24�.

IV. SUMMARY

Employing sophisticated chain-growth algorithms, we
have performed computer simulations of homopolymers on

TABLE III. Values of T� on the fcc lattice using the same methodology as in Table II for the sc lattice.

a,

respectively,

Fit function T� a1, a2 N 2 /df df

Tc�N�−T�=a /�N 7.2673±0.0052 −34.1 100–4000 1000 6

7.5760±0.0070 −39.4 150–4000 418 5

7.7101±0.0080 −42.0 210–4000 213 4

7.8445±0.0096 −45.5 300–4000 67.8 3

7.9561±0.0013 −50.0 500–4000 13.6 2

Tc�N�−T�=a�ln N�7/11 /�N 7.9218±0.0064 −15.2 100–4000 200 6

8.0757±0.0083 −16.1 150–4000 69.2 5

8.1356±0.0093 −16.5 210–4000 32.7 4

8.1953±0.0110 −17.0 300–4000 9.45 3

8.2468±0.0149 −17.6 500–4000 1.00 2

Tc�N�−T�=a /�N�ln N�7/11 6.8260±0.0045 −79.5 100–4000 2000 6

7.2258±0.0062 −99.3 150–4000 1000 5

7.4166±0.0072 −110.2 210–4000 500 4

7.6051±0.0087 −125.7 300–4000 164 3

7.7544±0.0011 −146.3 500–4000 38.1 2

1 /Tc�N�−1 /T�=a�1 /�N+1 /2N� 8.5434±0.0110 1.27 100–4000 111 6

8.4208±0.0120 1.23 150–4000 29.6 5

8.3821±0.0125 1.22 210–4000 13.5 4

8.3369±0.0141 1.20 300–4000 3.00 3

8.3048±0.0187 1.18 500–4000 1.15 2

1 /Tc�N�−1 /T�=a1 /�N+a2 /2N 8.1778±0.0169 1.04, 5.49 100–4000 0.81 5

8.1987±0.0211 1.06, 5.04 150–4000 0.32 4

8.2107±0.0259 1.07, 4.75 210–4000 0.21 3

8.2288±0.0386 1.09, 4.18 300–4000 0.11 2

Tc�N�−T�=a1 /�N+a2 /N 8.0374±0.0110 −58.9, 360 100–4000 13.1 5

8.0876±0.0133 −61.5, 414 150–4000 4.71 4

8.1219±0.0163 −63.5, 461 210–4000 1.81 3

8.1640±0.0244 −66.5, 541 300–4000 0.04 2
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sc and fcc lattices in order to analyze freezing and collapse
of these chains. Particular attention has been devoted to the
question whether these transitions fall together in the ther-
modynamic limit as it was reported recently from similar
studies of a specific bond-fluctuation model. In our analysis,
we focus on the shifts of the specific-heat peaks in depen-
dence of the chain-lengths considered.

For polymers on the sc lattice, we find a remarkably sys-
tematic pattern of the freezing transition which can be ex-
plained by lattice effects of the finite-length systems. In fact,
the high precision of our data allows us to reveal a noticeable
difference in the behavior of “magic” chain lengths that al-
low for cubic or cuboid conformations. In these cases, an
energy gap exists between the ground-state conformations
and the first excitations. This peculiarity causes a first-order-
like pseudotransition which is typically more pronounced
than the separate freezing transition. Surprisingly, this effect
vanishes widely for polymers with slightly longer chain
lengths. The freezing temperature decreases with increasing
chain length until the next “magic” length is reached. Poly-
mers on the fcc lattice behave similarly, but the relevant
geometries are more complex.

We have also performed comprising analyses of the col-
lapse temperature deviations for finite-length polymers from
the � temperature, i.e., the collapse transition temperature in
the limit of infinite chain length. We studied chains with
lengths of up to 32 000 �sc� and 4000 �fcc� monomers, re-
spectively. The thus obtained data were fitted against several
fit functions motivated by field-theoretic and mean-field-like
approaches. For the chain lengths studied, we find no evi-
dence for logarithmic corrections as predicted by tricritical
field theory. We conclude that the chain lengths are still too
short to uniquely identify logarithmic corrections which are
probably effectively taken into account by the amplitudes of
the dominant mean-field terms.

From our results for the freezing and the collapse transi-
tion, we conclude that both transitions remain well separated
also in the extrapolation toward the thermodynamic limit.
This is the expected behavior as it is a consequence of the
extremely short range of attraction in the nearest-neighbor
lattice models used. Considering a more general square-well
contact potential between nonbonded monomers in our pa-
rametrization,

v�r� = �
 , r � 1,

− 1, 1 � r � � ,

0, � � r ,
� �7�

the attractive interaction range is simply R=�−1. In our
single-chain study of sc and fcc lattice models, we have

�→1 and thus R→0. Since this R value is well below a
crossover threshold known for colloids interacting via
Lennard-Jones-like and Yukawa potentials, where different
solid phases can coexist, Rc

�1�	0.01 �49–51�, we interpret
our low-temperature transition as the restructuring or “freez-
ing” of compact globular shapes into the �widely amorphous�
polymer crystals.

Following Ref. �52�, there is also another phase boundary,
namely between stable and metastable colloidal vapor-liquid
�or coil-globule� transitions, in the range 0.13�Rc

�2��0.15.
Other theoretical and experimental approaches yield slightly
larger values, Rc

�2�	0.25 �49,53–55�. Below Rc
�2�, the liquid

�globule� phase is only metastable. The specific bond-
fluctuation model used in Ref. �12� corresponds to
R=0.225, i.e., it lies in the crossover regime between the
stable and metastable liquid phase �13�. Consequently, the
crystallization and collapse transition merge in the infinite-
chain limit and a stable liquid phase was only found in a
subsequent study of a bond-fluctuation model with larger in-
teraction range �13�.

Qualitatively, analogous to the behavior of colloids, our
considerations would explain the separate stable crystal,
globule, and random-coil �pseudo�phases that we have
clearly identified in our lattice polymer study. Since the
range of interactions seems to play a crucial, quantitative
role, it is an interesting, still widely open question to what
extent the colloidal picture in the compact crystalline and
globular phases is systematically modified for polymers with
different nonbonded interaction ranges, where steric
constraints �through covalent bonds� are a priori not negli-
gible.
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