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We introduce a general class of generating functionals for the calculation of quantum-mechanical expecta-
tion values of arbitrary functionals of fluctuating paths with fixed end points in configuration or momentum
space. The generating functionals are calculated explicitly for the harmonic oscillator with time-dependent
frequency, and used to derive a smearing formula for correlation functions of polynomial and nonpolynomial
functions of time-dependent positions and momenta. This formula summarizes the effect of quantum fluctua-
tions, and serves to derive generalized Wick rules and Feynman diagrams for perturbation expansions of

nonpolynomial interactions. [S1063-651X(99)04508-0]

PACS number(s): 03.65.—w

I. INTRODUCTION

A useful technique for describing compactly the proper-
ties of a quantum-mechanical system is to define a suitable
generating functional of some external source or current
j(t). The desired properties are obtained from functional de-
rivatives with respect to j(t). For example, the correlation
functions and the time evolution amplitude in one space di-
mension X are determined by a generating functional which
is a path integral in configuration space over all paths x(t)
with fixed end points x(t;) =X,, X(tp) =Xp [[1], Chap. 2]:

. Xp by i ]
(thblxata)[J(t)]=L t DX(t)exp{gA[X(t);J(t)]], (1.1)

where the exponent contains the classical action A[x(t)]
plus a source term linear in x(t):

(Xpto|Xata)[j(1)]= 2 sin w(

t
ALX(D):] (1] = A[x(D)]+ ft "dtx(Dj(t).  (12)

a
In this paper we set up a useful alternative expression for the
generating functional (1.1) and a related one in momentum
space. This alternative expression is obtained by extending
the current j(t) by singular sources proportional to &(ty
—t) and §(t—t,), and by reducing the path integral (1.1)
with fixed end points in configuration space to one with van-
ishing end points. This will permit us to simplify consider-
ably the calculation of quantum-mechanical correlation func-
tions. To see this simplification explicitly, consider a
harmonic oscillator whose action reads

M M
2 _ 22
> X4(1) > wX(1)

ty
A[X('[)]ZJ't dt , (1.3)

for which the generating functional can be calculated as fol-
lows [[1], Eq. (3.89)]:

Mo )1/7- [iMw[(xﬁeri)cos w(tb—ta)—ZXaXb]]
e
tb_ta)

2h sin w(t,—ty)

XaSin w(ty—t)+Xpsinw(t—t,) .

i [t
xexp{%f dt
ta

i tp t
_m ta dtJ;adt

,sinw(tp—t)sinw(t’' —t,)

j(t)

sinw(t,—ty,)

j(t)i(t’)}- (1.4)

sinw(ty—t,)

The nonzero end points x5 and x,, make this expression quite involved. For vanishing end points, however, it simplifies to

Mw

12

(Xp=0 tp|Xa=0 ta)[j(t)]:(
i tp t
><exp| - M . dt ftadt
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,Sino(ty—t)sino(t’ —ty)

2if sin w(ty—t,)

JOI) . (1.5

sinw(ty—t,)
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The observation which motivates the present paper relies on
replacing the current j(t) in the smple expression (1.5) by

JT()=j(t) +Mx8(t—t) + Mx,8(t,—t),  (1.6)

where the & functions are understood as 8(t—t,+€) and
S(t,— e—t) in the limit e-~0. By performing some partial
integrations, this replacement reproduces al terms in the
complicated generating functiona (1.4), except for a rather
trivial additional singular phase factor. The important rela-
tion is

(Xptp|Xata)[J (1)]=(Xp=0 t,|x,=0 t,)

X[ (1) +Mx,8(t—t,) +Mx,(tp—1)]

xexp[ 7 (X2+x2) 5(0)]. (1.7)

In Sec. Il we prove that the relation (1.7) holds for an arbi-
trary quantum-mechanical system whose Hamiltonian has
the standard form

2

Ho(p,x,t)= p—+V(x,t). (1.8)

In Sec. Il we calculate explicit amplitudes for a harmonic
oscillator with arbitrary time-dependent frequency, and as an
important application we derive in Sec. |V a smearing for-
mula for calculating expectation values of polynomia and
nonpolynomia functions of time-dependent positions and
momenta. In particular, this result would allow us to calcu-
late expectation values appearing in perturbation expansions
for nonlinear interactions, as, for example, for the nonlinear
o model. In Sec. V we show that our smearing formula gen-
eralizes Wick rules and Feynman diagrams for harmonic ex-
pectation values from products of variables to mixtures of
nonpolynomial functions and polynomias. In Sec. VI, we
finally specialize our generating functiona to periodic paths.

II. GENERATING FUNCTIONALS

We begin by setting up phase-space path integrals for
generating functionals with fixed end points in either con-
figuration or momentum space. The action contains addi-
tional currents k(t) and j(t) coupled linearly to momentum
p(t) and position x(t). By extending the currents with sin-
gular §functions asin Eq. (1.6), we reduce the path integrals
with fixed end points to those with vanishing end points. Our
procedure applies to arbitrary Hamiltonians Hy(p,X,t), with
certain simplifications resulting from a standard Hamiltonian
(1.8).

A. General phase-space formulation

Consider a quantum-mechanical particle coupled to a mo-
mentum and a position source k(t) and j(t) with the classi-
cal Hamiltonian

where the corresponding action reads
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t
ALP() XKD, (0] | "dt{p(x() ~H(p() X(1),0).
) 2.2)

The total time evolution amplitude between fixed space
points x5 and X, is given by the path integral

b-to Dp(t) DX(t)

et k.= [P

X exp ;;A[pu),x(t);k(t),j(t)] .

(2.3

A Fourier transformation with respect to x, and x;, produces
the time evolution amplitude in momentum space,

(pbtb| pata)[k(t)vj (t)]

+ + i
=f dxaf dxpe ™ (PoXo~PaXa)lh

X (Xptp|Xato) [K(),j(1)]. (24)

Here the initial and final momenta p, and p, are held fixed,
so that the right-hand side may be written as the path integral

Pp.to Dp(t)DX(t)

kvl | =5

(pbtb|pata)

xexp[fl—LA[p(t),X(t);k(t),j(t)] .

(2.5

We remark that both path integrals (2.3) and (2.5) are prop-
erly defined as continuum limits of ordinary integrals after a
time-dicing procedure. Since end points of paths are fixed in
coordinate and momentum space, respectively, the dis
cretized expressions for the path integrals turn out to be
dlightly asymmetric in p(t) and x(t) [[1], Chap. 2].

The time evolution amplitudes (2.3) and (2.5) with fixed
end points can now be reduced to corresponding ones with
vanishing end points. For this, we shift the current k(t) in
Eg. (2.1) by a source term x,8(tp,—t) —x,6(t—t,) and ob-
serve that this produces by Egs. (2.2) and (2.5) an overall
phase factor:

(Poty|Pata) [K(t) +Xp8(ty—t) = Xad(t—ta),j ()]

(Potbl Pata) [K(1),j(D)].

