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In a contact-density chain-growth study we investigate the solubility-temperature pseudophase diagram of a
lattice polymer in a cavity with an attractive surface. In addition to the main phases of adsorbed and desorbed
conformations we find numerous subphases of collapsed and expanded structures.

DOI: 10.1103/PhysRevE.73.041802 PACS number�s�: 05.10.�a, 87.15.Aa, 87.15.Cc

I. INTRODUCTION

The requirement of higher integration scales in electronic
circuits, the onset of nanosensory applications in biomedi-
cine, but also the fascinating capabilities of modern experi-
mental setup with its enormous potential in polymer and sur-
face research recently led to an increasing interest at the
hybrid interface of organic and inorganic matter �1–5�. This
also includes numerous detailed studies, e.g., of polymer film
wetting phenomena �6,7�, pattern recognition �8,9�, protein-
ligand binding and docking �10–12�, charged adsorbed poly-
mers �13� as well as deposition and growth of polymers at
surfaces �14�.

In most theoretical and computational studies the polymer
is anchored at the substrate with one of its ends which re-
duces the entropic freedom of the polymer. These surface-
grafted polymers �15–20� are, e.g., of particular interest in
studies of shape transformations �21�, e.g., as reaction to ex-
ternal fields �22–24�. However, in many recent experiments
of organic-inorganic interfaces the setup is different �2,3� and
is more adequately described by a polymer moving in a cav-
ity with one adsorbing surface �25,26�. The main difference
of such nongrafted polymers considered in this work is of
entropic kind: In the desorbed phase the polymer can move
freely within the cavity, and the polymer can fold into con-
formations, where the ends have no contact with the surface.

This paper is organized as follows. In Sec. II we describe
the details of a minimalistic model for the hybrid system.
The main result, the solubility-temperature pseudophase dia-
gram, is presented and discussed in Sec. III. The interpreta-
tion is consolidated by exemplified studies of fluctuations
and correlations of relevant thermodynamic quantities such
as numbers of contacts between monomers and monomer-
substrate contacts as well as the gyration tensor, in the dif-
ferent phases. The contact numbers turn out to be adequate
system parameters for the description of the macrostate of
the system, and therefore the free energy in dependence of
these contact numbers is the subject of a detailed study in
Sec. IV. This quantity is also useful for classifying the con-
formational transitions between the phases which are also
discussed there. Eventually, we conclude in Sec. V with a
summary of the main results.

II. MINIMALISTIC MODEL FOR POLYMER
ADSORPTION

We employ a minimalistic simple-cubic �sc� lattice model
�25� which allows a systematic analysis of the conforma-
tional phases experienced by a nongrafted polymer in a cav-
ity with one adhesive surface. An example for the cavity
model is shown in Fig. 1. The polymer can move between
the two infinitely extended parallel planar walls, separated by
a distance zw expressed in lattice units. The substrate is short-
range attractive to the monomers of the polymer chain, while
the influence of the other wall is purely steric.

Denoting the number of nearest-neighbor, but nonadjacent
monomer-monomer contacts by nm and the number of
nearest-neighbor monomer-substrate contacts by ns, the en-
ergy of the hybrid system can be expressed in the simplest
model as

Es�ns,nm� = − �sns − �mnm, �1�

where �s and �m are the respective contact energy scales,
which are left open in the following. For simplicity, we per-
form a simple rescaling and set �s=�0 and �m=s�0. Here we
have introduced the overall energy scale �0 and the dimen-
sionless reciprocal solubility s that controls the quality of the
implicit solvent surrounding the polymer �the larger the s,
the worse the solvent�. Since contacts with the substrate usu-
ally entail a reduction of monomer-monomer contacts, there
are two competing forces �rated against each other by the
energy scales� affecting the formation of intrinsic and surface
contacts. In this paper we mainly focus on the conforma-
tional transitions the polymer experiences under different en-
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FIG. 1. �Color online� Cavity model used in this work. The
lower of the two parallel surfaces is attractive to the polymer, the
upper is steric only. The distance between the surfaces is zw lattice
units.
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vironmental conditions. Concretely, we are interested in the
dependence of energetic and structural quantities on tem-
perature T and reciprocal solubility s in equilibrium. The
probability �per unit area� for a conformation with ns surface
and nm monomer-monomer contacts at temperature T and
reciprocal solubility s is given by

