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Abstract. Folding and aggregation of proteins, the interaction between proteins
and membranes, as well as the adsorption of organic soft matter to inorganic solid
substrates belong to the most interesting challenges in understanding structure and
function of complex macromolecules. This is reasoned by the interdisciplinary char-
acter of the associated questions ranging from the molecular origin of the loss of
biological functionality as, for example, in Alzheimer’s disease to the development
of organic circuits for biosensory applications. In this lecture, we focus on the anal-
ysis of mesoscopic models for protein folding, aggregation, and hybrid systems of
soft and solid condensed matter. The simplicity of the coarse-grained models allows
for a more universal description of the notoriously difficult problem of protein fold-
ing. In this approach, classifications of structure formation processes with respect
to the conformational pseudophases are possible. This is similar in aggregation and
adsorption processes, where the individual folding propensity is influenced by ex-
ternal forces. The main problem in studies of conformational transitions is that the
sequences of amino acids, which built up the proteins, are necessarily of finite length
and, therefore, a thermodynamic limit does not exist. Thus, structural transitions
are not phase transitions in the strict thermodynamic sense and the analysis of
pseudouniversal aspects is intricate, as apparently small-system effects accompany
all conformational transitions and cannot be neglected.

8.1 Introduction

Proteins are linear chains of amino acids connected by covalent peptide bonds.
Twenty types of amino acids, mainly differing in the molecular structure of
their side chains, were identified in bioproteins. Since bioproteins typically
consist of hundreds to thousands of amino acids, the number of possible amino
acid sequences is extremely large. Considering, for example, a chain of only
100 amino acids, the number of possible sequences (i.e., primary structures)
is of order 10130, but this is only one side of the medal. The main importance
of proteins lies in their function in a biological organism, and this function
is inseparably connected with the geometrical structure of a protein, i.e., its
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folded, native conformation which is usually divided into secondary, tertiary,
and quarternary substructures [1, 2]. The required stability of this native state
against thermal and other environmental fluctuations rules out most of the
possible sequences [3]. It is not yet understood how the relatively small number
of relevant proteins, e.g., about 105 in the human body, has been selected by
nature in an evolutionary process [4].

The physical interactions responsible for the folding of a protein into its
native structure are in principle known. The complexity of the macromolecule
with up to ten thousands of atoms, however, makes precise predictions of the
energetically most-favored structure based on ab initio quantum-mechanical
calculations practically impossible. This is due to the long-range overlap of
many-body electronic orbitals and the screening by the positively charged
cores. The problem is indeed still more complex as the natural environment of
proteins is a polar aqueous solvent. For this reason, classical models with hun-
dreds of effective parameters (“force fields”) have been developed in the past
decades in order to predict native structures and to study folding dynamics
in computer simulations [5]. Despite the simplifications, these models are still
highly complex and hard to manage even by means of sophisticated algorithms
and powerful capability computers. Furthermore, it turned out that folding
and misfolding depend sensitively on the choice of the force field parameters,
with the consequence that predictions of different established models do not
frequently coincide. Another problem is that investigations of these models
require enormous computational capacities. For this reason and the fact that
folding times in nature range from milliseconds to seconds, molecular dy-
namics simulations (MD) for studying the deterministic folding dynamics are
currently widely useless as the timescale of nano- to microseconds of reliable
MD simulations is orders of magnitudes smaller.

It should be noted, however, that MD is quite successful in studies of bi-
ological short-time processes, where the biological function of proteins can
be studied. Fascinating examples, where MD proved to be highly successful,
are the penetration of water molecules into a cell through aquaporin being
a membrane protein [6] and the ATP synthase, a process, where the cat-
alytic subunits of F1, embedded into the membrane F0 proton channel, par-
tially act as rotating “molecular motor” that promotes dehydration of ADP
and P to ATP [7]. Such studies require that the native folds of the proteins
must be known as these are used as input. For considering thermodynamics,
Monte Carlo simulations of these all-atom models are much more promising,
in particular by applying sophisticated generalized-ensemble algorithms [8].
Nonetheless, the enormous efforts required to obtain trustworthy results with
these models strongly limit the systematic exposure of the general principles
behind protein folding processes, which necessitates comparative studies of an
appropriate set of different sequences.

In these lecture notes, we therefore follow a different approach and dis-
cuss minimalistic, coarse-grained protein models. Coarse-graining of models,
i.e., increasing relevant length scales by reducing the number of microscopic
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degrees of freedom, has proved to be very successful in polymer science.
Although specificity is much more sensitive for proteins, since details (charges,
polarity, etc.) and differences of the amino acid side chains can have strong
influences on the fold, mesoscopic approaches are also of essential importance
for the basic understanding of conformational transitions affecting the fold-
ing process. It is also the only possible approach for systematic analyses such
as the evolutionarily significant question why only a few sequences in na-
ture are “designing”, i.e., relevant for selective functions. On the other hand,
what is the reason why proteins prefer a comparative small set of target
structures, i.e., what explains the preference of designing sequences to fold
into the same three-dimensional structure? All these questions are widely still
unanswered.

As a first step toward their solution, we discuss in the first part simple
hydrophobic–polar (HP) lattice models, where only the most characteristic hy-
drophobic or polar nature of the 20 naturally occurring amino acids is taken
into account and the linear chain is modeled by a self-avoiding walk. Such
models allow a comprising analysis of both, the conformation and sequence
space, e.g., by exactly enumerating all combinatorial possibilities. Other im-
portant aspects in lattice model studies are the identification of lowest-energy
conformations of comparatively long sequences and the characterization of the
folding thermodynamics.

In the second part, we focus on simple AB off-lattice models, where sim-
ilar to the HP model (for historical reasons) A symbolizes hydrophobic and
B polar regions of the protein, whose conformations are modeled by polymer
chains governed by bending energy and van der Waals interactions. These
models allow for the analysis of different mutated sequences with respect
to their folding characteristics. Here, the idea is that the folding transition
is a kind of pseudophase transition which can in principle be described by
one or a few order-like parameters. Depending on the sequence, the folding
process can be highly cooperative (single-exponential), less cooperative de-
pending on the height of a free-energy barrier (two-state folding), or even
frustrating due to the existence of different barriers in a metastable regime
(crystal or glassy phases). These characteristics known from functional pro-
teins can be recovered in the AB model, which is computationally much less
demanding than all-atom formulations and thus enables throughout theoret-
ical analyses.

Such coarse-grained models enable a broader view on the general problem
of protein folding, but for precise, specific predictions, their applicability is
limited. In analogy to magnetic systems, they are rather comparable with the
Ising model for ferromagnets or the Edwards-Anderson Ising model for spin
glasses. It should also be remarked that, due to their nontrivial simplicity,
coarse-grained models are also a perfect testing ground for newly developed
algorithms.
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8.2 Why Coarse-Graining?

Functional proteins in a biological organism are typically characterized by a
unique three-dimensional molecular structure, which makes the protein se-
lective for individual functions, e.g., in catalytic, enzymatic, and transport
processes. In most cases, the free-energy landscape is believed to exhibit a
rough shape with a large number of local minima and, for functional pro-
teins, a deep, funnel-like global minimum. This assumed complexity is the
reason why it is difficult to understand how the random-coil conformation of
covalently bonded amino acids – the sequence is generated in the ribosome
according to a certain genetic sequence in the DNA – spontaneously folds into
a well-defined stable “native” conformation. Furthermore, it is expected that
there are only a small number of folding paths from any unfolded conformation
to this final fold.

Protein folding follows a strict hierarchy at different length scales. The so-
called primary structure, i.e., the sequence of amino acids in the linear chain is
provided by the ribosome. Since subsequent amino acids are uniformly linked
by a covalent peptide bond independent of the geometrical structure of the
protein, the typical length scale of the primary structure is a single amino
acid. The next level is secondary structures such as α-helices, β-sheets, and
turns. The main reason for the formation of these structures is backbone hy-
drogen bonding which typically involves segments of several subsequent amino
acids. Therefore, the scale of secondary structures is determined by the typ-
ical segment sizes, which are of the order of ten amino acids. Consequently,
secondary-structure formation is the first step in protein folding. This is fol-
lowed by the formation of global, single-domain tertiary structures. In fact,
this process is what renders protein folding special. The main driving force
for the folding of a complex domain, i.e., of up to hundreds of amino acids,
is an effective cooperative intrinsic interaction between many amino acid side
chains and which is strongly influenced by the solubility properties (in partic-
ular its polarization) of the aqueous solvent the protein resides in. Roughly,
amino acid side chains can be classified as polar, hydrophobic, and neutral.
While polar residues favor contact with polar water molecules, hydrophobic
acids avoid contact with water which results in an effective attraction between
hydrophobic side chains. In consequence, this attractive force leads to the for-
mation of a highly compact hydrophobic core, which is screened from the
solvent by a shell of polar amino acids. For very large proteins, the final stage
in the folding process is the arrangement of several domains in a quarternary
structure.

Thus, the most complex process in protein folding is the formation of
tertiary hydrophobic-core structures. Although atomic details, e.g., van der
Waals volume exclusion separating side chains in linear and ring structures,
polarizability, and partial charges, noticeably influence the folding process
and the native fold, it should be possible to understand certain aspects of
the folding characteristics, at least qualitatively, by means of coarse-grained
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models which are based on a few effective parameters. In the following, we
investigate this question within the two minimalistic HP lattice and AB off-
lattice heteropolymer models.

8.3 The Hydrophobic–Polar Lattice Protein Model

The simplest model for a qualitative description of protein folding is the lat-
tice hydrophobic-polar (HP) model [9]. In this model, the continuous con-
formational space is reduced to discrete regular lattices and conformations of
proteins are modeled as self-avoiding walks restricted to the lattice. Assuming
that the hydrophobic interaction is the most essential force toward the native
fold, sequences of HP proteins consist of only two types of monomers (or
classes of amino acids): Amino acids with high hydrophobicity are treated as
hydrophobic monomers (H), while the class of polar (or hydrophilic) residues
is represented by polar monomers (P ). In order to achieve the formation of
a hydrophobic core surrounded by a shell of polar monomers, the interaction
between hydrophobic monomers is attractive and short range. In the standard
formulation of the model [9], all other interactions are neglected. Variants of
the HP model also take into account (weaker) interactions between H and P
monomers as well as between polar monomers [4].

Although the HP model is extremely simple, it has been proven that iden-
tifying native conformations is an NP-complete problem in two and three
dimensions [10]. Therefore, sophisticated algorithms were developed to find
lowest-energy states for chains of up to 136 monomers. The methods ap-
plied are based on very different algorithms, ranging from exact enumeration
in two dimensions [11, 12] and three dimensions on cuboid (compact) lat-
tices [4, 13, 14, 15], and hydrophobic-core construction methods [16, 17] over
genetic algorithms [18, 19, 20, 21, 22], Monte Carlo simulations with different
types of move sets [23, 24, 25, 26], and generalized ensemble approaches [27]
to Rosenbluth chain-growth methods [28] of the “Go with the Winners”
type [29, 30, 31, 32, 33, 34, 35]. With some of these algorithms, thermodynamic
quantities of lattice heteropolymers were studied as well [14, 27, 31, 34, 35, 36].

