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We have exactly enumerated all sequences and conformations of hydrophobic-polar~HP! proteins
with chains of up to 19 monomers on the simple cubic lattice. For two variants of the HP model,
where only two types of monomers are distinguished, we determined and statistically analyzed
designing sequences, i.e., sequences that have a nondegenerate ground state. Furthermore we were
interested in characteristic thermodynamic properties of HP proteins with designing sequences. In
order to be able to perform these exact studies, we applied an efficient enumeration method based
on contact sets. ©2005 American Institute of Physics.@DOI: 10.1063/1.1814941#

I. INTRODUCTION

Real proteins are built up of sequences of amino acids
covalently linked by peptide bonds. Twenty different types of
amino acids occurring in protein sequences are known. For a
protein consisting ofN amino acid residues there are thus, in
principle, 20N possibilities to form sequences or primary pro-
tein structures. Single domain polypeptides usually possess
N530,...,400residues; proteins built up of several domains
can consist of up to 4000 amino acids. Only a few of the 20N

possible proteins, however, are actually realized in nature
and are functional in a sense that they fulfil a specific task in
a biological system. This requires the native structure of the
protein to be unique and stable against moderate fluctuations
of the environmental chemical and physical conditions. It is
widely believed that the native state resides in a deep funnel-
like minimum of the free energy landscape.1 Since the en-
ergy of a protein depends on its sequence, it seems plausible
that only such sequences of residues are favored whose as-
sociated energy landscape shows up a pronounced global
minimum. On the other hand, from the conformational point
of view, it can be estimated that the number of structures
proteins typically fold into is only of the order of 1000—this
is at least two orders of magnitude less than the number of
known proteins.

Hence, exposing the nature of the relationship between
sequences~primary structure! and conformations~secondary
and higher structures! is one of the main aspects in protein
research.2 Attacking this general problem by means of com-
puter simulations based on realistic interactions is currently
impossible. There are two major obstacles being responsible
for this. First, the precise form of the energy function in an
all-atom approach containing all molecular and nuclear inter-
actions within the polypeptide as well as the influence of the
solvent is still under consideration. An important question is
what ‘‘level of detail’’ is necessary to model proteins in gen-

eral. Considering an exemplified sequence of amino acid
residues, the use of different force fields usually leads to
different predictions of the native state. Second, even if a
reliable model would exist, the sequence space is too large to
be completely scanned by enumeration in order to search for
the small number of sequences with appropriate free energy
landscape~the number of primary structures of very short
peptides with, say only ten residues, is 2010'1013).

In order to have a chance to perform such an analysis,
the model must be drastically simplified. The simplest model
to describe very qualitatively the folding behavior of proteins
is the hydrophobic-polar~HP! model,3 where the continuous
conformational space is reduced to discrete regular lattices
and conformations of proteins are modeled as self-avoiding
walks restricted to the lattice. In this model it is assumed that
the hydrophobic interaction is the essential driving force to-
wards the native fold. It is expected that the hydrophobic
side chains are screened from the aqueous environment by
hydrophilic residues. Therefore, the sequences of HP pro-
teins consist of only two types of monomers~or classes of
amino acids!, amino acids with high hydrophobicity are
treated as hydrophobic monomers (H), while the class of
polar ~or hydrophilic! residues is represented by polar mono-
mers (P). In order to achieve the formation of a hydrophobic
core surrounded by a shell of polar monomers, the interac-
tion between hydrophobic monomers is attractive in the stan-
dard formulation of the model. All other interactions are ne-
glected. Variants of the HP model also take into account
~weaker! interactions betweenH andP monomers as well as
between polar monomers.2

Although it is obvious that the HP model can describe
the folding process very roughly only,4–7 much work has
been done to find lowest-energy states and their degeneracy
for given sequences, or in the inverse problem, to identify all
sequences of given length whose native conformation
matches a given target structure. As simple as this model
seems to be, it has been proven to be an NP-complete prob-
lem in two and three dimensions.8 Therefore, sophisticated
numerical algorithms were applied to find lowest-energy
states for chains of up to 136 monomers. The algorithms
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applied are based on very different methods, ranging from
exact enumeration in two dimensions9,10 and three dimen-
sions on cuboid~compact! lattices,2,11 and hydrophobic core
construction methods12,13 over genetic algorithms,14–18