pT,s�ns,nm� =
1

Z
gnsnm

e�0�ns+snm�/kBT, �2�

where gnsnm
=�ns0

gnm

u + �1−�ns0
�gnsnm

b is the contact density
and Z is the partition sum. In this decomposition, gnm

u stands
for the density of unbound conformations, whereas gnsnm

b is
the density of surface and intrinsic contacts of all conforma-
tions bound to the substrate. Obviously, the number of the
conformations without contact to the attractive substrate, gnm

u ,
depends on the distance zw between the cavity walls. For a
sufficiently large distance zw from the substrate the influence
of the neutral surface on the unbound polymer is small. For
zw→�, however, gnm

u formally diverges. Therefore the non-
adhesive, impenetrable steric wall is necessary for regular-
ization.

We studied polymers with up to 200 monomers by apply-
ing the contact-density chain-growth algorithm which is an
improved variant of the recently developed multicanonical
chain-growth sampling method �27,28�. All these methods
set up on a variant of the pruned-enriched version �29� of
Rosenbluth sampling �30�. The main advantage of the im-
proved method is that it directly samples the contact density
gnsnm

, which is very useful for problems, where the model
provides different energy scales. This generalizes the ordi-
nary multicanonical version �27� which samples the density
of states, i.e., the number of states for given energy. Here we
can set the two independent energy scales �m and �s or their
ratio s, respectively, after the simulation. This allows us to
introduce the reciprocal solubility s as a second environmen-
tal parameter in addition to the temperature T.

The partition sum of the system as a function of these two
parameters is simply Z=�ns,nm

gnsnm
exp��0�ns+snm� /kBT�

and the statistical average of any function O�ns ,nm� is given
by the formula

�O	�T,s� = �
ns,nm

O�ns,nm�pT,s�ns,nm� , �3�

which is very convenient since it only requires to estimate
the contact density gnsnm

in the simulation. Denoting
contact correlation matrix elements as Mxy�T ,s�= �xy	c

= �xy	− �x	�y	 with x ,y=ns ,nm, the specific heat can be writ-
ten as

CV�T,s� = kB
 �0

kBT
�2

�1,s�M�T,s�
1

s
� . �4�

All quantities depending only on the contact numbers ns and
nm can therefore simply be calculated from the estimate of
the contact density gnsnm

provided by our simulation method.
Although the two contact parameters are sufficient to de-

scribe the macrostate of the system and their fluctuations
characterize the main pseudophase transition lines, it is often

useful to introduce also nonenergetic quantities such as the
end-to-end distance and the gyration tensor for gaining more
detailed structural information of the polymer. For our spe-
cific problem at hand it is particularly useful to study the
structural anisotropy of the adsorbed polymer in the different
phases. To this end, we define the general gyration tensor for
a polymer chain of N beads with the components

Rij
2 =

1

N
�
n=1

N

�xi
�n� − x̄i��xj

�n� − x̄j� , �5�

where xi
�n�, i=1,2,3, is the ith Cartesian coordinate of the nth

monomer and x̄i=�n=1
N xi

�n� /N is the center of mass with re-
spect to the ith coordinate. Anisotropy in the polymer fluc-
tuations is connected with the system’s geometry and there-
fore it will be sufficient to study the components of the
gyration tensor parallel �x, y components� and perpendicular
�in z direction� to the planar walls,

R�
2 =

1

N
�
n=1

N

��x�n� − x̄�2 + �y�n� − ȳ�2� �6�

and

R�
2 =

1

N
�
n=1

N

�z�n� − z̄�2. �7�

The gyration radius is then simply the trace of the gyration
tensor, Rgyr

2 =TrR2=�i=1
3 Rii

2 =R�
2+R�

2 . The calculation of sta-
tistical averages for quantities R that are not necessarily
functions of the contact numbers ns and nm cannot be per-
formed via Eq. �3�. In this case only the more general rela-
tion �R	=�XR�X�exp�−Es�X� /kBT� /Z holds, where the sum
runs over all polymer conformations X. Introducing the ac-
cumulated density Racc�ns� ,nm� �=�XR�X��ns�X�ns�

�nm�X�nm�
/

gnsnm
, where �ij is the Kronecker symbol, the expectation

value can be expressed, however, in a form similar to Eq.
�3�:

�R	 = �
ns,nm

Racc�ns,nm�pT,s�ns,nm� . �8�

The quantity Racc�ns ,nm� can easily be measured in simula-
tions with the contact density chain-growth algorithm. In the
following we use natural units, i.e., we set kB=�0
1.