8.3.1 The HP Model

A monomer of an HP sequence σ = (σ1, σ2, . . . , σN ) is characterized by its
residual type (σi = P for polar and σi = H for hydrophobic residues), the
position 1 ≤ i ≤ N within the chain of length N , and the spatial position
x to be measured in units of the lattice spacing. A conformation is then
symbolized by the vector of the coordinates of successive monomers, X =
(x1,x2, . . . ,xN ). We denote by xij = |xi − xj | the distance between the ith
and the jth monomer. The bond length between adjacent monomers in the
chain is identical with the spacing of the used regular lattice with coordination
number q. These covalent bonds are thus not stretchable. A monomer and its
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nonbonded nearest neighbors may form the so-called contacts. Therefore, the
maximum number of contacts of a monomer within the chain is (q − 2) and
(q−1) for the monomers at the ends of the chain. To account for the excluded
volume, lattice proteins are self-avoiding, i.e., two monomers cannot occupy
the same lattice site. The total energy for an HP protein reads in energy units
of ε0 (we set ε0 = 1 in the following):

EHP = ε0

∑

〈i,j>i+1〉
CijUσiσj , (8.1)

where Cij = (1− δi+1 j)Δ(xij − 1) with

Δ(z) =
{

1, z = 0
0, z �= 0 (8.2)

is a symmetric N ×N matrix called contact map and

Uσiσj =
(

uHH uHP
uHP uPP

)
(8.3)

is the 2 × 2 interaction matrix. Its elements uσiσj correspond to the energy
of HH , HP , and PP contacts. For labeling purposes, we shall adopt the
convention that σi = 0 =̂P and σi = 1 =̂H .

In the simplest formulation [9], only the attractive hydrophobic interaction
is nonzero, uHP

HH = −1, while uHP
HP = uHP

PP = 0. Therefore, UHP
σiσj

= −δσiHδσjH .
This parameterization, which we will traditionally call the HP model in the
following, has been extensively used to identify ground states of HP sequences,
some of which are believed to show up qualitative properties comparable with
realistic proteins whose 20-letter sequence was transcribed into the 2-letter
code of the HP model [16, 18, 37, 38, 39].

This simple form of the standard HP model suffers, however, from the
fact that the lowest-energy states are usually highly degenerate, and therefore
the number of designing sequences (i.e., sequences with unique ground state
– up to the usual translational, rotational, and reflection symmetries) is very
small, at least on the three-dimensional simple cubic (sc) lattice. Incorporating
additional inter-residue interactions, symmetries are broken, degeneracies are
smaller, and the number of designing sequences increases [14, 15]. Based on the
Miyazawa–Jernigan matrix [40] of inter-residue contact energies between real
amino acids, an additional attractive nonzero energy contribution for contacts
between H and P monomers is more realistic [4]. In the following, we set the
elements of the interaction matrix (8.3) to uMHP

HH = −1, uMHP
HP = −1/2.3 ≈

−0.435, and uMHP
PP = 0, corresponding to [4]. The factor 2.3 is a result of

an analysis for the inter-residue energies of contacts between hydrophobic
amino acids and contacts between hydrophobic and polar residues [40] which
motivated the relation 2uHP > uPP + uHH [4]. In the following, we call this
variant the MHP model (mixed HP model).
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8.3.2 Exact Enumerations for Short HP Sequences

The most important advantage of lattice HP-type models compared with
other, more complex protein models is that it allows for comprising analyses
of conformation and sequence space. This is essential for systematic studies
following two main strategies in understanding protein structure formation:
direct and inverse folding. Direct folding is sequence-based, i.e., the amino
acid sequence is given and the global free-energy minimum conformation(s)
are sought. In the inverse folding problem, a target structure is given and the
question is for how many sequences this structure is the global free-energy
minimum conformation.

Since it is widely believed that for bioproteins the unique global free-energy
minimum conformation under physiological conditions (i.e., the native fold)
is identical with the conformation of lowest total (free) energy, it is assumed
that qualitative folding-related properties of HP lattice protein sequences are
comparable with realistic proteins if their ground state is nondegenerate. An
HP sequence with a unique native fold is called designing. On the other hand,
a target structure which is the native fold of one or more designing sequences
is called a designable conformation.

In Table 8.1, we list for all chain lengths N = 4, . . . , 19 the total numbers
SN of relevant designing sequences [41] in the HP and the MHP model. These
results were obtained by exhaustive exact enumerations of the complete con-
formation and sequence spaces of chains with up to 19 monomers on the sc
lattice [14]. Note that there are for a 19-mer more than 5× 105 HP sequences
and about 2×1012 self-avoiding conformations on the sc lattice, which in total
allows naively more than 1018 possible combinations. In order to achieve this,
an efficient parallel implementation based on contact sets [12, 42] together
with symmetry considerations had to be used [15]. As already mentioned,
the number of designing sequences is rather small in the standard HP model,
whereas the additional HP attraction in the MHP model dissolves degenera-
cies which consequently entails a noticeably larger number of sequences with
a unique ground-state conformation.

In Table 8.2, we list for both models the number of different native con-
formations DN on the sc lattice. Interestingly, this number is usually much
smaller than the number of designing sequences in Table 8.1, i.e., several de-
signing sequences share the same ground-state conformation. The number of
designing sequences that fold into a certain given target conformation X(0)

Table 8.1. Number of designing sequences SN (only relevant sequences [41]) in the
HP and MHP model on the simple cubic lattice

N 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

SHP
N 3 0 0 0 2 0 0 0 2 0 1 1 1 8 29 47

SMHP
N 7 0 0 6 13 0 11 8 124 14 66 97 486 2196 9491 4885
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Table 8.2. Number of designable conformations DN (without conformations triv-
ially symmetric by translations, rotations, and reflections) in the HP and MHP
model on the simple cubic lattice

N 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

DHP
N 1 0 0 0 2 0 0 0 2 0 1 1 1 8 28 42

DMHP
N 1 0 0 2 2 0 5 6 30 8 31 58 258 708 1447 1623

(or conformations being trivially symmetric to this by translations, rotations,
and reflections) is called designability [43]:

FN (X(0)) =
∑

σ∈SN

Δ(Xgs(σ)−X(0)) , (8.4)

where Xgs(σ) is the native (ground-state) conformation of a designing se-
quence σ in the set of all designing sequences SN of length N . The function
Δ(Z) is the generalization of (8.2) to 3N -dimensional vectors. It is unity for
Z = 0 and zero otherwise.

The designability is plotted in Fig. 8.1 for all native conformations that
HP proteins with N = 17, 18, and 19 monomers can form in the MHP model.
In this figure, the abscissa is the rank of the conformations, ordered according
to their designability. The conformation with the lowest rank is therefore the
most designable structure, and we see that most of the designing sequences
fold into a few number of highly designable conformations, while only a small
number of designing sequences possesses a native conformation with low des-
ignability (note that the plot is logarithmic). Similar results were found, for
example in [44], where the designability of compact conformations on cuboid

N = 19
N = 18
N = 17

rank

FN

1000100101

100

10

1

Fig. 8.1. Designability FN of native conformations in the MHP model for N = 17,
18, and 19. The abscissa is the rank obtained by ordering all designable conforma-
tions according to their designability
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Fig. 8.2. Structure (N = 18) with the highest designability of all native confor-
mations (left) and most compact structure with minimal radius of gyration (right)

lattices was investigated in detail. The left picture in Fig. 8.2 shows the confor-
mation with the lowest rank (or highest designability) with N = 18 monomers.
Note that this is not the most compact structure, i.e., the conformation with
minimal gyration radius, which is also shown for N = 18 in Fig. 8.2 (right).

8.3.3 Chain-Growth Methods for Long HP Sequences

Combined exact enumeration studies of conformation and sequence space for
lattice peptides noticeably longer than 19 monomers are currently computa-
tionally out of reach which is due to the exponential growth of the state space.
Therefore, for longer sequences, primarily the direct folding problem is studied
using computer simulation methods: Low-lying energetic conformations and
thermodynamic properties governing the folding kinetics are identified and
analyzed for a given HP sequence.

Computer simulations of lattice peptides, which are modeled as self-
avoiding walks on the underlying lattice, are demanding. The reason is that
the native fold, i.e., the ground-state or lowest-energy conformation, plays an
essential role in protein science and that it is, in the discrete lattice repre-
sentation, non- or low-degenerate. Monte Carlo simulations with move sets
consisting of semilocal conformational updates such as end flips, corner flips,
and “crank shafts” [23, 24, 25, 26], as well as nonlocal pivot updates [45],
are inefficient in sampling the dominating dense conformations in the low-
temperature region. It turned out that a different method, Rosenbluth chain
growth [28] combined with a “Go with the winners” strategy [29], is much
more efficient in sampling highly dense conformations.

Pruned-Enriched Rosenbluth Chain-Growth Method

In naive chain-growth methods based on simple sampling, a polymer grows
by attaching the nth monomer at a randomly chosen nearest-neighbor site
of the (n − 1)th monomer. The growth is stopped, if the total length N of
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the chain is reached or the randomly selected continuation of the chain is
already occupied. In both cases, the next chain is started to grow from the
first monomer. This simple chain growth is not yet very efficient, since the
number of discarded chains grows exponentially with the chain length.

The performance can be improved with the Rosenbluth chain growth
method [28], where first the free next neighbors of the (n − 1)th monomer
are determined and then the new monomer is placed to one of the unoccupied
sites. Since the probability for the next monomer to be set varies with the
number of free neighbors, this implies a bias given by

pn =

(
n∏

l=2

ml

)−1

, (8.5)

where ml is the number of free neighbors to place the lth monomer. The
bias is corrected by assigning a Rosenbluth weight factor WR

n = p−1
n to each

chain that has been generated by this procedure. An illustrative example for
the bias in the Rosenbluth chain-growth method is shown in Fig. 8.3. The
two depicted linear chains are grown on a square lattice from either of the
two ends (labeled by “1”). According to Rosenbluth sampling, the chain is
continued if the number of free neighbor sites is m ≥ 1. Since the number of
free nearest-neighbor places varies, different probabilities for the continuation
of the chain occur. Since both conformations are identical, the probability of
creation should be the same. This requires the introduction of the correction
weights. Although this biased growth is more efficient than simple sampling,
this method suffers from attrition too: If all nearest neighbors are occupied,
i.e., the chain was running into a “dead end” (attrition point), the complete
chain has to be discarded and the growth process has to be started anew.