(2.6)

i
= exp[g (PoXb~ PaXa)

By inverting the Fourier transformation (2.4), the configura-
tion space amplitude (2.3) is seen to satisfy
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(Xptp|Xata) [K(1) +X{8(ty—1) =X 8(t—1,),j (1)]

=(Xp+Xp th|Xat X5 ta)[K(D),j(D)], (2.7)

where again the § functions are understood as §(t,—e—t)
and 5(t—t,+€) in the limit e~ 0. Because of this relation,
the amplitude (2.3) can be reduced to a path integral with
vanishing end points but additional § terms in the current

K(t):
(XptplXata) [K(1),j(D)]
=(Xp=0 tp|Xa=0 ta)[K(t) +Xp(ty—1)
—Xad(t—ta),j(1)].

A similar expression exists, if momentum end points are
fixed in momentum space by adding p,é(t—t,)— ppd(t,
—1) to the current j(t):

(Potbl Pata) [K(1),j (1)]=(Pp=0 ty|pa=0 ta)[k(t),j(t)

+Pad(t—ta) = Ppd(t,—1)].
(2.9)

(2.8)

We now explore the consequences of these two relations for
the calculation of correlation functions.

B. Correlation functionals

The functional dependence of the time evolution ampli-
tudes (2.3) and (2.5) on the currents k(t) and j(t) alows us
to caculate expectation values of arbitrary functionas
F[p(t),x(t)] from the path integral

(FIp(t) x()DIK(D),j (D]
_ 1
a (Vbtp| vata)[k(1),j(1)]

v 1o DP(H)DX(1)
XJ TF[D(U,X(U]

Vaita

F AP XKD, (210

X exp

where the variable v may be p or x. The usua correlation
functions

(P(ta) - P(ta)X(tn s ) X(tm))[K(D).J (D]}
B 1
~ (ote| vata) [K(D), ] (D)]

vp .ty DP(1) DX(1)
x J 27h

p(ty) - -p(tp)X(tyr1) - X(ty)

Vaita

xexp| - ALp(D X(K(D, (1] 211)

are specia cases of Eq. (2.10), so we shall call the general
expectation values (2.10) correlation functionals. The
sources k(t) and j(t) permit usto express Eq. (2.10) in terms
of functional derivatives:
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(FIP() XD DIk, ] (D]}

h & h O .
= T(Sk—(t)7|_m (Vbtb| Vata)[k(t)rj(t)]

N (vpto| vata) [K(1), (D)]

(2.12)

Recalling Egs. (2.8) and (2.9), we shall rewrite the function-
as (vptp | vata)[K(1),j ()] in a unified common way as fol-
lows:

(Vbtp| vata) [K(1),j(1)]

- fwbzo,tb Dp(t) Dx(t)

o O(V(ta) = va) 8(v(tp) = vi)

wo=0t,

0] 7 ALBOAKD.JV]], (213

where the paths v(t) stand either for p(t) or for x(t). In each
of these cases, the paths w(t) denote the conjugate variables
X(t) or p(t), respectively. In this form, the path integral
possesses the advantage that usual correlation functions
(2.11) can be determined by path averages, in which inter-
mediate and end points are treated on equal footing. Indeed,
inserting & functions according to

(P(t2)* Pty X(to 1) X(ta))IK(D), ] (]2

1 + o0 + o
" (Voto| vata) [K(1),] ()] f dpl”’f_x dpn

+ oo + e
Xf an+1"'f dXm P1PrXnt1 " Xm

« J‘ vb.th DP(t)DX(t)

2k 5(p(t1)_pl)"'é(p(tn)_pn)

Vaita
X 8(X(t1) =Xq) - O(X(tm) = Xm)
xexp{%—A[p(t).x(t):k(tm(tn], 214)

we obtain with a similar reasoning

(P(t)"+P(t)X(tns 1) X(tm))[K(D), ] (D]}

1 f+® + o0
_ e e
(votol vata)[K(D),j (0] ] - OPT 77, OPn
+ o0 + o0
XJ_OC anJrl"'J_OO dXm P12 PrXn+1" " Xm

be:O'tb Dp(t)Dx(t)
>< S

2w 5(V(ta)_ Va)

w,=0,t,
X 5(p(t1) - pl)' o 5(p(tn) - pn)
X O(X(th+1) =Xn+ 1) OX(tm) = Xm) S(v(tp) = vip)

<o0] 7 APOA:KD.5(01]. 2.15)
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C. Standard Hamiltonian

The above formalism can be made more specific for the
standard Hamiltonian (1.8). Then the path integrals over the
momentum paths p(t) in Egs. (2.3) and (2.5) become har-
monic and can be explicitly evauated. The phase-space in-
tegral (2.3), for instance, reduces to the configuration space
path integral,

. Xb b
(Xtol Xat ) IK(D), ] (1)]= f “Dx()

FAX(OKD,i(O]],
(2.16)

X exp

where the current k(t) couples linearly to the path momen-
tum MX(t) in the action

. b (M, )
A[X(t);k(t),J(t)]:ft dt[gxz(t)—V(X(t),t)+><(t)1(t)

M
+M>'<(t)k(t)+?k2(t)}. (2.17)

A subsequent partial integration transforms the current k(t)
to an effective coordinate current with an extra phase factor:

(thb|xata)[k(t)-j (t)]

= (Xptp|Xata)[0,j (1) — MK(t)]

2

1(t 5
kab_xaka—'—_ﬁ dt k=(t)

i |

X exps —— . (2.18)
h

Note that combining Egs. (2.8) and (2.18) proves relation
(1.7) for any arbitrary quantum-mechanical system with the
standard Hamiltonian (1.8).

In the next section we determine the generating functional
(Xptp|Xata)[0,j (t)] for a harmonic oscillator with arbitrary
time-dependent frequency ()(t) and use Eq. (2.18) to con-
struct the full generating functional (Xptp|Xata)[K(1),j(t)].

I11. TIME-DEPENDENT HARMONIC OSCILLATOR

Consider a standard Hamiltonian (1.8) with a harmonic
potential containing an arbitrary time-dependent frequency:

V(x,t)= %Qz(t)xz. (3.1)

The generating functionals (2.3) and (2.5) are then express-
able in terms of two fundamental solutions D,(t),D(t) of
the corresponding classical equation of motion with particu-
lar boundary conditions [2]

Da(ta) =0, Da(ta) =1,

K()D4(t)=0; (3.2)

K(1)Dp(t)=0; Dp(tp)=0, Dy(tp)=—1, (33

where K (t) denotes the operator
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K(t)=—a2—Q2(1). (34)
Since the time derivative of the Wronski determinant
W(t)=Da(t)Dp(t) —Da(t)Dp(t) (35)
vanishes, we observe the identity
Da(tp) =Dp(ta). (3.6)

Note that a similar identity does not hold for the time deriva-
tives of the two fundamental solutions D,4(t) and Dy(t).
Indeed, partialy integrating the differential equation for

D,(t) and taking into account Egs. (3.2)—(3.5), we deduce

Do(te) + Dalty) = 2 ft ®dt (1) Q()DLHDy(L).
) 37)

Let us now determine the time evolution amplitude (2.16) in
configuration space for a vanishing current k(t). We decom-
pose the paths x(t) into the classical path x(t) and the
quantum fluctuations éx(t) around it:

X(t)=x4(t) + ox(t). (3.8
The classical path xic|(t) solves the boundary value problem

i

ROxu(0) == Xu(ta) =Xa, X(t) =X,
(3.9
and the fluctuations 6x(t) vanish at the end points:
OX(ty) = &X(t,)=0. (3.10

Inserting the decomposition (3.8) into the action (2.17), we
observe that due to Egs. (3.9) and (3.10) the total action
decomposes into a classical part

. M . )
Alxg(1);0,] (D)= 5 DxpXg(tp) —XaXg(ta)]

1(t ' .
+5 ft dt xy(t)j(t), (311
and a fluctuation part, which is simply the classical action
evaluated for the fluctuations 6x(t) at j=0:

A[X(1);0,j (1) ]=A[x}(1);0,j(t)]+ A[ 6x(t);0,0].
(3.12)

Inserting this into the origina path integral (2.16), it factor-
izes into the product of a classical amplitude with the clas-
sical action (3.11), and an additional fluctuation factor which
is equal to the amplitude at vanishing end points:

<xbtb|xata>[o;j(t)]=exp[,';A[x£.<t>;o,j(t)]]

X (Xb: 0 tb|Xa: 0 ta)[0,0]
(3.13)
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A. Classical action

The classical action in the presence of currents can be
expressed in terms of the solutions D ,(t),D(t) of the time-
dependent harmonic boundary value problems (3.2) and
(3.3). First we decompose the solution of the boundary value
problem (3.9) in the presence of external sources into a ho-
mogeneous and an inhomogeneous contribution:

XL () =xg(t) + AxL(1). (3.14)
The homogeneous solution reads
Xy(t) = Db(t))éa;tlz)a(t))(b' (3.15)
while the inhomogeneous one is given by
. 1 [t
Axld(t)z—mfta dt’Gji(t,t")j(t"), (3.16)

where G}‘j(t,t’) denotes the Green function of the classica
equation of motion

K(t)GJ(t,t")=8(t—t") (3.17)
with Dirichlet boundary conditions
Gjj(ta,t")=Gj(ty,t')=0. (3.18)

From Eg. (3.17) we deduce that the Green function ijj(t,t’)
solves the homogeneous differential equation for t#t':

K(t)G}(t,t")=0, (3.19)

and that its first derivative &tG}‘j(t,t’) is discontinuous at t
=t":

lim [0,GJj(t,t) =t + = AGj (L) [i=p —]=— 1.
“° (3.20)
The Green function itself is continuous around t=t":
ljp(;][G}(j(t!t/)|t=t’+e_G}(j(tit,)|t=t’fe]:0- (3.21)
The solution of Egs. (3.18)—(3.21) is given by Wronski's

famous expression

O(t—t")Dp(1)D4a(t")+O (1" —1)D4(t) Dy(t')
Da(ty)

Gjj(t,t')=

=Gi(t'.1), (3.22)
where ©(t—t") denotes the Heaviside function which van-
ishes for t<t’ and is equa to unity for t>t’. Inserting Egs.
(3.14) and (3.16) we obtain for the classical action (3.11)
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AlXL(1);0,j(1)]= [Da(tp)Xg— Dp(ta) X3 —2XaXp]

2D4(tp)
ty ]
+Jt dt xg(t)j(t)
1 tbd ftbd /GX [AY : !
“aw ), O, dUeitimi),
(3.23

where x4(t) and G}(j(t,t’) are given by Egs. (3.15) and
(3.22), respectively.

B. Fluctuation factor

Now we calculate the fluctuation factor in Eq. (3.13). Re-
calling the path representation (2.16) with the action (2.17),
we have to evaluate

(Xp= Otb|xa= 0t,)[0,0]

—f&bzmbpﬁxt iMftbdtaxt K(t)ox(t
- ()expzﬁ 5 (DK(t)ox(1) |

(3.24)

To this end we decompose the fluctuation 6x(t) in Eq. (3.24)

into eigenfunctions x,(t) of the operator K(t) in Eq. (3.4)
with Dirichlet boundary conditions

K(DXy(1) =AXn(1); Xn(td) =Xn(t) =0  (3.25)

which satisfy the orthonormality and completeness relations

ftbdt X)X (1) = 81 (3.26)
ta
2 Xa(Dxp(t)=8(t—t"), (3.27)
as follows:
MX(t) =2 cXp(t). (3.28)

The path integral over all possible fluctuations 6x(t) in Eq.
(3.24) amounts to a product of integrals over all expansion
coefficients ¢, :

f %_O'tbpax(t)za{ﬂ J Mdcn). (3.29)

xa=0.ty -
The Jacobi determinant J of the transformation (3.28) is an
irrelevant constant. Applying Egs. (3.25)—(3.29), the path in-
tegral (3.24) is finaly determined by

(Xp=0 tp|X,=0 t,)[0,0]= (3.30)

J
\/detR(t)'

where the determinant of the operator K(t) is equal to the
product of its eigenvalues
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detK(t)=]] x,.

n

(3.31)

C. Operator determinant

In order to calculate the operator determinant (3.31), it is
advantageous to introduce a one-parameter family of opera-
tors [3,4]

K9(t)=

92— gQA(t), (3.32)

depending linearly on a coupling strength parameter g
€[0,1], and coinciding with the original operator K(t) in
Eq. (3.4) for g=1. It is possible to relate the operator deter-
minant det KY(t) to the fundamental solutions DY(t), DE(t),
and to the Green function G};%(t,t’) emerging from Egs.
(3.2), (3.3), (3.17), and (3.18). For this we substitute the
operator K(t) by K9(t), and differentiate the g-dependent
version of the eigenvalue problem (3.25) with respect to g:

PO _ N g( )
s)

RO() =55~ QX0 = 5O+ A — =

(3.33)

Multiplying Eq. (3.33) with x3(t)/\$ and performing a sum-
mation over n plus an integration with respect to t, we obtain
with Egs. (3.25), (3.26), and (3.31),

0 N tp «
ﬁlndetKg(t)z—f dt Q%(1)Gl%(t,t).  (3.34)

ta

In the last step we have used the spectral decomposition of
the Green function

)Xg(t )

Glott) = ; (3.35)

To solve the differential equation (3.34), we differentiate the
boundary value equation (3.2) for D3(t) with respect to g,
and obtain the inhomogeneous initial value problem

. aD¥(1) L _
K9(t) a9 =Q%(t)D3(1);
aDd(t) _d aD(t) B
79 =t oy =0. (3.36)

t=t, t=t,

Generalizing Eq. (3.22) from g=1 to arbitrary values g
€[0,1], the solution of Eq. (3.36) is given by

—gln DY(ty,) f dt QA(1)Gltt). (337
This shows that Eq. (3.34) is solved by
det K9(t)=CDY(ty), (3.38)

where C denotes some constant. Due to this result, the ratio
of two fluctuation factors (3.30) with two different param-
eters g, and g, can be rewritten as
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12
D2(ty)

(Xp=0 tb|Xa:O ta)[oao]gl .
Dgl(tb)) . (339

(Xp=0 tp|x,=0 t,)[0,0]%92

This serves to determine the fluctuation factor of the initial
time-dependent harmonic oscillator at g;=1 in terms of the
fluctuation factor of the free particle g,= 0. The latter is well
known and may be calculated explicitly, for instance, via
time dicing [[1], Chap. 2] as

( M
2 Ih(tb ta)

Since the obvious solution of Eg. (3.2) a g,=0 reads
D22=0(t,) =t,—t,, we obtain the famous Gelfand-Yaglom
formula for Dirichlet boundary conditions [5]:

1/2
(Xp=0 tp|x,=0 t,)[0,0]%= ) . (3.40)

12
(Xp=0 ty|Xz=0 t,)[0,0] = ( )) . (3.41)

(27T|ﬁDa tb

Note that similar results can also be derived for periodic and
antiperiodic boundary conditions [3,4].