III. THERMODYNAMIC BEHAVIOR OF THE HYBRID
SYSTEM

For our exemplified study of the hybrid system in equi-
librium we chose a polymer with 179 monomers. Since this
is a prime number, the polymer is unable to form perfect
cuboid conformations on the sc lattice, as it is, e.g., the case
for a 100-mer �25�. There we found two low-temperature
subphases dominated by the same 4�5�5 cuboid. In one
subphase it had 20 surface contacts, while in the other the
cuboid was simply rotated, entailing 25 surface contacts.
This is a typical example, where the exact number of mono-
mers in the linear chain is directly connected with the occur-
rence of such specific pseudophases which are not, of course,

M. BACHMANN AND W. JANKE PHYSICAL REVIEW E 73, 041802 �2006�

041802-2



phases in the traditional view. Nonetheless, the enormous
progress in high-resolution experimental structure analyses
and in the technological equipment for precise polymer
deposition, as well as the natural finite length of classes of
polymers �e.g., peptides and proteins�, explain the growing
interest in pseudophases and the conformational transitions
between them. Here we mainly focus on the expected ther-
modynamic phase transitions �16,17� and low-temperature
higher-order layering pseudophase transitions �19�. The fol-
lowing results were obtained from contact-density chain-
growth simulations of the 179-mer in a cavity with zw=200
�see Fig. 1�, choosing uniformly distributed starting points at
random. In eight independent runs 1.6�109 polymer confor-
mations were generated in total. The resulting contact den-
sity gnsnm

and accumulated densities like Racc�ns ,nm� are in-
dependent of external parameters such as temperature T and
reciprocal solubility s. Concrete values of statistical quanti-
ties for specific parameter settings are obtained by simple
reweighting as in Eqs. �3� and �8�.

A. Solubility-temperature pseudophase diagram

Discontinuities or divergences of energetic and nonener-
getic fluctuations as functions of external parameters reveal
typically dramatic cooperative transitions in the collective,
macroscopic behavior of the system’s microscopic degrees of
freedom in the thermodynamic limit. These transitions sepa-
rate the thermodynamically stable phases and the transitions
can uniquely be identified by certain values of the external
parameters, e.g., the transition temperature. Usually, all fluc-
tuations collapse at the same parameter sets. But, this “tradi-
tional view” is only true in the thermodynamic limit. Finite-
size systems usually exhibit a zoo of crossover- or
pseudotransitions, most of which disappearing in the thermo-
dynamic limit. In special cases, e.g., proteins, where the spe-
cific amino acid sequence is of finite length, no phase tran-
sitions in the strict sense happen at all. Still, peaks in curves
of fluctuating quantities can be signatures for “cooperative
activity,” but this is not necessarily indicated by all fluctua-
tions considered, and if, then typically at different parameter
values �27�. Nonetheless, in protein science, pseudotransi-
tions such as conformational transitions are important in the
understanding of secondary structure formation and the ter-
tiary hydrophobic-core collapse. For polymers, mainly the �
collapse transition, which is probably of second order, is of
particular interest �29,31�. This is a real thermodynamic
phase transition. Nonetheless, at least for finite systems, an
additional first-order-like glassy or crystallization transition
at lower temperatures is also conjectured for polymers �32�.