Combining the Rosenbluth chain growth method with population control,
however, as is done in PERM (Pruned-Enriched Rosenbluth Method) [30,
31, 32], leads to a further considerable improvement of the efficiency by
increasing the number of successfully generated chains. This method ren-
ders particularly useful for studying the θ point of polymers, since then the

1

1/4 1/3

1/3

1/3 1 1/4

1/3

1/3

1/2

Fig. 8.3. Square lattice example for the bias implied by Rosenbluth sampling.
Both walks shown are grown from the monomer labeled “1”. Although the shapes
are identical, they are created with different probabilities (left: p = 1/108, right:
p = 1/72)
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Rosenbluth weights of the statistically relevant chains approximately cancel
against their Boltzmann probability. The (a-thermal) Rosenbluth weight fac-
tor WR

n is therefore replaced by

WPERM
n =

n∏

l=2

mle−(El−El−1)/kBT , 2 ≤ n ≤ N (E1 = 0, WPERM
1 = 1) ,

(8.6)

where T is the temperature and El is the energy of the partial chain
Xl = (x1, . . . ,xl) created with Rosenbluth chain growth. In PERM, popu-
lation control works as follows. If a chain has reached length n, its weight
WPERM
n is calculated and compared with suitably chosen upper and lower

threshold values, W>
n and W<

n , respectively. For WPERM
n > W>

n , identical
copies are created which then grow independently. The weight is equally di-
vided among them. If WPERM

n < W<
n , the chain is pruned with some proba-

bility, say 1/2, and in case of survival, its weight is doubled. For a value of the
weight lying between the thresholds, the chain is simply continued without
enriching or pruning the sample. The upper and lower thresholds W>

n and
W<
n are empirically parameterized. Although their values do not influence

the validity of the method, a careful choice can drastically improve the effi-
ciency of the method (the “worst” case is W>

n = ∞ and W<
n = 0, in which

case PERM is simply identical with Rosenbluth sampling). An efficient way
of parameterization is dynamical adaption of the values [30, 31, 32, 33, 34, 35]
with respect to the actual number of generated chains cn with length n and
their estimated partition sum

Zn =
1
c1

∑

t

WPERM
n (t) , (8.7)

where c1 is the number of growth starts (also called “tours”) and t counts the
generated conformations with n monomers. Useful choices of the threshold
values are

W>
n = C1 Zn

c2
n

c3
1

, W<
n = C2 W>

n , (8.8)

where C1, C2 ≤ 1 are constants. For the first tour, W>
n = ∞ and W<

n = 0,
i.e., no pruning and enriching.

In the recently developed new variants nPERMss and nPERMis [33], the
number of copies is not constant and depends on the ratio of the weight
WPERM
n compared to the upper threshold value W>

n , and the copies are nec-
essarily chosen to be different. The method of selecting the copies is based
on simple sampling (ss) in nPERMss and a kind of importance sampling (is)
in nPERMis. This proves quite useful in producing highly compact polymers,
and therefore these new methods are very powerful in determining lowest-
energy states of lattice proteins.

Results of a simple application of PERM to self-avoiding walks on a simple-
cubic lattice are plotted in Fig. 8.4, where the scaling behavior 〈R2

gyr,ee〉
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Fig. 8.4. Scaling of mean square radius of gyration 〈R2
gyr〉 and end-to-end distance

〈R2
ee〉 for self-avoiding walks. Data points refer to results from PERM runs for N =

16, 32, . . . , 32768 steps. Lines manifest the respective power-law behaviors

∼ N2ν of the mean square radius of gyration 〈R2
gyr〉 and end-to-end distance

〈R2
ee〉 with the number of steps N is shown. Data were obtained for chains

of N = 16, 32, . . . , 32 768 steps. For both quantities, the slope of the lines in
the logarithmic plot is ν = 0.59, which is close to the precisely known critical
exponent ν = 0.588 . . . [46].

Multicanonical Chain-Growth Algorithm

The efficiency of PERM depends on the simulation temperature. Therefore,
a precise estimation of the density of states requires separate simulations at
different temperatures. Then, the density of states can be constructed by
means of the multiple-histogram reweighting method [47]. Although being a
powerful method, it is difficult to keep track of the statistical errors involved
in the individual histograms obtained in the simulations.

An alternative approach, in which the density of states g(E) is obtained
within a single simulation without the necessity of a subsequent multi-
histogram reweighting, is the combination of PERM with multicanonical sam-
pling, the so-called multicanonical chain-growth method [34, 35].

The general idea of multicanonical sampling [48, 49] is to simulate the ther-
modynamic behavior of the system in a generalized (multicanonical) ensemble,
where the energetic macrostates are distributed uniformly, pmuca(E) = const,
which implies the introduction of multicanonical weight factors Wmuca(E). In
typical multicanonical Monte Carlo simulations, the dynamics is therefore gov-
erned by a random walk in energy space. Hence, the sampling of entropically
rare events is, in principle, as frequent as the sampling of highly degenerate
energetic states. The acceptance probability for a new system configuration X′

with energy E′ is wmuca(X→ X′) = min{1, exp[S(E(X′))−S(E(X))]}, where
S(E(X)) = −ln Wmuca(E(X)) is the microcanonical entropy. The canonical
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energy distribution pcan(E) ∼ g(E) exp(−E/kBT ) for a given temperature T
is related with the multicanonical histogram via

pcan(E) ∼W−1
muca(E)pmuca(E)e−E/kBT , (8.9)

which implies that the multicanonical weights are proportional to the inverse
density of states, Wmuca(E) ∼ g−1(E). Since g(E) is unknown, the determi-
nation of the weights Wmuca(E) is not straightforward and must be performed
in the first stage of the simulation in an iterative procedure [49].

The multicanonical extension of PERM requires two main changes com-
pared to standard PERM. Firstly, the expression (8.6) for the weight factor
is replaced by

WMPERM
n (En) = Wmuca,n(En)

n∏

l=2

ml , Wmuca,1 = 1 , (8.10)

where, according to multicanonical sampling, the multicanonical weight of
the chain of current length n is related to the appropriate inverse density of
states, Wmuca,n(E) ∼ g−1

n (E). Note that the possibility to rewrite (8.10) in
the recursive factorized form

WMPERM
n (En) =

n∏

l=2

ml
Wmuca,l(El)

Wmuca,l−1(El−1)
= WMPERM

n−1 mn
Wmuca,n(En)

Wmuca,n−1(En−1)
(8.11)

is mainly responsible for the efficiency of this method as it ensures that rare-
event (flat-histogram) sampling is performed in all intermediate steps of the
growth process. This means that for a chain of length N all energy histograms
are “flat”, Hn(E) ≈ const. with n ≤ N . The pruning-enriching scheme of
PERM is completely carried over and remains unchanged, with the exception
that the thresholds (8.8) are reexpressed as

W>
n = C1 ZMPERM

n

c2
n

c3
1

, W<
n = C2 W>

n , (8.12)

i.e., in terms of the partition sum of the multicanonical ensemble, ZMPERM
n =

(1/c1)
∑
t

WMPERM
n (t).

The second difference compared with the original PERM is the estima-
tion of the multicanonical weights, as the densities of states gn(E), n ≤ N ,
are unknown in the beginning of the simulation. Therefore, the multicanon-
ical weight factors Wmuca,n(E) must be determined iteratively for all stages
n ≤ N of the growth process [35]. The initial choice for the multicanonical
weights is typically W

(0)
muca,n(E) = 1 ∀n, E, making the zeroth recursion a pure

PERM run at infinite temperature. The energy histograms are initialized with
H

(0)
n (E) = 0. Performing the multicanonical chain growth according to the
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method described above, the histograms are accumulated by summing up the
weights (8.11) of successively generated chains:

H(0)
n (E) =

1
c1

∑

t

WMPERM
n,t δEt E , (8.13)

where t labels the chain reaching length n in the growth process. Since this his-
togram is a first estimate for the density of states, the multicanonical weights
for the following iteration are set to W

(1)
muca,n(E) = 1/H

(0)
n (E). Before starting

the new recursion, ZMPERM
n , cn, W<

n are reset to zero, and W>
n to infinity (i.e.,

to the upper limit of the data type used to store this quantity). The iterative
procedure is repeated until the weights W

(i)
muca,n(E) = W

(i−1)
muca,n(E)/H

(i−1)
n (E)

are stabilized. In a long final production run i = I, the densities of states are
then determined from

g(I)
n (E) =

H
(I)
n (E)

W
(I)
muca,n(E)

, n ≤ N . (8.14)

For practical applications of this algorithm, in particular for studies
of heteropolymers, it is more favorable to replace the original pruning-
enrichment core, i.e., PERM [30], by the modern, improved variants nPERMss
or nPERMis [33]. The combination of this more efficient chain-growth strategy
with multicanonical sampling is straightforward. The details are explained in
[34, 35]. In Fig. 8.5, estimates for g(i)(E) after the iterations i = 0, 1, 6, and 9
are shown for an exemplified heteropolymer with 42 monomers, whose thermo-
dynamic properties will be discussed in more detail in Sect. 8.3.4. The zeroth

–20

log10 g(E)
–15

–10

–5

0

–25

–30

6th

9th

1st

0th

–35 –30 –25 –20 –15 –10 –5 0
E

Fig. 8.5. Estimates for the density of states g(i)(E) for an exemplified heteropolymer
with 42 monomers after several recursion levels. Since the curves would fall on top
of each other, we have added, for better distinction, a suitable offset to the curves
of the 1st, 6th, and 9th run. The estimate of the 0th run is normalized to unity
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run is a pure PERM estimate with a reliable precision over 5 orders of mag-
nitude. As the simulations were effectively performed in the purely entropic
regime at infinite temperature (i.e., β = 0), low-energy states are rarely sam-
pled. In this case, chain growth is governed only by the weights (8.6) which are
only products of free nearest-neighbor sites and therefore identical with the
Rosenbluth weights for self-avoiding walks. The model-dependent energetic
influence on the growth is thus irrelevant. The efficiency is improved in the
successive recursions, where the multicanonical weights (8.11) are gradually
refined and allow for a sampling of larger regions of the energy space. After
only ten recursions, the estimate for g(E) covers the whole accessible energy
space (including the ground state) and ranges over 25 orders of magnitude.

It is worth noticing that the obtained density of states is absolute, i.e., esti-
mates for the degeneracies of energetic states, in particular for the important
ground state, can directly be read off. Furthermore, the partition function is
also absolutely estimated via Z =

∑
E g(E) exp(−E/kBT ). The reason is that

chain-growth methods perform a “biased” simple sampling instead of impor-
tance sampling as is used in most Markov chain Monte Carlo methods [50].
With Markov chain importance sampling, it is usually not possible to obtain
an absolute estimate for g(E).