Monte Carlo simulations with different types of move
sets,19–22 and generalized ensemble approaches23 to Rosen-
bluth chain growth methods24 of the Go with the Winners
type.25–30 With some of these algorithms, thermodynamic
quantities of lattice heteropolymers were studied as
well.23,27,29–31

In this work, we apply an exact enumeration method to
three-dimensional HP proteins being not necessarily compact
on the simple cubic~sc! lattice. For efficiency, we enumer-
ated contact sets for chains of given length instead of con-
formations. In order to study the interplay between se-
quences and conformations and to investigate peculiarities of
designing sequences, we performed a statistical analysis of
the complete spaces of conformations and sequences for
chains of up toN519 monomers.

In Sec. II we give a review on the two variants of the HP
model we use in our study, the original HP model and a
variant taking into account an additional interaction between
hydrophobic and polar residues. This is followed by Sec. III,
where we discuss self-avoiding conformations and contact
sets. Then, in Sec. IV, we perform an exact statistical analy-
sis of properties of designing sequences and native confor-
mations with lengths up to 19 monomers in comparison with
the bulk of all possibilities to form sequences and to generate
conformations, respectively. Since the exact data obtained
with our algorithm can be rearranged in terms of the energy
levels of the conformations, we are also able to determine the
densities of states for all sequences. This allows for a study
of the energetic thermodynamic properties of sequences
whose associated ground state is unique or not, and their
comparison from a thermodynamic point of view. We do just
that in Sec. V. The paper is then concluded by summarizing
our results in Sec. VI.

II. HP MODELS

A monomer of a HP sequences5(s1 ,s2 ,...,sN) is
characterized by its residual type (s i5P for polar ands i

5H for hydrophobic residues!, the place 1< i<N within the
chain of lengthN, and the spatial positionx to be measured
in units of the lattice spacing. A conformation is then sym-
bolized by the vector of the coordinates of successive mono-
mers,X5(x1 ,x2 ,...,xN). We denote byxi j 5uxi2xj u the dis-
tance between thei th and thej th monomer. The bond length
between adjacent monomers in the chain is identical with the
spacing of the used regular lattice with coordination number
q. These covalent bonds are thus not stretchable. A monomer
and its nonbonded nearest neighbors may formcontacts.
Therefore, the maximum number of contacts of a monomer
within the chain is (q22) and (q21) for the monomers at
the ends of the chain. To account for the excluded volume,
lattice proteins are self-avoiding, i.e., two monomers cannot
occupy the same lattice site. The general energy function of
the noncovalent interactions reads in energy units« ~we set
«51 in the following! as

E5« (
^ i , j . i 11&

Ci j Us is j
, ~1!

whereCi j 5(12d i 11 j )D(xi j 21) with

D~z!5H 1, z50

0, zÞ0
~2!

is a symmetricN3N matrix calledcontact mapand

Us is j
5S uHH uHP

uHP uPP
D ~3!

is the 232 interaction matrix. Its elementsus is j
correspond

to the energy ofHH, HP, and PP contacts. For labeling
purposes we shall adopt the convention thats i505̂P and
s i515̂H.

In the simplest formulation,3 which we will refer to as
HP model in the following, only the attractive hydrophobic
interaction is nonzero,uHH

HP 521, while uHP
HP5uPP

HP50.
Therefore, Us is j

HP 52ds iH
ds jH

52s is j . This model has

been extensively used to identify ground states of HP se-
quences, some of which are believed to show up qualitative
properties comparable with realistic proteins whose 20-letter
sequence was translated into the two-letter code of the HP
model.5,12,14,32,33As we will see later on, this simple form of
the HP model suffers, however, from the fact that the lowest-
energy states are usually highly degenerate and therefore the
number of designing sequences~i.e., sequences with unique
ground state—up to the usual translational, rotational, and
reflection symmetries! is very small, at least on the simple
cubic lattice.