All these peculiarities of finite polymer systems are also
relevant for the adsorption problem we consider here. In Fig.
2 we have plotted the projection of the specific heat profile
onto the solubility-temperature plane as obtained from our
simulation of the 179-mer in a cavity with zw=200. The color
code reflects the value of the specific heat and the brighter
the shading, the larger the value of CV. Black and white lines
emphasize the ridges of the profile. Since we consider the
specific heat as appropriate to identify pseudophases, these
ridges mark the pseudophase boundaries. As expected, the

pseudophase diagram is divided into two main parts, the
phases of adsorption and desorption. The two desorbed
pseudophases DC �desorbed-compact conformations� and
DE �desorbed-expanded structures� are separated by the col-
lapse transition line which corresponds to the � transition of
the infinite-length polymer which is allowed to extend into
the three spatial dimensions �33�. The region of the adsorbed
pseudophases is much more complex, and little is known
about its details, since it is relevant at lower temperatures,
where conventional Monte Carlo methods with pivotlike up-
dates usually tend to fail. The presence of general phases of
adsorbed-expanded �AE� �34� and adsorbed-compact �AC1,
AC2� conformations was postulated in adsorption studies of
grafted polymers and the existence of an additional phase of
surface-attached globules �AG� �34� was assumed
�16,17,19�. In a recent study �19�, it was argued that the
layering transition between AC1 and AC2 is a thermody-
namic phase transition. Although the polymer in our study is
still relatively small, we can clearly identify pseudophases in
Fig. 2 which can be assigned these labels, too. Those regions
are separated by the black lines indicating the transitions
between them. We expect that these are transitions in the
thermodynamic meaning; only the precise location of the
transition lines will still change with increasing length of the
polymer. Thus this picture confirms the previously assumed
phases and it provides evidence that the AG phase is indeed
there. Furthermore, we have also highlighted by white lines
transitions between pseudophases which will probably not
survive in the thermodynamic limit. This concerns, e.g., the
higher-order layering transitions among the compact pseudo-
phases AC2a1,2–d. In the following sections we will analyze
the properties of the pseudophases in more detail.

B. Contact-number fluctuations

The contact numbers ns and nm can be considered as sys-
tem parameters appropriately describing the state of the sys-

FIG. 2. �Color online� Solubility-temperature pseudophase dia-
gram of a 179-mer. The color codes the specific heat as a function
of reciprocal solubility s and temperature T—the brighter the larger
its value. Drawn lines emphasize the ridges of the profile and indi-
cate transitions between the different conformational phases. Black
lines mark expected thermodynamical phase transitions, while
white lines belong to pseudotransitions specific to finite-length
polymers. Along the dashed black line coexisting desorbed and ad-
sorbed conformations are equally probable.
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tem and are therefore useful to identify the pseudophases.
Peaks and dips in the external-parameter dependence of self-
correlations �ns

2	c, �nm
2 	c, and cross correlations �nsnm	c indi-

cate activity in the contact-number fluctuations and, analyz-
ing the expectation values �ns	 and �nm	 in these active
regions of the external parameters T and s, allow for an
interpretation of the respective conformational transitions be-
tween the pseudophases.

In Fig. 3, we have plotted for the 179-mer these quantities
and, for comparison, the specific heat as functions of the
temperature T at a fixed solvent parameter s=1. This ex-
ample is quite illustrative as the system experiences several
conformational transitions when increasing the temperature
starting from T=0 �see Fig. 2�. At temperatures very close to
T=0 �pseudophase AC1� all 179 monomers have contact to
the substrate and 153 monomer-monomer contacts are
formed. This is the most compact contact set being possible
for topologically two-dimensional, filmlike conformations. It
should be noted, however, that approximately 2�1018 con-
formations �self-avoiding walks� belong to this contact set
�35�. This high degeneracy is an artefact of the minimalistic
lattice polymer model used. It is remarkable that the confor-
mations with the highest number of total contacts n=ns+nm
are filmlike compact �n=332�. All other conformations we
found possess fewer contacts, even the most compact contact
set that dominates the five-layer pseudophase AC2a1
�ns=36, nm=263, i.e., n=299�. The reason is that for low
temperatures, those macrostates are formed which are ener-
getically favored. Entropy is not yet relevant—for the s=1
example, �nm	 slightly drops to 149 only up to T�0.3. In-
creasing the temperature further, the situation dramatically
changes, as can be seen in Fig. 3. In a highly cooperative
process, the average number of intrinsic contacts �nm	 sig-
nificantly increases �to �208� at the expense of surface con-
tacts ��ns	 drops to approximately 104�. Consequently, the
strong fluctuations �ns,m