The probability for energetic states in a canonical ensemble at tempera-
ture T is obtained from the density of states by Boltzmann reweighting via
pcan(T ) = g(E) exp(−E/kBT )/Z. Thus, statistical expectation values of en-
ergetic observables O(E) are simply given by 〈O〉 =

∑
E O(E)pcan(E). Ther-

mal fluctuations of these quantities, e.g., defined by d〈O〉/dT = (〈O2〉 −
〈O〉2)/kBT 2, are of particular interest for identifying temperature regions
of thermodynamic activity. A very convenient measure for quantifying the
cooperative behavior of a complex system is, e.g., the specific heat CV =
(〈E2〉 − 〈E〉2)/kBT 2.

Decoupling Energy Scales: An Instructive Example

For systems, where different energy scales decouple, the density of states g(E)
as a distribution of states with given total energy E is not the most useful
quantity. As an important example, we consider the adsorption of a polymer
to a substrate. In simple lattice models, only the number of intrinsic nearest-
neighbor contacts between nonadjacent monomers, nm, and the number of
nearest-neighbor contacts of the polymer with the substrate, ns, are counted.
For the discussion of conformational transitions in the adsorption process
later on, it is quite useful to rate intrinsic and binding forces against each
other and therefore it is useful to introduce different energy scales εm and εs

corresponding to the contact numbers nm and ns, respectively. A minimalistic
model could then, for example, be defined by [51]

E(nm, ns) = −εmnm − εsns ≡ −ε0(snm + ns) , (8.15)
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where the ratio s = εm/εs can be considered as a kind of reciprocal solvent pa-
rameter (the larger s, the worse the quality of the solvent). The overall energy
scale is simply ε0 ≡ εs. Since the total energy E of the system depends on s,
it would be necessary to fix its value in the previously described multicanon-
ical chain-growth variant. Instead of determining the density of states g(E),
it would be more favorable to calculate the contact density g(nm, ns) which is
independent of s. Knowing the contact density, the canonical probability for a
system conformation with nm monomer–monomer and ns monomer–substrate
contacts is given by pT,s(nm, ns) = g(nm, ns) exp[−E(nm, ns)/kBT ]/ZT,s,
where temperature T and solubility s are considered as fixed parameters. The
statistical average of a quantity O(nm, ns) is then obtained as 〈O(nm, ns)〉 =∑

nm,ns
O(nm, ns)pT,s(nm, ns). For the discussion of the conformational phase

diagram of the hybrid polymer–substrate system in solvent, it is useful to
consider the dependence of fluctuations on temperature and solubility. As an
example, the specific heat can be expressed as

CV (T, s) = kB

(
ε0

kBT

)2

(s 1)
( 〈n2

s 〉c 〈nsnm〉c
〈nsnm〉c 〈n2

m〉c
)(

s
1

)
, (8.16)

where 〈xy〉c = 〈xy〉 − 〈x〉〈y〉 (x, y = nm, ns) are the variances and covari-
ances of the contact numbers. Note that the knowledge of g(nm, ns) enables
reweighting of the specific heat to any pair of parameters T and s.

Contact Density Chain-Growth Method

The determination of the contact density g(nm, ns) follows similar lines as
the multicanonical chain-growth method for the estimation of the density of
states. In fact, the only change in the algorithm described in the previous
section is that the weights WMPERM

n (En) defined in (8.11) are replaced by

WCDPERM
n (n(n)

m , n(n)
s ) =

n∏

l=2

ml
Wcd,l(n

(l)
m , n

(l)
s )

Wcd,l−1(n
(l−1)
m , n

(l−1)
s )

, (8.17)

where the multi-contact weights Wcd,l(n
(l)
m , n

(l)
s ) ∼ 1/g(n(l)

m , n
(l)
s ) have to be

determined again recursively.
The extension of this method incorporating more than two system param-

eters is straightforward, but the efficiency of flattening the high-dimensional
histograms at all levels of the growth process decreases, whereas the storage
requirements for these fields rapidly increase.

8.3.4 Bulk Behavior of HP Lattice Proteins

Before embarking into the discussion of hybrid peptide–substrate systems, we
investigate first the bulk behavior of HP peptides. In the folding process from
a random-coil conformation toward the native fold, the protein experiences
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in many cases conformational transitions. These transitions typically require
passing or circumventing of barriers in the free-energy landscape, which slows
down the folding dynamics. Similar to thermodynamic phase transitions, con-
formational transitions can be identified by noticeable changes in the behavior
of fluctuating quantities. Peaks and “shoulders” in specific-heat curves are, for
example, typical signals for cooperative activity, because in the vicinity of the
peak temperatures entropic changes separate qualitatively different classes of
conformations (e.g., random coils and globular shapes). Since peptides are
always of finite length due to their well-defined amino acid sequence, con-
formational transitions are not phase transitions in the strict thermodynamic
sense. In consequence, fluctuations of different thermodynamic quantities typ-
ically do not exhibit the same peak structure, i.e., there is no “data collapse”
which would allow the definition of a uniform transition temperature, where
the phases are uniquely separated. Since for peptides different fluctuating
quantities predict different transition temperatures, it is only possible to iden-
tify a temperature interval of conformational activity. This makes a precise
quantitative analysis and a qualitative classification of such transitions diffi-
cult [34, 35].

In the following, we discuss ground-state properties and thermodynam-
ics for exemplified HP sequences. These results were obtained by employing
the aforementioned multicanonical chain-growth method [34, 35] for the stan-
dard version of the HP model [9]. An interesting example is the 42-monomer
HP sequence representing the parallel β-helix protein pectate lyase C [52],
which reads PH2PHPH2PHPHP2H3PHPH2PHPH3P2HPHPH2PHPH2P [16].
Although it is not believed that specific protein properties such as the fold-
ing behavior and thermodynamics are conserved in a one-to-one transcription
of an amino acid sequence into the hydrophobic–polar two-letter code, this
example shows surprising coincidences of the real protein and the model, as
the (low-degenerate) ground-state conformations in the HP model also exhibit
two parallel helical segments. More interesting is, however, that the ground-
state degeneracy is only g0 = 4 without trivial rotational symmetries [16].
With multicanonical chain-growth simulations [34], the ground-state degen-
eracy was precisely estimated as g0 = 3.9 ± 0.4 [35]. In this simulation, ten
recursions were performed and in the production run, about 5 × 107 chains
entered into statistics.

The low ground-state degeneracy is indeed remarkable, as it is extremely
difficult to find designing sequences (which possess a nondegenerate ground
state) with the standard HP model (cf. Table 8.1), in particular for compara-
tively long sequences. For a statistical analysis of the folding behavior of this
42-mer, the density of states, as has already been shown in Fig. 8.5, as well
as the thermodynamic quantities and their fluctuations were calculated [34].
In Fig. 8.6, the specific heat CV and fluctuations of the structural quantities
radius of gyration Rgyr and end-to-end distance Ree are plotted as functions of
temperature. Two temperature regions of conformational activity (shaded in
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Fig. 8.6. Specific heat CV and respective fluctuations of gyration radius and end-
to-end distance, d〈Rgyr〉/dT and d〈Ree〉/dT , as functions of temperature for the
42-mer

gray), where the curves of the fluctuating quantities exhibit extremal points,
can clearly be separated.

For high temperatures, random conformations are favored. In conse-
quence, in the corresponding, rather entropy-dominated ensemble, the high-
degenerate high-energy structures govern the thermodynamic behavior of
the macrostates. A typical representative is shown as an inset in the high-
temperature pseudophase in Fig. 8.6. Annealing the system (or, equivalently,
decreasing the solvent quality), the heteropolymer experiences a conforma-
tional transition toward globular macrostates. A characteristic feature of these
intermediary “molten” globules is the compactness of the dominating confor-
mations as expressed by a small gyration radius. Nonetheless, the conforma-
tions do not exhibit a noticeable internal long-range symmetry and behave
rather like a fluid. Local conformational changes are not hindered by strong
free-energy barriers. The situation changes by entering the low-temperature
(or poor-solvent) conformational phase. In this region, energy dominates over
entropy and the effectively attractive hydrophobic force favors the formation
of a maximally compact core of hydrophobic monomers. Polar residues are ex-
pelled to the surface of the globule and form a shell that screens the core from
the (fictitious) aqueous environment. In Fig. 8.7, we have plotted canonical
energy distributions pcan(E) for several temperatures near the hydrophobic-
core collapse transition. For temperatures above the transition region (which
is between T (1) = 0.24 and T (2) = 0.28, cf. Fig. 8.6), globular conformations
are more probable, whereas for smaller temperatures hydrophobic-core states
dominate. From the two-peak structure of the distributions in the transition
region, it can be concluded that this transition is first-order-like, i.e., both
types of macrostates coexist in this temperature region.
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Fig. 8.7. Canonical energy distributions of the 42-mer for temperatures T =
0.24, 0.25, . . . , 0.30 close to the hydrophobic-core collapse transition

The existence of the hydrophobic-core collapse renders the folding behav-
ior of a heteropolymer different from crystallization or amorphous transitions
of homopolymers [53, 54]. The reason is the disorder induced by the sequence
of different monomer types. The hydrophobic-core formation is the main co-
operative conformational transition which accompanies the tertiary folding
process of a single-domain protein.

A very important aspect in the discussion of ground-state properties and
conformational transitions toward the native fold is the influence of the het-
eropolymer sequence. For this purpose, we analyze ten designed sequences
with 48 monomers, listed in Table 8.3, as given in [16]. The ratio between the
numbers of hydrophobic and polar residues is one half for these HP proteins,
i.e., the hydrophobicity is nH = 24. The minimum energies we found from
multicanonical chain-growth simulations [35] coincide with the values given
in [16, 33]. Also listed in Table 8.3 are the estimates for the degeneracies g0 of
the respective ground-state energies. For comparison, previously given lower
bounds g<CHCC [37] are listed, which were obtained by means of the constraint-
based hydrophobic core construction (CHCC) method [16]. Utilizing the idea
of a highly compact hydrophobic core in the native fold, the hydrophobic
monomers are in this method arranged in frames of maximal compactness.
The number of the associated so-called Hamiltonian walks that connect the
monomers, respecting the nonchangeable HP sequence, gives a lower bound
for the degeneracy of the ground state. If, due to the sequence, a matching
walk cannot be constructed, the compactness of the frame is relaxed and the
search starts anew. The exact ground-state degeneracy would be obtained by
scanning all frames and searching for conformations with the ground-state
energy. Since the method is of exact enumeration type, the efforts of deter-
mining the precise ground-state degeneracy are enormous and, therefore, the
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main power of this method lies in the identification of native folds and the
possibility to give a lower bound for its degeneracy.

