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We report on the development of a systematic variational perturbation theory for
the euclidean path integral representation of the density matrix based on new
smearing formulas for harmonic correlation functions. As a first application, we
present the lowest-order approximation for the radial distribution function of an
electron in a hydrogen atom.

1 Introduction

Quantum statistical free energies can be calculated to any desired accuracy
with the help of variational perturbation theory 1,2. This is a systematic
generalization of an earlier rough variational approach 3,4 based on the Jensen-
Peierls inequality. The approximation consists of an optimized expansion, in
which each term can be expressed via a simple smearing formula 5 applied to
powers of the interaction, which can be polynomial as well as nonpolynomial.

In Sect. 2 we sketch the extension of this theory to density matrices,
thus enabling us to calculate very accurately local statistical properties of a
quantum mechanical system at all temperatures and coupling strengths. The
corresponding smearing formulas are derived in Sect. 3 and applied in Sect. 4
to obtain the lowest-order approximation for the density distribution of a
Coulomb system.

2 Variational Perturbation Theory for Density Matrices

Variational perturbation expansions for the free energy approximate arbi-
trary quantum statistical systems by optimized local perturbation expansions
around harmonic systems with different trial frequencies. The optimization is

performed separately for each path average x0 =
∫ h̄β

0
x(τ)/h̄β. This ensures a

rapid convergence of such expansions at higher temperatures by removing the
fluctuations of x0 which diverge linearly with the temperature. The fluctua-
tions of x0 are accounted for at the end by an ordinary integral. Since these
fluctuations probe, at higher temperatures, the entire potential, they must be
done numerically, and the fact that this is always possible with high accuracy
is one of the reasons for the quality of the approximations 2.

When applying variational perturbation theory to density matrices, the
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special role of the x0-fluctuations diappears since x0 remains always close to
some average of the fixed endpoints of the paths. Then x0 may be treated
perturbatively 6 together with the other Fourier components of the paths.
We may therefore directly look for an optimized perturbation expansion of
the path integral for the unnormalized density matrix

ρ̃(xa, xb) =

xb,h̄β
∫

xa,0

Dx exp

{

−
1

h̄
A[x]

}

, (1)

where β = 1/kBT and A is the euclidean action. In order to obtain a vari-
ational approximation, we divide the full action into a harmonic trial action
with center xmin = xmin(xa, xb) and frequency Ω = Ω(xa, xb, xmin). De-
noting the trial action by AΩ,xmin

, the remainder Aint = A − AΩ,xmin
=

∫ h̄β

0
dτ Vint(x(τ)) is treated as a perturbation. The result can be written as

an exponential of a cumulant expansion (cumulants being indicated by sub-
script c)

ρ̃(xa, xb) = ρ̃Ω,xmin
(xa, xb)

× exp

{

−
1

h̄
〈Aint[x] 〉xa,xb

Ω,xmin,c +
1

2h̄2

〈

A2
int[x]

〉xa,xb

Ω,xmin,c
− . . .

}

. (2)

The prefactor ρ̃Ω,xmin
(xa, xb) is the unnormalized density matrix of the dis-

placed euclidean harmonic propagator. The connected correlation functions
in the exponent of (2) consist of the harmonic expectation values

〈An[x] 〉xa,xb

Ω,xmin
= [ρ̃Ω,xmin

(xa, xb)]
−1

×

xb,h̄β
∫

xa,0

Dx

n
∏

k=1

[

∫ h̄β

0

dτk Vint(x(τk))

]

exp

{

−
1

h̄
AΩ,xmin

[x]

}

. (3)

Truncating the series (2) after the Nth term, we find the approximation
ρ̃N (xa, xb; Ω, xmin) to the euclidean propagator (1). As the exact propaga-
tor ρ̃(xa, xb) does not depend on the variational parameters, we expect the
best approximation ρ̃N (xa, xb; Ω, xmin) to depend minimally on them. To
determine the optimal values ΩN and xN

min, we thus solve the extremality
conditions ∂ρ̃N (xa, xb; Ω, xmin)/∂Ω = 0 and ∂ρ̃N (xa, xb; Ω, xmin)/∂xmin = 0.
If no extremal point is found, higher derivatives can be used 2. The associated
density matrix ρN is found by normalizing ρ̃N :

ρN (xa, xb) =
ρ̃N (xa, xb; Ω

N (xa, xb, xmin(xa, xb)), x
N
min(xa, xb))

∫ +∞

−∞
dx ρ̃N (x, x; ΩN(x, x, xN

min
(x, x)), xN

min
(x, x))

. (4)
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3 Smearing Formula

To determine the expectation values (3), we proceed as in Ref. 7, and introduce
the Fourier identity

Aint[x] =

h̄β
∫

0

dτ

+∞
∫

−∞

dz Vint(z)

+∞
∫

−∞

dk

2π
eikz exp

{

1

h̄

∫ h̄β

0

dτ ′ j(k, τ ′)x(τ ′)

}

(5)

with the current j(k, τ ′) = −ih̄kδ(τ − τ ′). Thus the expectation values (3)
are reduced to path integrals for the euclidean harmonic propagator of ex-
ponentials of the fluctuating variables. But harmonic expectation values of
products of exponentials can be written as products of exponentials of pair
correlation functions as a simple generalization of Wick’s rule (the simplest
well-known application of this being the calculation of the Debye-Waller fac-
tor for harmonic phonons). Performing the remaining Gaussian integrals we
obtain directly the smearing formula

〈An
int[x] 〉xa,xb

Ω,xmin
=

n
∏

k=1

[

∫ h̄β

0

dτk

∫ +∞

−∞

dzk Vint(zk + xmin)

]

×
1

√

(2π)ndetG

n
∏

k,l=1

exp

{

−
1

2
[zk − xcl(τk)] G−1

kl (τk, τl) [zl − xcl(τl)]

}

,(6)

where xcl(τ) is the classical harmonic path and G denotes the n × n-matrix
of harmonic Green functions

Gkl(τk, τl) =
h̄

2MΩ

cosh Ω(|τk − τl| − h̄β) − cosh Ω(τk + τl − h̄β)

sinh h̄βΩ
. (7)

An important advantage of the smearing formula (6) over the conventional
diagrammatic perturbation expansions is that it also allows to calculate cor-
relation functions for nonpolynomial problems.

4 Electron Distribution in Hydrogen Atom

As an example, consider the electron distribution in the hydrogen atom for
different temperatures shown in Fig. 1. Denoting by ra = |ra| the distance of
the electron from the proton, one usually plots the so-called pair distribution

function g1(ra), which is equal to (2πβ)3/2 times the unnormalized density
ρ̃1(ra, ra). Our result is better than an earlier approximation obtained from
a simple smearing of the effective classical potential of the system 2,9.
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Figure 1. Radial distribution function for an electron in a hydrogen atom. The first-order
results obtained with isotropic (dashed curves) and anisotropic (solid) variational pertur-
bation theory are plotted against Storer’s results 8 (dotted) and an earlier curve obtained
from the first-order effective classical potential 2,9 (dash-dotted).
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