D. Full generating functional

Having obtained the  generating functional
(Xptp|Xata)[0,j (t)] of the harmonic oscillator with arbitrary
frequency with vanishing current k(t), we now make use of
the relation (2.18) to derive the full generating functional
(Xptp|Xata) [K(1),j(t)]. The terms containing the current ve-
locity k(t) can be turned into functionals of k(t) itself with
the help of several partial integrations. These turn out to
remove the extra phase factor in Eq. (2.18). As a result, the
time evolution amplitude in the configuration representation
is determined by a Van Vleck—Pauli-Morette type of formula

[[1], Chap. 4],
(Xptp|Xata) [K(1),j ()]

[ PAX tyiXa Lt [K(D, (D]
N\ 2w

(9Xb5Xa
i
X exp gA(Xb,tb;xa,ta)[k(t),j(t)]} (3.42)
with the action

A(Xb Ytb 1 Xa !ta)[k(t)!J (t)]

_ M[Dal(ty)Xp— Dp(ta)Xa— 2XaXs]

2D4(tp)

ty _
n J dt [xa(D)i ()

1(t ty 1 o
FpuOk(0]— [ "t | dt’[MGﬁ(t,t’)J(t)J(t’)
Gii(t,t)j(Dk(t") + Gy (t,t)k(D)j(t")
+MG§k(t,t')k(t)k(t’)} (3.43)

The homogeneous classical solution Xxy(t) is given in Eq.
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(3.15), and py(t) denotes the classica momentum pg(t)

=MXq(t). The Green function G{j(t,t') is given by Eq.

(3.22), while the others are

O(t—1t")Dp(t)Dy(t') + O (t' —1)D4(1)Dp(t)
Da(tp)

Gii(t,t')=
=Gj(t',1), (3.44)

O(t—t")Dp(1)Dy(t')+O(t' —1)D(H) Dy(t))
Da(ty)

)lzk(t!t,):
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(Poto|Pata)[k(1),j(1)]

- (92A(pb-tb;pavta)[k(t)aj(t)]>1l2
mih
IPadPa

XeXp[fI?Awb,tb:pa,tank(t),j(t)]], (3.50)

where the action is the Legendre transform of Eq. (3.43),

A(Pp ty;Pata) [K(1),j (1) 1= A(Xp 1 tp i Xa ta) [K(1), ] (1)]

=G (t',1). (3.45) — PpXpt+ PaXa, (3.51)
By differentiating Eq. (3.43) functionally with respect to j calculated for the conjugate variables
and k, we see that the Green functions correspond to the
correlation functions FA(Xp b Xa, ta) [K(1),j(1)]
Pp= ’
- y ifi X
(X(OX(t")[0,0,> "= 37 GJj(t.t), (3.46)
o N AA(Xp by Xa, ta) [K(1),j(1)] @352)
(X(OP(1)=[0,01 P=iAGK(L1) =IAG(1'.D), ) X ' '
347 This brings Eg. (3.51) to the form
P(OP(L))[0,010 =i/ MG (t,t' 3.48 .
with X(t) =x(t) —xg4(t) and P(t)=p(t) —pgy(t). These re- . .
sults can be summarized by the mnemonic rule that the Da(tp)[Da(ty) P2~ Dp(ta) Ph—2PaPs]
Green functions invc;lvi ng a momentum current k(t_) once or - 2M[1+D4(ty)Dp(ta)]
twice follow from Gjj(t,t") by one or two time derivatives if
the time derivatives of the Heaviside functions are neglected: oo o —
0 +ﬁ dt [Xa(t)j(t)+pa(tk(t)]
mdGx(t,t mdGx(t,t" a
——f dtf dt’|— GR(Lt)j(Dj(t')
2)y, i, M i
. ’ Hr?zG}(j(t,t’)n
Gt = —— -5 (3.49) +GR(tE) ] (DK(E) +GR (Lt k(D) (")
A complete analogous expression to Eq. (3.43) is found for D/t 1 ,
the time evolution amplitude in the momentum representa- MG, (353)
tion. The Fourier transformation (2.4) of Eq. (3.42) yields a
Van Vleck—Pauli Morette type of formula where the classical solution now reads
Do(t)+ Dp(t)Dalty) ]+ Po[ Da(t)Dy(ts) — Dyt
7(;|(t)= pa[ a( ) b( ) a( b)] pb[ a( ) b( a) b( )], (354)

M [1+ Da(tb)Db(ta)]

and py(t) denotes the associated classical momentum py(t)=MX4(t). The Green functions in Eq. (3.53) turn out to be

[Dp(t)Da(ty) +Da(t)I[Da(t")Dp(ta) — Dp(t')]

Gh(t,t")=0(t—t")

Da(tp)[1+Dy(ty) D(ta)]

+O(t' -t

)[Dau)Db(ta)—Db<t)J[Db<t'>Da<tb>+Daa')]

Daltp)[1+Da(ty) Dp(ta)]

=Ghi(t',1), (3.55)
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[Dp(t)Da(tp) + Da(t)I[Da(t’)Dp(ta) — Dp(t')]
Dal(tp)[1+Da(ty) Dp(ta)]

+®(t,_t)[Da(t)Db(ta)_Db(t)][Db(t )Da(tp) +Dy(t')] —GR(t',1), (356)

Da(tp)[1+ Da(tp) Dp(ta)]

Gl(t,t")=0(t—t")

[Dp(t)Dalty) +Da(t)I[Da(t’)Dp(ta) —Dp(t')]
Dal(tp)[1+Da(ty) Dp(ta)]

+®(t,_t)[Da(t)Db(ta)_Db(t)][D b(t)Da(ty) + Da(t’ ) Rt 1), (357)

Da(tp)[ 1+ Dy(tp) Dp(ta)]
The relation to the correlation functions is similar to Egs. (3.46)—(3.48):

GR(t,t')=0(t-t")

(x()X(t")[0, O]pb to_ ! Gjpj(t,t’), (3.58)
x(t)p(t")Io, 0]pbtb—|ﬁG (L) =i%GR(t'1), (3.59)
(P(OP(L))[0,0]pL=iAMGR(t,Y'), (3.60)

with T((t)=x(t)—;e(t) and p(t)= p(t)—@(t). The relation between the similar-looking actions (3.43) and (3.53) becomes
more transparent by reexpressing both in terms of partial derivatives of the classical solutions xy(t),Xy(t),pa(t),pa(t) with
respect to the end points X, ,x, and py,,pa, respectively. In the configuration representation we obtain