For a more reliable statistical sequence analysis, we
compare with another model of HP type, as proposed in Ref.
2. This model was motivated by results from an analysis of
inter-residue contact energies between real amino acids.34 To
this end, an attractive nonzero energy contribution for con-
tacts betweenH andP monomers is assumed.2 In what fol-
lows we call this the MHP~mixedHP! model. The elements
of the interaction matrix~3! are chosen to beuHH

MHP521,
uHP

MHP521/2.3'20.435, and uPP
MHP50.35 The additional

HP interaction breaks conformational symmetries yielding a
much higher number of designing sequences on cubic lat-
tices.

III. SELF-AVOIDING WALKS AND CONTACT
MATRICES

Since lattice polymers are self-avoiding walks, the total
number of conformations for a chain withN monomers is
not known exactly. ForN→` it is widely believed that in
leading order the scaling law36,37

Cn5AmC
n ng21 ~4!

holds, wheren is the number of self-avoiding steps~i.e., n
5N21). In this expression,mC is the effective coordination
number of the lattice,g is a universal exponent, andA is a
nonuniversal amplitude. In Table I we have listed the exactly
enumerated number for self-avoiding conformations of
chains with up toN5n11519 monomers. Based on these
data we estimatedmC'4.684 andg'1.16 by extrapolating
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the results obtained with the ratio method.36,38 These results
are in good agreement with previous enumeration
results,39–41 Monte Carlo methods42 and field-theoretic
estimates43 for g. We should note that it is not the aim of this
work to extend the numbers of walksCN in Table I which
has already been enumerated up ton526 steps~and hence
C27'5.4931017 self-avoiding conformations with N
527 monomers).40 Rather, we scan the combined space of
HP sequences and conformations which contains for chains
of N519 monomers 219C19'1.1731018 possible combina-
tions. Therefore, the computational effort of our study is
comparably demanding.

In models with the general form~1!, where the calcula-
tion of the energy reduces to the summation over contacts
~i.e., pairs of monomers being nearest neighbors on the lat-
tice but nonadjacent along the chain! of a given conforma-
tion, the number of conformations that must necessarily be
enumerated can drastically be decreased by considering only
classes of conformations, so-called contact sets.10,44 A con-
tact set is uniquely characterized by a corresponding contact
map ~or contact matrix!, but a single conformation is not.
Thus, for determining energetic quantities of different se-
quences, it is sufficient to carry out enumerations over con-
tact sets. In a first step, however, the contact sets and their
degeneracy, i.e., the number of conformations belonging to
each set, must be determined and stored. Then, the loop over
all nonredundant sequences is performed for all contact sets
instead of conformations. The technical details of our imple-
mentation will be described elsewhere.45

In Table I, the resulting numbers of contact setsMN are
summarized and, although also growing exponentially@see
Figs. 1~a! and 1~b!#, the gain of efficiency by enumerating
contact sets is documented by the ratio betweenCN andMN

in the last column. Assuming that the number of contact sets
Mn follows a scaling law similar to Eq.~4!, we estimated the
effective coordination number to be approximatelymM

'4.38. Unfortunately, the ratios of numbers of contact sets
for even and odd numbers of walks oscillate much stronger

than for the number of conformations, as shown in Fig. 1~b!.
This renders an accurate scaling analysis~in particular, for
the exponentg! based on the data for the relatively small
number of steps much more difficult than for self-avoiding
walks.

IV. EXACT STATISTICAL ANALYSIS OF DESIGNING
SEQUENCES

In this section, we analyze the complete setsSN of de-
signing sequences for HP proteins of given numbers of resi-
duesN<19. A sequences is called designing, if there is
only one conformation associated with the native ground
state, not counting rotation, translation, and reflection sym-
metries that altogether contribute on a simple cubic lattice a
symmetry factor 6 for linear, 24 for planar, and 48 for con-
formations spreading into all three spatial directions. In Table
II we have listed the numbers of designing sequencesSN we
found for the two models. In contrast to previous investiga-
tions of HP proteins on the square lattice,10 the number of
designing sequences obtained with the pure HP model is ex-
tremely small on the simple cubic lattice. This does not allow
for a reasonable statistical study of general properties of de-
signing sequences, at least for very short chains. The situa-
tion is much better using the more adequate MHP model.
The first quantity under consideration is the hydrophobicity
of a sequences, i.e., the number of hydrophobic monomers
NH , normalized with respect to the total number of residues,

TABLE I. Number of conformationsCN and contact matricesMN for chains
with N monomers~or, equivalently, self-avoiding walks withn5N21
steps!.