For the 48-mers, the g0 values obtained within the multicanonical chain-
growth simulation lie indeed above these lower bounds or include it within
the range of statistical errors. Notice that for the sequences 48.1, 48.5, and
48.8, the estimates for the ground-state degeneracy are much higher than the
bounds g<CHCC. In these cases, the smallest frame containing the entire hy-
drophobic core is rather large (cube containing 4× 3× 3 = 36 monomers with
surface area A = 32 [bond length]2) such that enumeration of this frame is
cumbersome. For 48.5 and 48.8, we further found ground-state conformations
lying in less compact frames (48.5: A = 32, 40, 42, 48, 52, 54 [bond length]2,
48.8: A = 32, 40, 42 [bond length]2), and those conformations would require
still more effort to be identified with the CHCC algorithm, which was designed
to locate global energy minima and therefore starts the search with the most
compact hydrophobic frames. The ground-state energies of these examples are
rather high (Emin = −31 for 48.8 and Emin = −32 for 48.1 and 48.5), and
therefore, a higher degeneracy seems to be natural. This is, however, only true
if there does not exist a conformational barrier that separates the compact
H-core low-energy states from the general compact globules. Comparing the
ground-state degeneracies and the low-temperature behavior of the specific
heats for the sequences 48.1, 48.5, 48.6, and 48.7 (all of them having global en-
ergy minima with Emin = −32) as shown in Fig. 8.8, we observe that 48.6 and
48.7 with rather low ground-state degeneracy actually possess a pronounced
low-temperature peak in the specific heat, while the higher-degenerate pro-
teins 48.1 and 48.5 only show up a weak indication of a structural transition
at low temperatures. The HP proteins 48.2, 48.3, and 48.9, which have the
lowest minimum energy Emin = −34 among the examples in Table 8.3, have
also the lowest ground-state degeneracies. These three candidates seem indeed
to exhibit a rather strong ground-state/globule transition, as can be read off
from the associated specific heats in Fig. 8.8.

In Fig. 8.8, also the mean end-to-end distances and mean radii of gyra-
tion are plotted as functions of temperature. Both quantities usually serve to
interpret the conformational compactness of polymers. For HP proteins, the
end-to-end distance is strongly influenced, however, by the types of monomers
attached to the ends of the chain. It is easily seen from the figures that the
48-mers with sequences starting and ending with a hydrophobic residue (48.1,
48.2, and 48.6) have a smaller mean end-to-end distance at low temperatures
than the other examples from Table 8.3. The reason is that the ends can
form hydrophobic contacts and therefore a reduction of the energy can be
achieved. Thus, in these cases, contacts between ends are usually favorable
and the mean end-to-end distance is close to the mean radius of gyration.
Interestingly, there exists indeed a crossover region, where 〈Ree〉 < 〈Rgyr〉.
Comparing with the behavior of the specific heat, this interval is close to the
region, where the phase dominated by low-energy states crosses over to the
globule-favored phase. The hydrophobic contact between the ends is strong
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Fig. 8.8. Specific heat, mean radius of gyration, and mean end-to-end distance for
the ten 48-mers listed in Table 8.3 [35]
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enough to resist the thermal fluctuations in that temperature interval. The
reason is that, once such a hydrophobic contact between the ends is estab-
lished, usually other in-chain hydrophobic monomers are attracted and form
a hydrophobic core surrounding the end-to-end contact. Thus, before the con-
tact between the ends is broken, an increase of the temperature first leads
to a melting of the surrounding contacts. The entropic freedom to form new
conformations is large since the low-energy states are all relatively high degen-
erate and do not possess symmetries requiring an appropriate amount of heat
to be broken. For sequences possessing mixed or purely polar ends, the mean
end-to-end distance and mean radius of gyration differ much stronger, as there
is no energetic reason why the ends occupy nearest-neighbor positions.

In conclusion, we see that for longer chains the strength of the low-
temperature transition not only depends on low ground-state degeneracies
as it does for short chains [34]. Rather, the influence of the higher-excited
states cannot be neglected. A striking example is sequence 48.4 with rather
low ground-state degeneracy, but only weak signals for a low-temperature
transition.

8.3.5 Specificity of Protein Adsorption
to Selective Solid Substrates

In this section, we discuss results of a simple lattice model similar to (8.15) for
analyzing the conformational behavior of HP proteins in adsorption processes
to different, specific solid substrates. The objective is the determination of
a pseudophase diagram, which allows for the classification of conformational
subphases in dependence of the external parameters temperature and solubil-
ity of the surrounding (implicit) solvent.

The recent developments in single molecule experiments at the nanometer
scale, e.g., by means of atomic force microscopy (AFM) [55] and optical tweez-
ers [56], allow now for a more detailed exploration of structural properties of
polymers in the vicinity of adsorbing substrates [57]. The possibility to per-
form such studies is of essential biological and technological significance. From
the biological point of view, the understanding of the binding and docking
mechanisms of proteins at cell membranes is important for the reconstruction
of biological cell processes. Similarly, specificity of peptides and binding affin-
ity to selected substrates could be of great importance for future electronic
nanoscale circuits and pattern recognition nanosensory devices [58]. The study
of hybrid interface models has considerable applications for a broad variety of
problems, e.g., understanding the mechanisms of protein–ligand binding [59],
prewetting and layering transitions in polymer solutions as well as dewetting
of polymer films [60, 61], molecular pattern recognition [62], electrophoretic
polymer deposition and growth [63]. Recently, the influence of adhesion and
steric hindrance for polymers grafted to a flat substrate [51, 64, 65, 66, 67, 68],
conformational pseudophase transitions for nongrafted polymers and peptides
in a cavity with attractive substrate [69, 70, 71, 72], the shape response to
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pulling forces [73, 74] or external fields [75] were subject of computer sim-
ulations and analytical approaches of different models. The question how a
flexible substrate, e.g., a cell membrane, bends as a reaction of a grafted
polymer was, for example, addressed in [76]. Proteins exhibit a strong speci-
ficity as the affinity of peptides to adsorb at surfaces depends on the amino
acid sequence, solvent properties, and substrate shape. This was experimen-
tally and numerically studied, e.g., for peptide–metal [77, 78] and peptide–
semiconductor [79, 80] interfaces. Binding/folding and docking properties of
lattice heteropolymers at an adsorbing surface were also subject of numerical
studies [81].

Lattice Model for Hybrid Peptide–Substrate Interfaces

For the study of hybrid peptide–substrate models, we use the HP transcrip-
tion of the 103-residue protein cytochrome c, which was extensively studied
in the past [33, 35, 38, 39]. The HP sequence contains 37 hydrophobic and
66 polar residues. A conformation with a highly compact hydrophobic-core,
exhibiting 56 hydrophobic contacts, is shown in Fig. 8.9. This lattice peptide
resides in a cavity with an attractive substrate (see Fig. 8.10). For regular-
ization of the upper halfspace, an additional steric wall in a distance zw is
introduced. The value of zw is chosen sufficiently large to keep the influence
on the unbound heteropolymer small (in the actual example, zw = 200 was
used). In order to study the specificity of residue binding, we distinguish
three substrates with different affinities to attract the peptide monomers:
(a) the type-independent attractive, (b) the hydrophobic, and (c) the polar
substrates. The number of corresponding nearest-neighbor contacts between
monomers and substrate shall be denoted as nH+P

s , nHs , and nPs , respectively.
In analogy to the polymer–substrate model (8.15), we express the energy of
the hybrid peptide–substrate system simply by

Es(ns, nHH) = −ε0(ns + snHH) , (8.18)

Fig. 8.9. Compact hydrophobic-core conformation of the 103-mer [35] used in
the peptide adsorption study [71, 72]. Dark spheres correspond to hydrophobic
monomers and light spheres mark polar residues
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Fig. 8.10. Lattice model used in the peptide–substrate adsorption study

where ns = nH+P
s , nPs , or nHs depending on the substrate (we set ε0 = 1

in the following). The solubility (or reciprocal solvent parameter) s is, as
well as the temperature T , an external parameter. It controls the quality of
the solvent (the larger the value of s, the worse the solvent). This model
was investigated by means of the contact-density chain-growth algorithm (see
Sect. 8.3.3), which allows a direct estimation of the degeneracy (or density)
g(ns, nHH) of macrostates of the system with given contact numbers ns and
nHH [71, 72]. In contrast to move set-based Metropolis Monte Carlo or conven-
tional chain-growth methods which would require many separate simulations
to obtain results for different parameter pairs (T, s) and which frequently
suffer from slowing down in the low-temperature sector, the contact-density
chain-growth method allows the computation of the complete contact density
for each system within a single simulation run. Since the contact density is in-
dependent of temperature and solubility, energetic quantities such as specific
heat (8.16) can easily be calculated for all values of T and s. Nonenergetic
quantities require accumulated densities to be measured within the simula-
tion, but this is also no problem.

Conformational Adsorption Behavior in Dependence
of Temperature and Solubility

In Fig. 8.11(a)–(c), the color-coded profiles of the specific heats for the dif-
ferent substrates are shown (the brighter the larger the value of CV ). We
interpret the ridges (for accentuation marked by white and gray lines) as the
boundaries of the pseudophases. The gray lines indicate the main transition
lines, while the white lines separate pseudophases that strongly depend on spe-
cific properties of the heteropolymer, such as its exact number and sequence
of hydrophobic and polar monomers. With its degeneracy g(ns, nHH), we de-
fine the contact free energy as FT,s(ns, nHH) = Es(ns, nHH)− T ln g(ns, nHH)
and the probability for a macrostate with ns substrate and nHH hydrophobic
contacts as pT,s(ns, nHH) ∼ g(ns, nHH) exp(−Es/T ). Assuming that the min-
imum of the free-energy landscape FT,s(n

(0)
s , n

(0)
HH) → min for given external

parameters s and T is related to the class of macrostates with n
(0)
s surface and

n
(0)
HH hydrophobic contacts, this class dominates the phase the system resides
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Fig. 8.11. Specific-heat profiles as a function of temperature T and solubility
parameter s of the 103-mer near three different substrates that are attractive for
(a) all, (b) only hydrophobic, and (c) only polar monomers. White lines indicate
the ridges of the profile. Gray lines mark the main “phase boundaries”. The dashed
black line represents the first-order-like binding/unbinding transition state, where
the contact free energy possesses two minima (the adsorbed state and the desorbed
state). In the left panel, typical conformations dominating the associated AC phases
of the different systems are shown
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in. For this reason, it is instructive to calculate all minima of the contact free
energy and to determine the associated contact numbers in a wide range of
values for the external parameters.