Wy Py pa(t)  Ixg(t)

Aty e LT (D) 1 ) IXp Xa | [ Xp +jtbdt ) X, Xy (k(t))
(Xba b!Xa1 a [ ( i]( ]_2 (Xbixa _% _% Xa t (Xb 7Xa apcl(t) axcl(t) J(t)
Xy, 9Xq X4 X,
IPa(t) apg(t’)  Ipg(t) dxqy(t’)
B 1 (9be dtj dt kev).it)| et 0Xq IXp Xy OXp
2 9P, i %g() Ipa(t))  Xa(t) Axg(t))
(?Xa &Xb (?Xa &Xb
apcl(t) apcl(t’) apcl(t) 6'Xc|(t')
, Xy Xy Xy IXy k(t") )
OO axy(t) dpat’)  axa(t) oxg(t) (J’(t’) : (361)
t?Xb (?Xa aXb (9Xa
The momentum representation, on the other hand, has the analogous form with x and p interchanged:
Ky X dpa(t)  IxXg(t)
_ o1 FT TN (pb) f t dpp Py (k(t))
A(pbltbrpavta)[k(t)vj(t)]_z (pbapa) ai % pa + t dt (pb:pa) aﬁcl(t) &Ycl(t) J(t)
é’pb &pa apa é’pa
dpa(t) dpg(t’)  dpg(t) dxq(t’)
19Xy f J Pa  IPp Pa Py
T 5 oA k v N (t! va i (+!
2 ap ), dtJ, AV KO O 5ty dpa(t)  axa(t) dxa(t))
‘9pa é]pb apa apb
dpa(t) dpg(t’)  dpa(t) dxq(t’)
L dpp  IPa dpp  IPa (k(t’)>
OO sxy(v) dpat)  axa(t) dxat)) | |Licen ) (3.62)

IPp IPa IPp JPa
These expressions for the generating functionals (3.42) and (3.50) exhibit clearly the symmetry properties (2.8) and (2.9).
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IV. SMEARING FORMULA FOR HARMONIC FLUCTUATIONS

As afirst application of the generating functional (3.42) we derive a general rule for calculating correlation functions of
polynomial or nonpolynomial functions of x(t) and p(t). The result will be expressed in the form of a smearing formula. This
formula will represent an essential tool for calculating perturbation expansions with nonpolynomial interactions. Such expan-
sions serve in variational perturbation theory to obtain convergent approximations for quantum-statistical partition functions
[6] or density matrices [7].

Consider the correlation functions of a product of local functions for vanishing currents,

(Fa(X(t))F2(X(t2)) - - FNX(tn))F N+ 1(P(tn+ 1))F Nt 2(P(tns2)) FN+M(p(tN+M))>Xb a

1 Xp.ty DXDpP .
= Gt by v 2k n[[ [Fn(xan))]H [FNm(p(tMm))]exp[ A[p,x,0.0]], (41)

where the harmonic time evolution amplitude with zero external currents (Xptp|X4ta)[0,0] iswritten as (Xt X4t,). By Fourier
transforming the functions F,(x(t,,)) and Fy m(p(tnsm)) according to

[Xa—X(70) 1} (4.2)

Folita)= | Ol 00— x(t)= [ dxyFixy) f

and

FN+m(p(tN+m)) f FN+m(pm)5(pm p(tN+m)) f 2 ﬁ N+m(pm)f dK € ~ el PPt m) ]/ﬁ (43)

the correlation functions (4.1) may be reexpressed as

! j dx,F (X )f g'énn
(Xptp|Xata) n=1 e

M
d
XH [j Zp;inFN+m(pm)f dxme P /A

m=1

(F1(X(t1)) - Fram(P(tysm))) e 2=

(Xptp|Xata)[K,j1,  (4.4)

where the generating functional is given by Eq. (3.42). The currents j(t) and k(t) are specialized to

M

N
)= —hn; End(t—ty), k()= Kkmd(t—tyim)- (4.5)

Inserting these equations into the action (3.43) and the Green functions (3.22), (3.44), and (3.45), we find the Fourier
decomposition of the generating functional (3.42), so that the correlation functions (4.4) become

(Fa(x(ty)-- FN+M(p(tN+M))>Xb a

M

I

m=1

N
+ o +°°d§ . )
- nl;[l { J-w BaF n(Xe) f_x z_q:e'gn[xn Xal(ty)]

= dpm T o ikl P Pa(t ) 1
.2 hFN+m Pm) B drye " m-Pm=Pdlinem

in O NoM im M
Xexpl — 5 2 EGIMEn+i Y D EGNkn— 57 X KmGRe K | (4.6)
2M nn'=1 n=1m=1 2h mm’=1
where we used the abbreviations

Gil' =Gjj(ta,tn), GK'=Gji(tn,tn+m),  Gik' =Giltnsm tnm)- (4.7)

To proceed, it is more convenient to write expression (4.6) as a convolution integral
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Xp X o e . = dpm
Frx(t) P @t ™= T1 | [ x| TL| [ 5o, (o)
n=1|J-w m=1| J-w 27h
MO\ (N=M)72
X _> P(X1,.:XNsP1s--:PM) (4.8)
involving the Gaussian distribution
1 i
— N+M T L
P(xl,...,p,\,|)—(27_r)N j d vexp[lw Vo5V Gv]. 4.9
The dimensionless vectors v and w have N+ M components and are defined as
( % 12 % 1/2 MO 12 MQ 12 )
T _ el el
v = (MQ) gll"'a(MQ gN!( A ) Klv'“a( A ) KM (410)
and
L [(ma) 2 MQ\ Y2 1 1
wi=\| 7] DxaXa(tl...| —— [XN—Xd(tN)],—m[pl—pd(twu)],---,—m[pm—pd(tmvw)]-
(4.11)
|
The (N+ M) X (N+ M) matrix of Green functions P(X1,...,XN P11+ PM)
A B ! [i g1 ]
= eX _W W y
G:(BT c) (4.12) ViNM2 ) N"Mdet G P2
(4.15)

can be decomposed into block matrices A, B, and C. The N
X N matrix A and the M XM matrix C are defined by

11 12 1N

T ¥

a—ql| G Gi " G

.lN ‘2N ,,', ‘ll

Gji Gj Gjj

O Cu - O

1/ 62 Gl ... G
c=g| O T (413)

G G G

and yield quadratic forms of the position and momentum
variables, respectively. The NXM matrix

- —cf .. -al
g2 _gu _G2M

B= Ik ik : Ik (4.14)
_ G}\‘kl _ GJNKZ e GJNkM

gives rise to quadratic terms which are linear in both position
and momentum variables. The multidimensional integral in
Eq. (4.9) is of the Fresnel type and can easily be done, yield-
ing an explicit expression for the Gaussian distribution (4.9),

where G~ ! represents the matrix inverse of Eq. (4.12) whose
block form is

. X1 -X"'BC™!
G =l _c1gx1 cl+cBTXBC!
(4.16)
with the abbreviation
X=A-BC 'B. (4.17)

Since the matrix G may be decomposed as

(1 B|[ X 0
G=lo c/lc™ 1

when the matrix C is regular, the determinant of G factorizes
as follows:

(4.18)

det G=det C det X. (4.19)

For singular matrix C but A regular, one may make use of
another decomposition,

1 0\([A B
B'A™l Xx'/Jlo 1)

with X’=C—BTA™!B. Then the determinant of G is given
by

G= (4.20)

det G=det X’ det A. (4.21)
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With the Gaussian distribution (4.15), our result (4.8) consti-
tutes a smearing formula which describes the effect of har-
monic fluctuations upon arbitrary products of functions of
space and momentum variables at different times.