2 	c signalize a conformational transi-
tion, and the anticorrelation indicated by �nsnm	c confirms
that surface contacts turn into intrinsic contacts, which indi-
rectly leads to the conclusion that the filmlike structure is
given up in favor of layered, spatially three-dimensional con-
formations. The system has entered subphase AGe which is
the part of the phase AG, where two-layer conformations

dominate. The subphase transition near T�0.7 from the two-
layer �AGe� to the bulky regime of AG is due to the ongoing,
rather unstructured expansion of the polymer into the z di-
rection by forming so-called surface-attached globules �17�.
This is accompanied by a further reduction of surface con-
tacts, while the number of intrinsic contacts changes weakly.
Approaching T�2.0, the situation is just vice versa. Intrinsic
contacts dissolve and the system experiences a conforma-
tional phase transition from globular conformations in AG to
random strands in AE. Crossing this transition line, the sys-
tem enters the good-solvent regime. Eventually, close to T
�2.8, the polymer unbinds off the substrate. A clear signal is
observed in the fluctuations of ns, i.e., the number of average
surface contacts rapidly decreases. The expanded polymer is
“free” and the influence of both walls is effectively steric.
This phase �AE� is closely related to the typical random-coil
phase of entirely free and dissolved polymers in good sol-
vent.

This example shows that a study of the contact number
fluctuations is indeed sufficient to qualitatively identify and
describe the conformational transitions between the
pseudophases of the hybrid system. For this reason, ns and
nm are adequate system parameters playing a similar role as
order parameters in thermodynamic phase transitions.

C. Anisotropic behavior of gyration tensor components

One of the most interesting structural quantities in studies
of polymer phase transitions is the gyration tensor �5�. For
our hybrid system we expect that the respective components
parallel �Eq. �6�� and perpendicular �Eq. �7�� to the substrate
will behave differently when the polymer passes
pseudotransition lines. In order to prove this anisotropy ex-
plicitly, we have plotted in Fig. 4 the expectation values
�R�,�	 and the fluctuations of these two components,
d�R�,�	 /dT, again for the polymer in solvent with s=1. For
interpreting the peaks of the fluctuations, we have also in-
cluded once more the specific heat curve for comparison.
The immediate observation is that the temperatures, where
one or both gyration tensor components exhibit peaks, al-
most perfectly coincide with those of the specific heat. This

FIG. 3. �Color online� Expectation values, self- and cross cor-
relations of the contact numbers ns and nm as functions of the tem-
perature T in comparison with the specific heat for a 179-mer in
solvent with s=1.

FIG. 4. �Color online� Anisotropic behavior of gyration tensor
components parallel and perpendicular to the substrate and their
fluctuations as functions of the temperature T for a 179-mer at
s=1. For comparison, we have also plotted the associated specific
heat curve.
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is a strong confirmation for the phase diagram in Fig. 2
which is based on the specific heat. Obviously, even for the
rather short polymer with 179 monomers, we encounter the
onset of fluctuation collapse near the �pseudo�phase transi-
tions. This is very promising for future quantitative finite-
size scaling analyses.

At very low temperatures, i.e., in pseudophase AC1, we
have argued in the previous section that the dominant poly-
mer conformation is the most compact single-layer film. This
is confirmed by the behavior of �R�	 and �R�	, the latter
being zero in this phase. A simple argument that the structure
is indeed maximally compact is as follows. It is well known
that the most compact shape in the two-dimensional continu-
ous space is the circle. For n monomers residing in it, n
��r2, where r is the �dimensionless� radius of this circle.
The usual squared gyration radius is

Rgyr
circ2

��R�
2� =

1

�r2�
r��r

d2r�r�2 =
1

2
r2 �9�

and therefore Rgyr
circ��n /2��5.34 for n=N=179. Indeed,

this is close to the value R� �5.46 of the ground-state con-
formation we identified in phase AC1. Note that the most
compact shape in the simple lattice polymer model we used
in our study is a square and not a discretized circle �36�.