N n 1
6CN

MN
1
6CN /MN

4 3 25 2 13
5 4 121 3 40
6 5 589 9 65
7 6 2821 20 141
8 7 13 565 66 206
9 8 64 661 188 344

10 9 308 981 699 442
11 10 1 468 313 2180 674
12 11 6 989 025 8738 800
13 12 33 140 457 29 779 1 113
14 13 157 329 085 121 872 1 290
15 14 744 818 613 434 313 1 715
16 15 3 529 191 009 1 806 495 1 954
17 16 16 686 979 329 6 601 370 2 528
18 17 78 955 042 017 27 519 000 2 869
19 18 372 953 947 349 102 111 542 3 652

FIG. 1. ~a! Dependence of the numbers of self-avoiding walksCn and
contact matricesMn on the number of stepsn5N21. ~b! Ratios of numbers
of self-avoiding walks r n

C5Cn /Cn21 and contact matrices r n
M

5Mn /Mn21 . The dotted lines indicate the values the respective series con-
verge to,r `

C5mC'4.68 andr `
M5mM'4.38, respectively.
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m~s!5
NH

N
5

1

N (
i 51

N

s i . ~5!

The average hydrophobicity over a set of designing se-
quences of given lengthN is then defined by

^m&N5
1

SN
(

sPSN

m~s!. ~6!

In Fig. 2 we have plotted̂m&N as function of the sequence
lengthN. The plots do not show up a clear tendency to what
average hydrophobicity they converge for long chains. This
to know would be, however, of some interest for the design
of a biased algorithm of Monte Carlo type that searches the
combined sequence and conformational space for candidates
of designing sequences with lengths, where enumeration is
no longer applicable. A distinct indication that designing se-
quences have in most cases hydrophobicities different from
0.5 could be used as a bias in order to reduce the section of
the sequence space to be scanned, since the number of all
possible sequences with given hydrophobicity has a peak at
m50.5 @see Fig. 3~a!# which becomes the more pronounced
the higher the number of residues is.

It should be noted that the hydrophobicity distribution
for all these sequences is not binomial since in our analysis
we have distinguished only sequences that we callrelevant,
i.e., two sequences that are symmetric under reversal of their
residues are identified and enter only once into the statistics.
Therefore we consider, for example, only ten relevant se-
quences with lengthN54 instead of 24516. Taking into
accountall 2N sequences would obviously lead to a binomial
distribution forNH , since there are then exactly

S N
NH

D ~7!

sequences withNH hydrophobic monomers.
In Fig. 3~a! we have plotted both the distribution of hy-

drophobicity of the designing sequences withN518 mono-
mers in the MHP model and, for comparison, the distribution
of all sequences withN518. For this example, we see that
the width ~or standard deviation! of the hydrophobicity dis-
tribution for the designing sequences, which has its peak at
^m&18

MHP'0.537.0.5, is smaller than that of the distribution
over all sequences. In order to gain more insight how the
hydrophobicity distributions differ, we have compared the
widths of both distributions in their dependence on the chain
length N<19. This is shown in Fig. 3~b!. It seems that for
N→` the widths of the hydrophobicity distributions for the
designing sequences asymptotically approach the curve of
the widths of the hydrophobicity distributions of all se-
quences.

The hydrophobicity profile

pi5
1

2SN
(

sPSN

~s i1sN2 i 11!, i 51,2,...,N, ~8!

FIG. 2. Dependence of average hydrophobicities^m&N for designing se-
quences on the sequence lengthN in both models. For several chain lengths,
where no designing sequences exist~see Table II!, the calculation of the
average hydrophobicity~6! does not make sense. The dashed lines are there-
fore only guides to the eye.

FIG. 3. ~a! Distribution of hydrophobicityhN of all designing sequences
with N518 monomers~solid line! compared with the distribution of hydro-
phobicity of all sequences of this length~dashed line! for the MHP model.
~b! Widths of the hydrophobicity distribution of the designing sequences,
bN , depending on the chain lengthN ~solid line! compared with the widths
of the hydrophobicity distribution of all sequences~dashed line! for the
MHP model.