V. GENERALIZED WICK RULES AND FEYNMAN
DIAGRAMS

In applications, there often occur correlation functions for
mixtures of nonpolynomial functions F(X(t)) or F(p(t)) and
powers according to

Xb Xa

(F(X(ty) X( 7 ) P(t)) e,

(5.1)

(F(ty

(FP(t) X(t2)) 272, (F(B(ty)) P (L))",

In order to evaluate such correlation functions, we derive in
this section generalized Wick rules and Feynman diagrams
on the basis of the smearing formula (4.8).

A. Ordinary Wick rules

It is well known that if one has to calculate expectation
values of polynomials with even power, Wick's rule can be
written as the sum over al possible permutations of products
of two-point functions. We shortly recall this expansion by
considering the case of a position-dependent n-point correla-
tion function, n even, defined as

(1) #(t2) = (5(0) 202 ™ = T2G5(01,12),

S

i(ﬁ)ﬁ_(utl’) = (&(t) p(t2) )™ =

(1) 8(t2) = (3t &(t2

(tl)P(tz) = (B(t1) plt2) )™ = 1AM Gra(ts, 12)-
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GW(ty,...,ta) = (X(ty) - X(t)) 2 ™. (5.2
Note that it will be sufficient to study only the correlation
functions involving the deviations from the classical path,
respectively. This expectation value can be decomposed with

the help of Wick’s expansion,

GM(ty,...,t)) = E G(z)(t )otp2)

pairs

G@(tpn-1) o))
(5.3)

where p denotes the operation of pairwise index permutation.
Thereby, the Green function G®)(t,,t,) is aready given by
Eg. (3.46). Note that Eq. (5.3) may be considered as a con-
sequence of a simple derivative rule

(FRtDIX (L)) "= (X(t)R(t2)) gy “*(F’ (X(ty)) gy @
(5.4)

with F’(X)=dF(X)/dx. By applying this recursively, one
eventually obtains Eq. (5.3). And conversely, the derivative
rule (5.4) can be proved for polynomial functions F(X(t)),
following directly from Wick's theorem (5.3).

The two-point Green functions G(®(t,,t,), occurring in
Eqg. (5.3), can be considered as a Wick contraction, which we
introduce as follows:

(5.5)
hGii(t1, ty), (5.6)

= ihGyj(t1, t2) = thGi(t2, 1), (5.7)
(5.8)

Decomposing polynomial correlations of X(t) and P(t) with the help of these contractions corresponding to Eq. (5.3) or
successively applying the derivative rule (5.4) leads to the following results:

min(n,m)

<Xn(t1)xm(t2)>xb Mo

l=a,a+2,a+4,..

min(n,m)

Bty = 2oy G
=a,a+2,a+4,..

(xN(ty)

min(n,m)

AR

=a,a+2,at+4,..

(P"(t)x
min(n,m)
(P (tP"(t2)) "= >

=a,a+2,a+4,..

with the multiplicity factor

h
C Mij(tl,tl)
(-2
jj(tlatl)}

ih
¢ [IAMG(ty,t) 1" 2 [1AG(ty,t1) ] [Mij(tZatz)

¢ [IEM Gty t) 1" V2 [IAMGi(t,t2)]' [IEMGy(ta,t5)] ™"

rn—l)/z i% (m=1)/2
(5.9

| i%
{Mij(tlvtz)} [IMij(tzytz)} \

[i7Gj(t1,t2)]' [(EMGi(ta,t2) 1™V, (5.10)

(m=1)12
, (5.11)

(5.12)
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(n=I-H(m=1-)!''n'm!
H(n—=H!(m—1)!

C= (513)

Note that (—k)!!=1 for any positive integer k. For nonvanishing correlation, the sum n+m must be even so that the
regulation parameter « is defined as follows:

(5.14)

_ 0, n,m even,
*=11, n,m odd.

The contractions defined in Egs. (5.5)—(5.8) can be used to treat Taylor-expandable functions F(X(t)) and F(p(t)) only. The
desired derivative rules for such correlations read

" n!

(FR(t1))X"(tp)) > 2=

I= a,a+22,a+4,... (n_l)l 1

i% (=02 Tip n X6
Mij(tzytz) Mij(tLtZ) <F &X(t))y s (515

n
|

(FX(t1))P"(tp)) o "= [IAMG(t2,t) 1" 2 [1AG(t1,t)] (FOR(t))P ™ (5.16)

|= a,a+22,a+4,... (n I)”"

n
|

(FP(t))P"(t)) 2 "= [IAMG(t2,t) 1" 2 [IAM Gy (ty,t2) ] (FOB(t))) 2™, (5.17)

=a,a+2,a+4,.. (n ”I'

" n!

i (n=1)/
(F(t))X"(t2)) = {'Msmtz,tz)} [iGj(tz,t)]' (FU®Bt))g " (5.18)

= a,a+22,a+4,... (n_l)l !

The parameter « distinguishes between even and odd power n:

0, n even,
a= [ (5.19)

“ |1, n odd,

since even (odd) powers of n lead to even (odd) derivatives of the function F(X(t;)). The Ith derivative F)(X(t,)) is formed
with respect to x(t,), and F()(p(t,)) is the Ith derivative with respect to p(t;). Note that in the last line the Green function
Gj« appears with exchanged time arguments, which in this case happens to be inessential due to the symmetry G (t,,t;)

=Gy(ty,tp).

B. Generalized Wick rule

According to their derivation, the contractions (5.15)—(5.18) are only applicable to functions F(X(t)) and F(p(t)) which
can be Taylor-expanded. In the following, we will show with the help of the smearing formula (4.8) that these derivative rules
remain valid for functions F(X(t)) and F(p(t)) with Laurent expansions. Expectations of this type appear in variational
perturbation theory (see for position-position coupling Ref. [7]). Since the proceeding is similar in al the cases (5.15)—(5.18),
we shall only discuss the expectation value

(FR(t))P"(ty)) 0" (5.20)

in detail. For this we consider the generating functional of al such expectation vaues following from Eq. (4.8),

(F((ty))elP"t2) 0 "= f dx F(x) f . —er

X exp

M 1
zdetG|: Gkk(t21 Z)X -2 G]k(tll 2)Xp+ AM ij(tl! l)p :H (521)

The p integration can easily be done, leading to
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The correlation of two functions at different times has been
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o FIX+iAGj(ty,tp)]]eM¥72iG)j(t.ty)
= \2m G (t1,t,)/M e
. e 1
=eMMOultz IS iAG(t )i T(F Rt (522)
[
(n — 1) &(t2) #(t2) ( F(E(t1)) &7 2(t2) Y™, (5.24)

reduced to a single-time expectation value of the Ith deriva-
tive of the function F(X(t;)) with respect to x(t;), denoted
by F)(X(t;)), with Green functions describing the depen-
dence on the second time. Expanding both sides in powers of
j» we reobtain Eq. (5.16).