Near T�0.3, the strong layering transition from AC1 to
AGe is accompanied by an immediate decrease of �R�	, while
�R�	 rapidly increases from zero to about 0.5 which is ex-
actly the gyration radius �perpendicular to the layers� of a
two-layer system, where both layers cover approximately the
same area. Note that the single layers are still compact, but
not maximally. Applying the same approximation as in Eq.
�9�, the planar gyration radius for each of the two layers is
now �with n�N /2� Rgyr

circ�3.77, while we measured in this
phase �AGe� R� �4.05. This separates the subphase AGe
from the other two-layer pseudophase AC2d in Fig. 2, where
the dominating conformation has perfect two-layer �lattice�
structure with R� �3.85 �this is the same 2% difference be-
tween continuous and lattice calculation for perfect shapes as
above�. We will discuss the conformational peculiarities in
the following in more detail. The subphase transition from
AGe to AG near T�0.7 is accompanied by a further de-
crease of �R�	 whereas �R�	 increases, i.e., the height of the
surface-adsorbed globule increases at the expense of width.
This tendency is stopped when approaching the transition
�T�2.0� from the globular regime AG to the phase of ex-
panded, but still adsorbed conformations. While �R�	 re-
mains widely constant �the fluctuation does not signalize any
transition�, the polymer strongly extends in the directions
parallel to the substrate, as indicated by the peak of
d�R�	 /dT. After unbinding from the substrate, parallel and
perpendicular gyration radii behave widely isotropically
��R�	2��R�	2 /2��Rgyr	2 /3� as the influence of the isotropy-
disturbing walls is weak in this regime.

IV. THE WHOLE PICTURE: THE FREE-ENERGY
LANDSCAPE

It was shown in Sec. III B that the contact numbers ns and
nm are unique system parameters for the pseudophase iden-

tification of the hybrid system. We define the restricted par-
tition sum for a macrostate with ns surface contacts and nm
monomer-monomer contacts by

ZT,s�ns,nm� = �
ns�,nm�

�ns�ns
�nm� nm

gns�nm�
e−Es�ns�,nm� �/kBT

= gnsnm
e−Es�ns,nm�/kBT, �10�

such that Z=�ns,nm
ZT,s�ns ,nm�. Assuming as usual that the

dominating macrostate is given by the minimum of the free
energy as a function of appropriate system parameters, it is
useful to define the specific contact free energy as a function
of the contact numbers ns and nm,

FT,s�ns,nm� = − kBT ln gnsnm
e−Es�ns,nm�/kBT

= Es�ns,nm� − TS�ns,nm� , �11�

identifying kB ln gnsnm

S�ns ,nm� as a “microcontact” en-

tropy. For given external parameters T and s, this relation can
be used to determine the minimum of the contact free energy
and therefore allows the identification of the dominant
macrostate with respect to the contact numbers. In turn, this
quantity allows for an alternative representation of the
pseudophase diagram, complementary to the one shown in
Fig. 2 in that it is related to the contact numbers ns and nm.
This is done by determining for �in principle� all values of
the external parameters T and s the minima of the contact
free energy �11�. Then the pair of values ns and nm of the
minimum contact free-energy state are marked in an ns−nm
phase diagram. This is shown in Fig. 5, where all free-energy
minima of the 179-mer for the parameter set T��0,10� and
s� �−2,10� are included and, based on the arguments of the
previous section, differently shaded according to the
pseudophase they belong to. The nice thing of this represen-
tation is that it allows the differentiation of continuous and
discontinuous pseudophase transitions.

The first important observation is that the diagram is di-
vided into two separate regions, the pseudophases of des-

FIG. 5. �Color online� Map of all minima of the contact free
energy FT,s�ns ,nm� in the parameter intervals T��0,10� and
s� �−2,10� for the 179-mer. The solid line connects the free-energy
minima taken by the polymer in solvent with s=1 by increasing the
temperature from T=0 to T=5 and thus symbolizes its “path”
through the free-energy landscape starting in pseudophase AC1.
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orbed conformations �DC and DE� and the remaining differ-
ent phases of adsorption. The “space” in between is blank,
i.e., none of these �possible� conformations was found to be
a free-energy minimum conformation. This shows that tran-
sitions between the adsorbed and desorbed pseudophases are
always first-order-like for the 179-mer. It should be noted,
that the regime of contact pairs �ns ,nm� lying above the
shown compact phases is forbidden, i.e., conformations with
such contact numbers do not exist on the sc lattice.