The map of all possible free-energy minima in the range of external param-
eters T ∈ [0, 10] and s ∈ [−2, 10] is shown in Fig. 8.12 for the peptide in the
vicinity of a substrate that is equally attractive for both hydrophobic and po-
lar monomers. Solid lines visualize “paths” through the free-energy landscape
when changing temperature under constant solvent (s = const) conditions.
Let us follow the exemplified trajectory for s = 2.5. Starting at very low
temperatures, we know from the pseudophase diagram in Fig. 8.11(a) that
the system resides in pseudophase AC1. This means that the macrostate of
the peptide is dominated by the class of compact, film-like single-layer con-
formations. The system obviously prefers surface contacts at the expense of
hydrophobic contacts. Nonetheless, the formation of compact hydrophobic do-
mains in the two-dimensional topology is energetically favored, but maximal
compactness is hindered by the steric influence of the substrate-binding polar
residues. Increasing the temperature, the system experiences close to T ≈ 0.35,
a sharp first-order-like conformational transition, and a second layer forms
(AC2). This is a mainly entropy-driven transition as the extension into the
third dimension perpendicular to the substrate surface increases the number of
possible peptide conformations. Furthermore, the loss of energetically favored
substrate contacts of polar monomers is partly compensated by the energetic
gain due to the more compact hydrophobic domains. Increasing the temper-
ature further, the density of the hydrophobic domains reduces and overall
compact conformations dominate in the globular pseudophase AG. Reaching
AE, the number of hydrophobic contacts decreases further, and also the total
number of substrate contacts. Extended, dissolved conformations dominate.
The transitions from AC2 to AE via AG are comparatively “smooth”, i.e.,
no immediate changes in the contact numbers passing the transition lines
are noticed. Therefore, these conformational transitions could be classified as
second-order-like. The situation is different when approaching the unbinding
transition line from AE close to T ≈ 2.14. This transition is accompanied by
a dramatic loss of substrate contacts – the peptide desorbs from the substrate
and behaves in pseudophase DE like a free peptide, i.e., the substrate and
the opposite neutral wall regularize the translational degree of freedom per-
pendicular to the walls, but rotational symmetries are unbroken (at least for
conformations not touching one of the walls). As the probability distribution
in Fig. 8.12 shows, the unbinding transition is also first-order-like, i.e., close
to the transition line, there is a coexistence of adsorbing and desorbing classes
of conformations.

Despite the surprisingly rich and complex phase behavior, there are main
“phases” that can be distinguished in all three systems. These are separated in
Fig. 8.11(a)–(c) by gray lines. Comparing the three systems, we find that they
all possess pseudophases, where adsorbed compact (AC), adsorbed expanded
(AE), desorbed compact (DC), and desorbed expanded (DE) conformations
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Fig. 8.12. Contact-number map of all free-energy minima for the 103-mer and sub-
strate equally attractive to all monomers. Full circles correspond to minima of the
contact free energy FT,s(n

H+P
s , nHH) in the parameter space T ∈ [0, 10], s ∈ [−2, 10].

Lines illustrate how the contact free energy changes with the temperature at constant
solvent parameter s. For the exemplified solvent with s = 2.5, the peptide experi-
ences near T = 0.35, a sharp first-order-like layering transition between single- to
double-layer conformations (AC1,2). Passing the regimes of adsorbed globules (AG)
and expanded conformations (AE), the discontinuous binding/unbinding transition
from AE to DE happens near T = 2.14. In the DE phase, the ensemble is dominated
by desorbed, expanded conformations. Representative conformations of the phases
are shown next to the respective peaks of the probability distributions
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dominate. “Compact” here means that the heteropolymer has formed a dense
hydrophobic core, while expanded conformations are dissolved, random-coil
like. The sequence and substrate specificity of heteropolymers generates, of
course, a rich set of new interesting and selective phenomena not available for
homopolymers. One example is the pseudophase of adsorbed globules (AG),
which is noticeably present only in those systems, where all monomers are
equally attractive to the substrate (Fig. 8.11(a)) and where polar monomers
favor contact with the surface (Fig. 8.11(b)). In this phase, the conformations
are intermediates in the binding/unbinding region. This means that monomers
currently desorbed from the substrate have not yet found their position within
a compact conformation. Therefore, the hydrophobic core, which is smaller
than in the respective adsorbed phase (i.e., at constant solubility s), appears
as a loose cluster of hydrophobic monomers.

In Fig. 8.13(a)–(c), we have plotted, exemplified for s = 2, the statisti-
cal averages of the contact numbers ns and nHH as well as their variances
and covariances for the three systems. For comparison, we have also included
the specific heat, whose peaks correspond to the intersected transition lines
of Fig. 8.11(a)–(c) at s = 2. From Fig. 8.13(a) and (c), we read off that
the transition from AC to AG near T ≈ 0.4 is mediated by fluctuations of
the intrinsic hydrophobic contacts. The very dense hydrophobic domains in
the AC subphases lose their compactness. This transition is absent in the
hydrophobic-substrate system (Fig. 8.13(b)). The signal seen belongs to a
hydrophobic layering AC subphase transition, which influences mainly the
number of surface contacts nHs . The second peak of the specific heats be-
longs to the transition between adsorbed compact or globular (AC/AG) and
expanded (AE) conformations. This behavior is similar in all three systems.
Remarkably, it is accompanied by a strong anti-correlation between surface
and intrinsic contact numbers, ns and nHH. Not surprisingly, the hydrophobic
contact number nHH fluctuates stronger than the number of surface contacts,
but apparently in a different way. Dense conformations with hydrophobic core
(and therefore many hydrophobic contacts) possess a relatively small number
of surface contacts. Vice versa, conformations with many surface contacts can-
not form compact hydrophobic domains. Finally, the third specific heat peak
marks the binding/unbinding transition, which is, as expected, due to a strong
fluctuation of the surface contact number.

The strongest difference between the three systems is their behavior in
pseudophase AC, which is roughly parameterized by s > 5T . If hydrophobic
and polar monomers are equally attracted by the substrate (Fig. 8.11(a)), we
find three AC subphases in the parameter space plotted. In subphase AC1,
film-like conformations dominate, i.e., all 103 monomers are in contact with
the substrate. Due to the good solvent quality in this region, the formation
of a hydrophobic core is less attractive than the maximal deposition of all
monomers at the surface; the ground state is (nH+P

s , nHH)min = (103, 32). In
fact, instead of a single compact hydrophobic core there are nonconnected
hydrophobic clusters. At least on the used simple cubic lattice and the chosen
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sequence, the formation of a single hydrophobic core is necessarily accom-
panied by an unbinding of certain polar monomers and, in consequence, an
extension of the conformation into the third spatial dimension. In fact, this
happens when entering AC2 [(nH+P

s , nHH)min = (64, 47)], where a single hy-
drophobic two-layer domain has formed at the expense of losing surface con-
tacts. In AC3, the heteropolymer has maximized the number of hydrophobic
contacts, and only local arrangements of monomers on the surface of the very
compact structure lead to the still possible maximum number of substrate
contacts. FT,s is minimal for (nH+P

s , nHH)min = (40, 52).
The behavior of the heteropolymer adsorbed at a surface that is only at-

tractive to hydrophobic monomers (Fig. 8.11(b)) is apparently different in
the AC phase. Since surface contacts of polar monomers are energetically not
favored, the subphase structure is determined by the competition of two hy-
drophobic forces: substrate attraction and formation of intrinsic contacts. In
AC1, the number of hydrophobic substrate contacts is maximal for the sin-
gle hydrophobic layer, (nHHs , nHH)min = (37, 42). The single two-dimensional
hydrophobic domain is also maximally compact, at the expense of displac-
ing polar monomers into a second layer. In subphase AC2, intrinsic contacts
are entropically broken with minimal free energy for 35 ≤ nHH ≤ 40, while
nHHs = 37 remains maximal. Another AC subphase, AC3, exhibits a hy-
drophobic layering transition at the expense of hydrophobic substrate con-
tacts. Much more interesting is the subphase transition from AC1 to AC5. The
number of hydrophobic substrate contacts nHHs of the ground-state confor-
mation dramatically decreases (from 37 to 4), and the hydrophobic monomers
collapse in a one-step process from the compact two-dimensional domain to
the maximally compact three-dimensional hydrophobic core. The conforma-
tions are mushroom-like structures grafted at the substrate. AC4 is similar to
AC5, with advancing desorption.

Not less exciting is the subphase structure of the heteropolymer inter-
acting with a polar substrate (Fig. 8.11(c)). For small values of s and T , the
behavior of the heteropolymer is dominated by the competition between polar
monomers contacting the substrate and hydrophobic monomers favoring the
formation of a hydrophobic core, which, however, also requires cooperativity
of the polar monomers. In AC1, film-like conformations (nPs = 66, nHH = 31)
with disconnected hydrophobic clusters dominate. Entering AC2, hydrophobic
contacts are energetically favored and a second hydrophobic layer forms at the
expense of a reduction of polar substrate contacts [(nPs , nHH)min = (61, 37)].
In AC3, the upper layer is mainly hydrophobic [(nPs , nHH)min = (53, 45)],
while the poor quality of the solvent (s large) and the comparatively strong
hydrophobic force let the conformation further collapse [AC4: (nPs , nHH)min =
(42, 52)] and the steric cooperativity forces more polar monomers to break the
contact to the surface and to form a shell surrounding the hydrophobic core
[(nPs , nHH)min = (33, 54) in AC5].
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8.4 Going Off-Lattice: Folding Behavior
of Heteropolymers in the AB Continuum Model

The lattice models discussed in the previous sections suffer from the fact
that the results for the finite-length heteropolymers typically depend on the
underlying lattice type. It is difficult to separate realistic effects from arti-
facts induced by the use of a certain lattice structure. This problem can be
avoided, in principle, by studying off-lattice heteropolymers, where the de-
grees of freedom are continuous. On the other hand, this advantage is partly
counter-balanced by the increasing computational efforts for sampling the
relevant regions of the conformational state space. In consequence, a pre-
cise analysis of statistical properties of off-lattice heteropolymers by means
of generalized-ensemble methods can reliably be performed only for chains
much shorter than those considered in the lattice studies. In the following, we
focus on hydrophobic–polar heteropolymers with 20 monomers employing the
so-called AB model [82], where A monomers are hydrophobic and residues of
type B are polar (or hydrophilic).