Now we demonstrate that the derivative rules (5.15)—
(5.18) for Laurent-expandable functions F (X(t)) and F(p(t))
aso follow from generalized Wick rules. Without restriction
of universality, we only consider the expectation value

(F(X(t))X"(t2) )(()b 7,

The proceeding to reduce the power of the polynomial at the
expense of the function F(X(t4)) is as follows.

(1a) If possible (n=2), contract X(t,)%(t,) with multi-
plicity (n—1), giving

(5.23)

or else jump to (1b) directly.
(1b) Contract F(X(t1))X(t,) and let the remaining poly-
nomial invariant. We define this contraction by the symbol

F(i(h» Lf(tz) i‘"':(tz) = i(f_l_)i(,tﬂ < Fl(-i'(tl))-%n_l(t2) >gb,1‘a.

o (5.25)

(1c) Add the terms (1a) and (1b).

(2) Repeat steps (1a)—(1c) until only expectation values of
F(X) or expectations of its derivatives remain.

Summarizing, we can express the first power reduction by
the generalized Wick rule (n=2),

(F(a(t)) 3°(t2))37™ = (n = 1) &(82) &(t2) (F(E(11)) 77(22) )™

+ F(&(t1)) £(t2) i”‘:(tQ)

with the contraction rules defined in Egs. (5.5) and (5.25).
For n=1, we obtain

(F(E(t1))3(t2) )3 = 3(t1) &(t2) (F'(2(1)) )2,

|

(5.27)

which is valid for any function F(X(t)) generalizing the rule
(5.4) that was proved for polynomial functions only. Recur-
sively applying this power reduction, we finally end up with
the derivative rule (5.15). Note that the generalization of
Wick’s rule for mixed position momentum or pure momen-
tum couplings is done along similar lines, leading to the
derivative rules (5.16)—(5.18).

C. New Feynman-like rules for nonpolynomial interactions

Higher-order perturbation expressions become usually
complicated. For simple polynomia interactions, Feynman
diagrams are a useful tool to classify perturbative contribu-
tions with the help of graphical rules. Here, we are going to
set up analogous diagrammatic rules for perturbation expan-
sions for nonpolynomial interactions V(x(t),p(t)), whose
contributions may be expressed as expectations values

(5.26)

ty ty < X
t dtn"'ft dt (V(X(tp),p(tn)) --V(X(t1),p(t1))) 5 "2
: : (5.28)

From Egs. (5.5)—(5.8) it follows that we have four basic
propagators whose graphical representation may be defined
as (setting #=M =1 from now on)

ty = (E(t) 2(t2) )3 = iGyj(t1, t2),

f sty = (Plt) Bt) )" = (Gt 1),

t

tl Bt okl tz = <ﬁ(t1) Ii(tz) >?zbyxa = inj(tl,tz) = iij(tg,tl).

A vertex is represented as usual by a small dot. The time
variable is integrated over at a vertex in a perturbation ex-
pansion,

tp
@= | dt.
ta
We now introduce the diagrammatic representations of the
expectation value of arbitrary functions F(X(t)) or F(p(t))
and their derivatives as
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* = /dt xbfa

v

<

/ dt (F/@0))7,

/ di ( F"(3(8)))5™,
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With these elements, we can compose Feynman graphs for two-point correlation functions of the type (5.1) for arbitrary n by
successively applying the generalized Wick rule (5.26) or directly using the derivative relations (5.15)—(5.18). The general
results become obvious by giving explicitly a graphical representation of the following four correlation functions:

f dtlf dt2<FG((t1))X(t2)>xb Xa_J' dtlf dt, iGj;(ty,t 2(F' (i(tl)»xb a

= Ak

) (5.29)

f dty f o F (X (12) (1)) e f dt, f ity {1Gy (L o) (FR(t))) "3 [1G, (1 o) I(F7 (X(11))) 5}

"ot [ Matraepe
ta ta

Mixed position-momentum and momentum-momentum cor-
relations and their graphical representations are given in the
Appendix.

The consideration of higher-order correlations with more
than one function F(X(t)) or F(p(t)) can be reduced to the
results (5.9)—(5.12) or (5.15)—(5.18) by expanding them with
respect to the classical path or momentum, respectively. By
expanding both functions in the expectation value, one ob-

= O <> , (5.30)
(t)) ™ f dt, f dt, {3iGjj(ty,t,)i Gjj(ty, 1) (F/ (X(ty)) 2@
+[1Gjj(ty,t) I(F" (X(ty))) > 2}
=3 .—O @ , (5.31)
f dtlJ dt(F(X(ty))X*(ty)) e Xa_f dtlj dt, {[iGjj(t2,t) (FRX(t))) > 2+ 6[1Gjj(t1,t) 14 Gjj(ta,tn)
X(F" (1)) "+ [1Gyj (1 ) IF O R(t)) ™}
6 + .
SORISORE & .
[
<F16((t1))F2(X(t2))>Xb a
:mzzo n=o min! Famfzn (X7(t) 2)>XQb'X3
(5.33)
with
fim=F™(0), i=12 (5.34)

tains, for example,
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But constructing graphical rules for such general correlations
is more involved due to the various summations over prod-
ucts of powers of propagators Gjj(t; ,t;) withi,j=1,2
Finally, we apply the diagrammatic rules to the anhar-
monic oscillator with X* interaction, which is a powerful
system being discussed in detail with the help of a perturba-

/dh/dt? wawz = () +2 £
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tion expansion ([1], Chap. 3). With the Green functions
given by Egs. (3.22), (3.44), and (3.45), the two-point corre-
lation for the anharmonic system with arbitrary time-
dependent frequency can then be expressed graphically,
yielding the known decomposition for the second-order per-
turbative contribution

(5.35)

with subscript ¢ indicating that we restrict to connected graphs only. Beyond this, our theory alows us to describe nonstandard
systems with polynomial interactions (5.28) depending on both position and momentum, to higher order. Finally, we want to
give the graphs for a four-interaction X?p? to the second order to see the variations of possible graphs in comparison with Eq.

fdh/tbdtz(;z?(t B (1) B2 (L) 72 () ) = m
+16‘© mJ’ ©®+16m

(5.35):

+16{ 3 ¥ l -{—4{

e
\/ 7 "“~i1\ 16
SN N \\\\‘ﬂ-"”/' +
AR T e

We see that we have the same class of graphs already occur-
ring in Eq. (5.35), however, with different propagators con-
necting the vertices. Thus, both classes decay into subclasses
with different multiplicities, but the total numbers remain 72
and 24 for each type of class, respectively. Furthermore, all
graphs are vacuumlike graphs. Eventually, it is easy to con-
struct the Feynman graphs for polynomial correlations higher
than second order by applying Wick’s rule or the Feynman
rules given in this section.