The second remarkable result is that the pseudophases
DC, DE, AE, and AG are “bulky,” while all AC subphases
are highly localized in the plot of the free-energy minima.
Comparing with Fig. 2, the conclusion is that conformations
in the AC phases are energetically favored �more explicitly,
for s /T	0.8 in AC1 and s /T	2.2 in the AC2 subphases�,
while the behavior in the other pseudophases is entropy
dominated: The number of conformations with similar con-
tact numbers in the globular or expanded regime is higher
than the rather exceptional conformations in the compact
phases, i.e., for sufficiently small s /T ratios the entropic ef-
fect overcompensates the energetic contribution to the free
energy.

The subphases AC2a1,2–d are strongly localized, thorn-
like “peninsulas” standing out from the AG regime. The dis-
crete number and their separation leads to the conclusion that
they have related structures. Indeed, as can be seen in Table
I, where we have listed representative conformations for all
pseudophases, the few conformations dominating these sub-
phases exhibit compact layered structures. The most compact
three-dimensional conformation with 263 monomer-
monomer contacts and 36 surface contacts is favored in sub-
phase AC2a1 and possesses five layers. Starting from this
subphase and increasing the temperature, two things may
happen. A rather small change is accompanied with the tran-
sition to AC2a2, where the number of intrinsic contacts is
reduced but the global five-layer structure remains. On the
other hand, passing the transition line towards AC2b, the
monomers prefer to arrange in compact four-layer conforma-
tions. Advancing towards AC2d, the typical conformations
reduce layer by layer in order to increase the number of
surface contacts. In AC2d there are still two layers lying
almost perfectly on top of each other. This is similar in sub-
phase AGe, where also two-layer but less compact confor-
mations dominate. In pseudophase AC1 only the filmlike sur-
face layer remains. The reason for the differentiation of the
phases AC1 and AC2 of layered conformations is that the
transition from single- to double-layer conformations is ex-
pected to be a real phase transition, while the transitions
between the higher-layer AC2 subphases are assumed to dis-
appear in the thermodynamic limit �19�.

As can be seen in Fig. 2, a transition between AC1 and the
phase of adsorbed, expanded conformations, AE, is possible.
Since these two phases are connected in Fig. 5, we expect
that the transition in between is second-order-like. Indeed,
this transition is strongly related with the two-dimensional �
transition since, close to the transition line, all monomers
form a planar �surface� layer. Similarly, there is also a
second-order-like transition line s0�T� between AG and AE
which separates the regions of poor �AG: s	s0� and good
�AE: s
s0� solvent. Also, the transition between the des-

orbed compact �DC� and expanded �DE� conformations is
second-order-like: This transition is strongly related with the
well-known � transition in three dimensions �31�. Eventu-
ally, the transitions from the layer phases AC2a2, AC2b,
AC2c, and AGe to the globular pseudophase AG as well as
transitions between pseudophases dominated by the same
layer type �i.e., between the two-layer subphases AC2d and
AGe, and between the five-layer subphases AC2a1 and
AC2a2� are expected to be continuous.

On the other hand, the transitions among the energetically
caused compact low-temperature pseudophases are rather
first-order-like, due to their noticeable localization in the
map of free-energy minima �Fig. 5�. The possible transitions
�see Fig. 2� are AC2a1,2–AC2b, AC2b–AC2c, and AC2c–
AC2d, respectively. Even more interesting, however, are the
transitions from the single-layer pseudophase AC1 to the
double-layer subphases AC2d and AGe. In the previous sec-
tions we already discussed this transition for the special
choice s=1, where near T�0.3 the fluctuations of the
contact numbers and the components of the gyration