8.4.1 Modeling and Updating

We denote the spatial position of the ith monomer in a heteropolymer consist-
ing of N residues by ri, i = 1, . . . , N , and the vector connecting nonadjacent
monomers i and j by rij . For covalent bond vectors, we set |bi| ≡ |ri i+1| = 1.
The bending angle between monomers k, k + 1, and k + 2 is ϑk (0 ≤ ϑk ≤ π)
and σi = A, B symbolizes the type of the monomer. In the AB model [82],
the energy of a conformation is given by

E =
1
4

N−2∑

k=1

(1− cosϑk) + 4
N−2∑

i=1

N∑

j=i+2

(
1

r12
ij

− C(σi, σj)
r6
ij

)
, (8.19)

where the first term is the bending energy and the sum runs over the (N − 2)
bending angles of successive bond vectors. The second term partially competes
with the bending barrier by a potential of Lennard-Jones type. It depends
on the distance between monomers being nonadjacent along the chain and
accounts for the influence of the AB sequence on the energy. The long-range
behavior is attractive for pairs of like monomers and repulsive for AB pairs
of monomers:

C(σi, σj) =

⎧
⎨

⎩

+1, σi, σj = A ,
+1/2, σi, σj = B ,
−1/2, σi �= σj .

(8.20)

The Monte Carlo simulation of this model is not straightforward as strictly
local updates are not possible. A simple nonlocal update of a given confor-
mation can be performed by using the procedure displayed in Fig. 8.14. Since
the length of the bonds is fixed (|bk| = 1, k = 1, . . . , N − 1), the (i + 1)th
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(i –1)

(i +1)

θ

(i +2)

(i +2)’(i +1)’

i

Fig. 8.14. Spherical update of the bond vector between the ith and (i + 1)th
monomer

monomer lies on the surface of a sphere with radius unity around the ith
monomer. Therefore, spherical coordinates are the natural choice for calcu-
lating the new position of the (i + 1)th monomer on this sphere. For the
reason of efficiency, we do not select any point on the sphere but restrict
the choice to a spherical cap with maximum opening angle 2θmax (the dark
area in Fig. 8.14). Thus, to change the position of the (i + 1)th monomer to
(i + 1)′, we select the angles θ and ϕ randomly from the respective intervals
cos θmax ≤ cos θ ≤ 1 and 0 ≤ ϕ ≤ 2π, which ensure a uniform distribution of
the (i+1)th monomer position on the associated spherical cap. After updating
the position of the (i + 1)th monomer, the following monomers in the chain
are simply translated according to the corresponding bond vectors which re-
main unchanged in this type of update. Only the bond vector between the ith
and the (i + 1)th monomers is rotated, all others keep their direction. This
is similar to single spin updates in local-update Monte Carlo simulations of
the classical Heisenberg model, with the difference that in addition to local
energy changes, long-range interactions of the monomers, changing their rel-
ative position to each other, have to be computed anew after the update. For
simulations in the state space of dense conformations, it is recommendable to
choose a rather small opening angle, e.g., cos θmax = 0.99, in order to be able
to sample also very narrow and deep valleys in the landscape of angles.

For the following discussion of folding channels of 20-mers [88], these up-
dates were used in combination with multicanonical sampling [48, 49].

8.4.2 Characteristic Protein Folding Channels and Free-Energy
Landscapes from Coarse-Grained Modeling

The folding process of proteins is necessarily accompanied by cooperative
conformational changes. Although not phase transitions in the strict sense, it
should be expected that one or a few parameters can be defined that enable
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the description of the structural ordering process [83, 84]. The number of
degrees of freedom in most all-atom models is given by the dihedral torsional
backbone and side-chain angles. In coarse-grained Cα models as the AB model
used in this study, the original dihedral angles are replaced by a set of virtual
torsional and bond angles. In fact, the number of degrees of freedom is not
necessarily reduced in simplified off-lattice models. Therefore, the complexity
of the space of degrees of freedom is comparable with more realistic models,
and it is also a challenge to identify a suitable order parameter for the folding
in such minimalistic heteropolymer models.

In analogy to studies of the specific folding behavior in all-atom protein
models [85, 86], it is suitable to define a generalized variant of an angular
overlap order parameter as introduced in [87]. The idea is to define a simple
and computationally low-cost measure for the similarity of two conformations,
where the differences of the angular degrees of freedom are calculated. In order
to consider this parameter as a kind of order parameter, it is useful to com-
pare conformations X = (r1, . . . , rN ) of the actual ensemble with a suitable
reference conformation, which is preferably chosen to be the global-energy
minimum conformation X(0). We define the overlap parameter as follows:

Q(X) = 1− d(X) . (8.21)

With Nb = N−2 and Nt = N−3 being the respective numbers of bond angles
θi and torsional angles φi, the angular deviation between the conformations
is calculated according to

d(X) =
1

π(Nb + Nt)

[
Nb∑

i=1

db (θi) + min
r=±

(
Nt∑

i=1

drt (φi)

)]
, (8.22)

where

db(θi) = |θi − θ
(0)
i | , (8.23)

d±t (φi) = min
(
|φi ± φ

(0)
i |, 2π − |φi ± φ

(0)
i |
)

. (8.24)

Here it is taken into account that the AB model is invariant under the re-
flection symmetry φi → −φi. Thus, it is not useful to distinguish between
reflection-symmetric conformations and therefore only the larger overlap is
considered. Since −π ≤ φi ≤ π and 0 ≤ θi ≤ π, the overlap is unity, if all
angles of the conformations X and X(0) coincide, else 0 ≤ Q < 1. It should
be noted that the average overlap of a random conformation with the corre-
sponding reference state is for the sequences considered close to 〈Q〉 ≈ 0.66.
As a rule of thumb, it can be concluded that values Q < 0.8 indicate weak or
no significant similarity of a given structure with the reference conformation.

For the qualitative discussion of the folding characteristics, we consider the
multicanonical histograms of energy E and angular overlap Q, Hmuca(E, Q) =∑

t δE,E(Xt)δQ,Q(Xt), where the sum runs over all Monte Carlo sweeps t in
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the multicanonical simulation, which yields a constant energy distribution
hmuca(E) =

∫ 1

0 dQ Hmuca(E, Q) ≈ const. In consequence, Hmuca(E, Q) is use-
ful for identifying the folding channels, independently of temperature. Re-
stricting the canonical partition function at temperature T to the “microover-
lap” ensemble with overlap Q, Z(Q) =

∫ DX δ(Q−Q(X)) exp[−E(X)/kBT ],
where the functional integral is over all possible conformations X, we define
the overlap free energy as F (Q) = −kBT ln Z(Q).

Figure 8.15 shows the thus obtained multicanonical histograms Hmuca(E, Q)
(left) and the overlap free-energy landscapes F (Q) (right) at different
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Fig. 8.15. Multicanonical histograms Hmuca(E,Q) of energy E and angular overlap
parameter Q and free-energy landscapes F (Q) at different temperatures for the
three sequences (a) S1, (b) S2, and (c) S3. The reference folds reside at Q = 1 and
E = Emin [88]
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Table 8.4. The three AB 20-mers studied and the values of the associated (puta-
tive) global energy minima

Label Sequence Global energy minimum [88]

S1 BA6BA4BA2BA2B2 −33.8236
S2 A4BA2BABA2B2A3BA2 −34.4892
S3 A4B2A4BA2BA3B2A −33.5838, −33.5116

Note that the given values for sequence S3 belong to two
different, almost degenerate folds (cf. Fig. 8.16)

temperatures for the three sequences listed in Table 8.4. The different branches
of Hmuca(E, Q) indicate the channels the heteropolymer can follow in the
folding process toward the reference structure. The heteropolymers, whose
sequences differ only by permutations, exhibit noticeable differences in the
folding behavior toward the native conformations. The first interesting obser-
vation is that the minimalistic model used is capable of revealing the different
folding behaviors of the wild-type and permuted sequences. The second re-
markable result is that the angular overlap parameter Q is a surprisingly
manifest measure for the peptide macrostate.

From Fig. 8.15(a), we conclude that folding of sequence S1 exhibits typical
two-state characteristics. Above the transition temperature, i.e., in the regime
of denatured conformations D, conformations possess a random-coil-like over-
lap Q ≈ 0.7, i.e, there is no significant similarity with the reference structure.
Close to T ≈ 0.1, the global minimum of the corresponding overlap free energy
F (Q) changes discontinuously toward larger Q values, and at the transition
state the denatured (D) and the folded macrostates (N) are equally probable.
The existence of this pronounced transition state is a characteristic indication
for first-order-like two-state folding. Decreasing the temperature further, the
native-fold-like conformations (Q > 0.95) dominate and fold smoothly toward
the Q = 1 reference structure, i.e., the lowest-energy conformation found for
sequence S1.

The folding behavior of sequence S2 is significantly different, as Fig. 8.15(b)
shows, and is a typical example for a folding event through an intermediate
macrostate. The main channel D bifurcates and a side channel I branches off
continuously. For smaller energies (or lower temperatures), this branching is
followed by the formation of a third channel N, which ends in the native fold.
The characteristics of folding-through-intermediates is also reflected by the
free-energy landscapes. Starting at high temperatures in the pseudophase of
denatured conformations D with Q ≈ 0.76, the intermediary phase I with Q ≈
0.9 is reached close to the temperature T ≈ 0.05. Decreasing the temperature
further below the native-folding threshold close to T = 0.01, the hydrophobic-
core formation is finished, and stable native-fold-like conformations with Q >
0.97 dominate in regime N.
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The most extreme behavior of the three exemplified sequences is found for
sequence S3, where the main channel D does not decay in favor of a single
native-fold channel. In fact, in Fig. 8.15(c), we observe both, two separate
native-fold channels, M1 and M2, and a bifurcating main channel. Above the
folding transition (T = 0.2), the typical sequence-independent denatured con-
formations in D (Q ≈ 0.77) dominate. Annealing below the glass-transition
threshold, several channels form and coexist. The two most prominent chan-
nels (to which the lowest-energy conformations belong that we found in the
simulations) eventually lead for T ≈ 0.01 to ensembles of states M1 with
Q > 0.97, which are similar to the reference structure shown in Fig. 8.16(a),
and conformations M2 with Q ≈ 0.75. The lowest-energy conformation found
in this regime is shown in Fig. 8.16(b). It is structurally different but energet-
ically almost degenerate compared with the reference structure. It should also
be noted that the lowest-energy main-channel conformations have only slightly
larger energies than the two native folds. Thus, the folding of this heteropoly-
mer is accompanied by very complex, amorphous folding characteristics. In
fact, the multiple-peaked distribution Hmuca(E, Q) near minimum energies is
a strong indication for metastability. A native fold in the natural sense does
not exist; the Q = 1 conformation is only a reference structure but the folding
toward this structure is not distinguished as it is in the folding characteristics
of sequences S1 and S2.