VI. SSIMPLIFICATIONS FOR PERIODIC PATHS

Up to now, we discussed the harmonic time evolution
amplitude with arbitrary frequency and external sources
k(t),i(t) and corresponding Green functions fulfilling Di-
richlet boundary conditions. In the sense of the quantum-
mechanical partition function

= fjwdx (Xtp|xty), (6.1)

which is an integral over the time evolution amplitude for
closed paths, it is of interest to investigate the generating
functional for closed paths. In analogy to Eq. (6.1), we define

Z[k(1),i(D)]= fdx (XtIXtILK(D,I(D] (62)

with Eq. (3.42) for x,=xp,=Xx. One immediately observes
that Z=2[0,0]. The integral is easily done, giving

(5.36)

1

Z[k(t),i(t)]=

V Da(tp) —Dp(ty) —2

th
X exp ——f dtf dt’
ta ta

1
—J(t)G (L)) +F G K(E)

+k(D) G (t,t)j(t")

+Mk(t)~ﬁk(t,t’)k(t’)”. (6.3)

The Green functions, expressed with fundamental solutions
(3.2) and (3.3), are found to be

~ 1
Gixi(t,t')=m[ejxj(t,t’)+ a1y 9’ )}
(6.4)
~ 1 1
G}(k(tat,):m[G}(k(tlt,)+ a1y 9w )}
=Gy;(t',b), (6.5
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Gt = 5| Gt + mgmg(t')},
(6.6)
with
a(t,t’)=D,(t")—Dy(t)—2. (6.7)
Since the function
g(t)=D4(t) + Dp(1) (6.8)

is periodic, g(t,) =9(ty,), due to conditions (3.2), (3.3), and
(3.6), aso the Green function é}‘j(t,t’) becomes periodic,
Gl(ta t)=G(ty ). (6.9)
In analogy to the harmonic propagator without external
sources (4.1), we can define expectation values consisting of

N position-dependent functions and M momentum-dependent
functions by

(F1(x(ty))F2(x(t2)) - -Fnam(P(tnam)))a

1 DxD
§ o P P KoK 1) Py (Pl )

z

[
X exp[%A[p,x;0,0]] . (6.10)
We remark that the generalization of Wick’s rule and the

graphical representation with the help of Feynman diagrams
of such correlation functions is exactly the same as given in
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the preceding section after substituting the Green functions
G(t,t') by G(t,t') and expectation values (4.1) by Eq.
(6.10).

VIl. SUMMARY AND OUTLOOK

We have reduced generating functionals with fixed end
points to those with vanishing end points by adding special
singular sources to the currents. The new generating func-
tionals were calculated explicitly for the harmonic oscillator
with time-dependent frequency. From this expression, a
smearing formula was derived which serves to calculate cor-
relation functions for arbitrary polynomial or nonpolynomial
position- and momentum-dependent couplings. We have fur-
ther found a generalization of Wick’s theorem of decompos-
ing correlation functions involving functions of the canonic
variables of the system. This givesrise to certain generalized
Feynman rules for position- and momentum-dependent ex-
pectation values.

Due to its universality, the theory should serve as a basis
for investigating physical systems with a nonstandard Hamil-
tonian via perturbation theory and its variational extension.
Note that a perturbation theory for momentum-dependent in-
teractions arises in important field theories such as the non-
linear o model. Our work is supposed to lay the foundation
for a more efficient perturbation treatment of such a theory.
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APPENDIX: GENERALIZED CORRELATION FUNCTIONS

In this appendix we give the expectations for the correlation between a general position- or momentum-dependent function

and a polynomial up to order n=4.

Position-momentum coupling

t t t t
jt:dtlft:dtz (FR(t))P(t2) ¢ o= ft:dtlft:dtz IGji(ty, o) (F/ (R(t)) ™

) (A1)

t, ty o x th tp . Xk X . Xp X
[ "t [ "at, (Pt e [ty | "t Gt ta) (PR Gyttt P Gt )

(A2)

t t t t
"ot [ "ot (Pt o= [ ot [ Mats 131644t i Gt (F )

+[Gji(ty, t) I(F" X(t)) ¢ ™

-

(A3)

~
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f dtlf dty (FX(t)P*(t) > Xa_f dtlf dty {[i Gtz t) (FX(t1))) >+ 6[1 Gji(ts,t2) 1% Gl 2, t)

XF"(R(t1))) 2 @+ [1Gji(ty, t2) I F W (X(1))) 0 "2}

-

EEG BRI ST (A%)

Momentum-position coupling

i

f dt f dty (F(B(t)R(Lp)) o= f dt, f Gty 1 Gy (1. t2)(F (B(ty))5 "

= e (A5)

f dty f ity (F(P(t))X2(t)) 0 o= f dt, f ity {1Gy(ta o) (FB(t)) 0 "4 [ Gy (1 t2) T Bt 2 e}

(A6)

it
%
_|_
*

j dty J dt, (FOB(t)R(t)) "= J dty j At {31 Gy (1., 12)i Gy (1, to)(F (B(t))) 0"

+[1Gyj(t1, 1) I3(F" (B(t)) 2"}

RS T @

f dtlf dt2<F(p(t1))X4(t2)>Xb Xa_f dtlf dtz{['Gu(tzatz)]2<F(p(t1))>Xb *a+ B[ Gy;(t1,t2) 1% Gjj(ty,t,)

X(F"(B(t))) g "+ Gy(te, t) I(F W B(t) g "2

-

=« () +es )+ (A8)

{

Momentum-momentum coupling

J ] ot F @t e= | Mt ot 16wttt (F By

= fee (A9)

f dt, f dt (F(B(t))PA(t)) s " f dty f 0ty {i Gt ) (FP(D)) ™+ [ Gt ) T (B(1))) 0 )

O -

(A10)
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t t t t
ft boltlftbdtz<F(T>(t1))f>3(t2)>§f’Xa:ftbdtlft bolt2 {3iGkk(t1,12)i Gyl ta, 1) (F (B(ty))) 2™

+[i G, t) T3(F" (B(ty))) > "2}

=3 cer n @ (A1)
t t t t
ft "dt, f dit, (F(B(ty))P(t)) > "= f "dt, J "dt, {[i Gtz 1) TAFB(t))) "+ B[i G t1,12) 1% Gt )
X(F"(B(t)))g "+ [ Gt t2) I F @ B(t)) ™}
NGO ORT &2 12

The case of position-position coupling has already been calculated in Sec. V C.

[1] H. Kleinert, Path Integrals in Quantum Mechanics, Satistics
and Polymer Physics, 2nd ed. (World Scientific, Singapore,
1995).

[2] See Chap. 2 in the forthcoming third edition of the textbook of
Ref. [1] (http://www.physik.fu-berlin.de/kleinert/kleiner_reb3/
3rded.html).

[3] H. Kleinert and A. Chervyakov, e-print physics/9712048.

[4] H. Kleinert and A. Chervyakov, Phys. Lett. A 245, 345 (1998).

[5] I. M. Gelfand and A. M. Yaglom, J. Math. Phys. 1, 48 (1960).

[6] H. Kleinert, W. Kirzinger, and A. Pelster, J. Phys. A 31, 8307
(1998).

[71M. Bachmann, H. Kleinert, and A. Pelster, e-print
quant-ph/9812063.