TABLE I. Representative minimum free-energy examples of
conformations in the different pseudophases of a 179-mer in a cav-
ity. The substrate is shaded in light gray.
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tensor exhibit a strong activity. We have included in Fig. 5
the “path” of macrostates the system passes by increasing the
temperature from T=0 to T=5. At T=0 the system is in a
filmlike, single-layer state of pseudophase AC1. Near T
�0.3 it indeed suddenly rearranges into two layers and en-
ters subphase AGe in a single step. In Fig. 6�a� we have
plotted the probability distribution pT,s�ns ,nm� for s=1 and
T=0.34 and it can clearly be seen that two distinguished
macrostates coexist �37,38�. Increasing the temperature fur-
ther, the system undergoes the continuous transition from
AGe via AG until it unfolds when entering pseudophase AE.
The system is still in contact with the substrate. Close to a
temperature T�2.4, however, the unbinding of the polymer
off the substrate happens �from AE to DE�. Comparing Figs.
5 and 6�b�, where the probability distribution at T=2.44 is
shown, we see also a clear indication for a discontinuous
transition. Note that we consider here the transition state,
where the two minima of the free energy coincide �39� �see
also the black dashed line in Fig. 2� and not the point, where
the width of the distribution, i.e., the specific heat, is maxi-
mal. Since the system is finite, the transition temperature
�T�2.8�, as signalled by the fluctuations studied in the pre-
vious sections, deviates slightly from the transition-state
temperature reported here.

V. SUMMARY

In this paper, we have studied in detail the solubility-
temperature �pseudo�phase diagram of a polymer in a cavity
with an attractive substrate. We identified the thermodynamic
phases of adsorbed compact and expanded �AC, AE� and
desorbed �DC �33�, DE� conformations as well as the previ-

ously not yet clearly confirmed phase of adsorbed globules
�AG�. Although the polymer in our study possessed only
N=179 monomers, these �pseudo�phases are expected to be
stable also in the thermodynamic limit N→�. Other notice-
able phase transitions in the compact-globular adsorbed re-
gime �AC1–AC2d, AC1–AGe� are the energetic layering
transitions from filmlike surface-layer to double-layer con-
formations which are also believed to survive the thermody-
namic limit �19�. In addition, further subphases of higher-
order layers were found in low-temperature regions and bad
solvent �AC2a1,2, AC2b, and AC2c�. The most compact
three-dimensional conformation found is cubelike and forms
five layers �in subphase AC2a1�.

The �pseudo�phase diagram is based on the specific-heat
profile as a function of temperature and reciprocal solubility.
Although this profile allows for the identification of phases
and their boundaries it does tell little about the conforma-
tional transitions between the phases. For this purpose we
considered expectation values and fluctuations for the num-
bers of monomer-surface contacts ns and intrinsic monomer-
monomer contacts nm separately. These contact numbers
turned out to be sufficient to describe the macrostate of the
system and therefore are useful to describe the conformations
dominating the different phases. This view was completed by
an exemplified study of the anisotropic behavior of the gy-
ration tensor components of the polymer parallel and perpen-
dicular to the substrate.

Another central aspect was the classification of the con-
formational transitions between the �pseudo�phases. Based
on the contact numbers ns and nm, we defined an appropriate
free energy and studied the distribution of the minima in the
ns−nm space. From this kind of free-energy landscape, we
found strong indications that the binding-unbinding transi-
tions between the adsorbed and desorbed phases are first-
order-like, at least for the finite-length polymer studied. This
was also observed for the layering transitions. On the other
hand, the transitions across the line separating good and poor
solvent, i.e., between the compact �or globular� and the ex-
panded conformations, are rather second-order-like. This is
in coincidence with the known behavior of free polymers at
the � collapse transition in two and three dimensions.

Since the experimental equipment and the technological
capabilities have nowadays reached an enormous standard of
high single-molecular resolution, we expect that it should be
possible to verify experimentally not only the existence of
the described thermodynamic phases, but also the
pseudophases being only relevant for finite polymers and
specific to their lengths.
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FIG. 6. �Color online� Probability distributions pT,s�ns ,nm� for
the 179-mer in solvent with s=1 �a� near the layering transition
from AC1 to AGe at T�0.34 and �b� near the adsorption-desorption
transition from AE1 to DE at T�2.44. Both transitions are expected
to be real phase transitions in the thermodynamic limit and look
first-order-like.
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