These results demonstrate that it is possible to find clear indications for
three different folding characteristics known from real proteins by analyz-
ing macrostates based on an angular overlap parameter within a minimalis-
tic heteropolymer frame. The physical objective is not only on establishing
a quantitative one-to-one correspondence between model and real peptides
(which, in general, is not in the focus of minimalistic, effective models) but
also on a more comprehensive, qualitative understanding of universal aspects
of protein folding. We find that for selected hydrophobic–polar heteropolymer
sequences, characteristic folding behaviors such as two-state folding, folding
through intermediates, and metastability can be observed which are quali-
tatively comparable with real folding events in nature. Beyond the general
interest in understanding complex aspects of protein folding, the preparation

(a) (b)

Fig. 8.16. Lowest-energy conformations for sequence S3, considered as (a) reference
structure X(0) and (b) alternative metastable conformation, whose angular overlap
with X(0) is Q ≈ 0.75
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of synthetic peptide macrostates in future applications, e.g., in the design of
substrate- or pattern-selective polymers, is strongly connected with the un-
derstanding of such conformational folding transitions.

8.5 Peptide Aggregation

Another important, because biologically relevant, example for cooperative
structure formation processes is the aggregation of proteins. A prominent
example, where this process has disastrous effects, is the oligomerization of
the Aβ protein which is associated with Alzheimer’s disease.

A mesoscopic model for the aggregation of multiple chains can simply be
defined by assuming that the same type-dependent Lennard-Jones-like poten-
tials used in the single-chain form (8.19) describe also the inter-monomeric
interaction, i.e., the interaction among monomers of different chains [89]. For
the analysis of the aggregation transition, let us consider the example of a com-
plex of two identical AB peptides with sequence AB2AB2ABAB2AB [89, 90].
We suppose that the aggregation of the peptides should be signaled by strong
fluctuations of the relative distance of the centers of masses of the individual
chains. Thus, we define for systems consisting of M peptides:

Γ 2 =
1

2M2

M∑

μ,ν=1

(
r(μ)
COM − r(ν)

COM

)2

, (8.25)

where r(μ)
COM is the center of mass of the μth chain (in our example M = 2).

Actually, a multicanonical computer simulation reveals very clear indications
for a single conformational transition, the aggregation transition [89, 90]. This
means that the peptide–peptide aggregation and the folding into a compact
peptide complex are not separate transitions (at least in this example). This
is illustrated in Fig. 8.17(a), where the color-coded multicanonical histogram
as a function of energy E and the aggregation parameter Γ is shown. Qualita-
tively, two separate main branches (which are “channels” in the corresponding
free-energy landscape) are apparent between which a noticeable transition oc-
curs. In the vicinity of the energy Esep ≈ −3.15, both channels overlap, i.e.,
the associated macrostates coexist. Since Γ is an effective measure for the
spatial distance between the two peptides, it is obvious that conformations
with separated or fragmented peptides belong to the dominating channel in
the regime of high energies and large Γ values, whereas the aggregates are
accumulated in the narrow low-energy and small-Γ channel. Thus, the main
observation from the multicanonical, comprising point of view is that the ag-
gregation transition is a phase separation process which, even for this small
system, already appears in a surprisingly clear fashion.

The high precision of the multicanonical method allows us even to see
further details in the lowest-energy aggregation regime, which is usually a
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Fig. 8.17. (a) Multicanonical histogram log10 hmuca as a function of energy E and
aggregation parameter Γ, (b) section of log10 hmuca in the low-energy tail [90]

notoriously difficult sampling problem. Fig. 8.17(b) shows that the tight ag-
gregation channel splits into three separate, almost degenerate subchannels
at lowest energies. From the analysis of the conformations in this region, one
finds that representative conformations with smallest Γ values, Γ ≈ 0.45,
are typically entangled, while those with Γ ≈ 0.8 have a spherically capped
shape. Examples are shown in Fig. 8.18. The also highly compact conforma-
tions belonging to the intermediate subphase do not exhibit such characteristic
features and are rather globules without noticeable internal symmetries. In all
cases, the aggregates contain a single compact core of hydrophobic residues.
This also confirms that the aggregation is not a simple docking process of
two prefolded peptides but a complex cooperative folding–binding process.
The general aggregation behavior is similar also for larger systems of more
peptides with the same sequence [90].

Finally, from a methodological point of view, it is worth mentioning that
the signals for the aggregation (and presumably also the folding) transition
are much more pronounced in a microcanonical analysis [89, 90]. This obser-
vation might be of conceptual importance also for all-atom protein aggrega-
tion/folding studies.
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entangled capped

Fig. 8.18. Representatives and schematic characteristics of entangled and spher-
ically capped conformations dominating the lowest-energy branches in the multi-
canonical histogram shown in Fig. 8.17(b). Dark spheres correspond to hydrophobic
(A), light ones to polar (B) residues

8.6 Summary

For the qualitative analysis of phase transitions, it is often sufficient to per-
form statistical studies of simplified effective models, where the natural com-
plexity of the realistic system is broken down to the essential, irreducible
level of cooperative behavior. The probably most famous example is the Ising
model of ferromagnetism. In this model, a local short-range spin–spin inter-
action – which in essence is a consequence of the quantum-mechanical ex-
change mechanism between magnetic moments – triggers in two and more
dimensions a nontrivial second-order phase transition between the ordered
ferromagnetic macrostate and the disordered, random paramagnetic phase.
The generalization of the description of phase transitions is highly success-
fully achieved within the framework of Ginzburg-Landau theories, which are
not only restricted to transitions of second order but also allow investigations
of symmetry breaking typically forcing first-order phase transitions. In any
case, the idea is to introduce collective coordinates or, more specific, order
parameters that allow for a unique identification of the actual macrostate of
the system.

The characterization of conformational (structural) transitions during the
folding process of proteins is more involved as no general theory of phase tran-
sitions for finite systems is available. In fact, the finiteness of the amino acid se-
quence length contradicts the demand of a thermodynamic limit, which is the
essential condition for thermodynamic phase transitions to occur. Nonethe-
less, there is hope that following a similar strategy as in the theory for phase
transitions, a classification of characteristic tertiary folding transitions (e.g.,
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single-exponential folding, two-state folding, folding through weakly stable in-
termediary states, metastability) is possible. If so, then it should be possible
to construct simple models at a raw, coarse-grained level that allow firstly the
introduction of unique conformational (“order”) parameters and secondly to
qualitatively reproduce the known folding characteristics of classes of proteins.

As the Ising model will not be an adequate model for precise questions
regarding a specific ferromagnet, it is also not expected that a simple, coarse-
grained model will reveal the folding behavior of a specific protein. This means,
for explaining the folding characteristics of a specific protein, doubtlessly a
microscopic all-atom model incorporating interactions acting over all length
and energy scales is required.

In this lecture, we have demonstrated, however, that results obtained from
simple lattice and off-lattice heteropolymer models are indeed capable of re-
vealing characteristic features of proteins (stability of designing sequences,
designable conformations) and protein folding (folding channels, free-energy
landscapes). As far as important qualitative features of peptides and proteins
on intermediate length scales are concerned, such models are thus of compa-
rable significance as the more detailed atomic descriptions.
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32, 5469 (1999)

52. M. D. Yoder, N. T. Keen, F. Jurnak: Science 260, 1503 (1993)
53. F. Rampf, W. Paul, K. Binder: Europhys. Lett. 70, 628 (2005); F. Rampf, W.

Paul, K. Binder: J. Polym. Sci.: Part B: Polym. Phys. 44, 2542 (2006)
54. T. Vogel, M. Bachmann, W. Janke: preprint (2007), submitted to Phys. Rev. E
55. M. Rief, H. Clausen-Schaumann, H. Gaub: Nat. Struct. Biol. 6, 346 (1999)
56. D. E. Smith, S. Tans, S. Smith, S. Grimes, D. L. Anderson, C. Bustamante:

Nature 413, 748 (2001)
57. J. J. Gray: Curr. Opin. Struct. Biol. 14, 110 (2004)
58. E. Nakata, T. Nagase, S. Shinkai, I. Hamachi: J. Am. Chem. Soc. 126, 490

(2004)



246 M. Bachmann and W. Janke

59. E. Balog, T. Becker, M. Oettl, R. Lechner, R. Daniel, J. Finney, J. C. Smith:
Phys. Rev. Lett. 93, 028103 (2004); M. Ikeguchi, J. Ueno, M. Sato, A. Kidera:
Phys. Rev. Lett. 94, 078102 (2005)

60. J. Forsman, C. E. Woodward: Phys. Rev. Lett. 94, 118301 (2005); G. Reiter:
Phys. Rev. Lett. 87, 186101 (2001)

61. S. Metzger, M. Müller, K. Binder, J. Baschnagel: J. Chem. Phys. 118, 8489
(2003)

62. T. Bogner, A. Degenhard, F. Schmid: Phys. Rev. Lett. 93, 268108 (2004)
63. G. M. Foo, R. B. Pandey: Phys. Rev. Lett. 80, 3767 (1998); G. M. Foo,

R. B. Pandey: Phys. Rev. E 61, 1793 (2000)
64. R. Hegger, P. Grassberger: J. Phys. A 27, 4069 (1994)
65. Y. Singh, D. Giri, S. Kumar: J. Phys. A 34, L67 (2001); R. Rajesh, D. Dhar,

D. Giri, S. Kumar, Y. Singh: Phys. Rev. E 65, 056124 (2002)
66. M. S. Causo: J. Chem. Phys. 117, 6789 (2002)
67. J. Krawczyk, T. Prellberg, A. L. Owczarek, A. Rechnitzer: Europhys. Lett. 70,

726 (2005)
68. J.-H. Huang, S.-J. Han: J. Zhejiang Univ. Sci. 5, 699 (2004)
69. M. Bachmann, W. Janke: Phys. Rev. Lett. 95, 058102 (2005)
70. M. Bachmann, W. Janke: Phys. Rev. E 73, 041802 (2006)
71. M. Bachmann, W. Janke: Phys. Rev. E 73, 020901(R) (2006)
72. M. Bachmann, W. Janke: Chain-growth simulations of lattice-peptide adsorp-

tion to attractive substrates. In Proceedings of the NIC Symposium 2006 , John
von Neumann Institute for Computing, Jülich, NIC Series vol. 32, edited by
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73. F. Celestini, T. Frisch, X. Oyharcabal: Phys. Rev. E 70, 012801 (2004)
74. J. Krawczyk, T. Prellberg, A. L. Owczarek, A. Rechnitzer: J. Stat. Mech. P10004

(2004)
75. P. Benetatos, E. Frey: Phys. Rev. E 70, 051806 (2004)
76. M. Breidenreich, R. R. Netz, R. Lipowsky: Europhys. Lett. 49, 431 (2000);

M. Breidenreich, R. R. Netz, R. Lipowsky: Eur. Phys. J. E 5, 403 (2001)
77. S. Brown: Nature Biotechnol. 15, 269 (1997)
78. R. Braun, M. Sarikaya, K. Schulten: J. Biomater. Sci. Polym. Ed. 13, 747 (2002)
79. S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher: Nature

(London) 405, 665 (2000)
80. K. Goede, P. Busch, M. Grundmann: Nano Lett. 4, 2115 (2004)
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