TABLE II. Number of designing sequencesSN ~only relevant sequences, see text! in the HP and MHP models.

N 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

SN
HP 3 0 0 0 2 0 0 0 2 0 1 1 1 8 29 47

SN
MHP 7 0 0 6 13 0 11 8 124 14 66 97 486 21969491 4885
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is a measure for the probability to find a hydrophobic mono-
mer in a distancei from the nearest end of a designing se-
quence. Thus, this quantity gives an impression of how theH
monomers are on average distributed along the chain. In
Figs. 4~a! and 4~b! the profiles for designing sequences in the
MHP model are plotted for respective chains with even (N
514,16,18) and odd numbers (N515,17,19) of residues. As
a first remarkable result, we see that for odd numbers of
monomers@Fig. 4~b!# the profile shows up periodic oscilla-
tions, i.e., if thenth monomer is preferably hydrophobic the
(n11)th residue is with lower probability. As this effect is
stronger forN517 than forN519, we expect that the am-
plitude of these oscillations decreases with increasing num-
ber of monomers. The behavior of the chains with even num-
ber of monomers@Fig. 4~a!# is less spectacular. Here, for
increasing number of monomers, the probability seems to
become more and more equally distributed. Therefore, it is
more interesting to study how each monomer of the design-
ing sequences is involved in the formation ofHH contacts
~as well asHP contacts in the MHP model! being favored in
low-energy conformations. To this end, we define the hydro-
phobic contact density profile by

qi5
1

2SN
(

sPSN
(
j 51

N

@Ci j s is j1CN2 i 11 j sN2 i 11s j #, ~9!

where Ci j is the contact map defined after Eq.~1!. The
higher the affinity of thei th monomer to form contacts~pref-
erably if it is hydrophobic! the bigger the value ofqi . This
profile is shown in Fig. 5 for both models, where we have

again separated even and odd numbers of residues. From the
two profiles for the HP model (N518,19), we observe that
there is a strong tendency of the monomers at the ends of the
chain (i 51,N) to form hydrophobic (HH) contacts. The rea-
son is that these two monomers can have five nearest neigh-
bors on the sc lattice, i.e., there is one more possibility for
them to form a favorable energetic contact than for mono-
mers residing within the chain. In the MHP model, this be-
havior is less pronounced, since alsoHP contacts are attrac-
tive and the tendency that the ends are preferably
hydrophobic is much weaker.

After having discussed sequential properties of design-
ing sequences, we now analyze the properties of their unique
ground-state structures, the native conformations. From
Table III we read off that the number ofdifferent native
conformationsDN is usually much smaller than the number
of designing sequences, i.e., several designing sequences
share the same ground-state conformation. The number of
designing sequences that fold into a certain given target con-
formation X(0) ~or conformations being trivially symmetric
to this by translations, rotations, and reflections! is called
designability,46

FN~X(0)!5 (
sPSN

D„Xgs~s!2X(0)
…, ~10!

where Xgs(s) is the native~ground-state! conformation of

FIG. 4. Hydrophobicity profilespi for designing sequences with~a! even
and~b! odd numbers of monomers in the MHP model. Since the profile~8!
is symmetric underi↔N2 i 11 we have only plotted it for half the chain.

FIG. 5. Profiles of the contact densityqi for designing sequences with~a!
even and~b! odd numbers of monomers in the MHP model. For comparison,
we have also inserted the profiles obtained in the HP model forN518 and
N519, respectively. By definition~9!, this profile is also symmetric under
i↔N2 i 11.
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the designing sequences. The functionD~Z! is the generali-
zation of Eq.~2! to 3N-dimensional vectors. It is unity for
Z50 and zero otherwise.

The designability is plotted in Fig. 6 for all native con-
formations that HP proteins withN517, 18, and 19 mono-
mers can form in the MHP model. In this figure, the abscissa
is the rank of the conformations, ordered according to their
designability. The conformation with the lowest rank is
therefore the most designable structure and we see that a
majority of the designing sequences folds into a few highly
designable conformations, while only a small number of de-
signing sequences possesses a native conformation with low
designability~note that the plot is logarithmic!. Similar re-
sults were found, for example, in Ref. 47, where the design-
ability of compact conformations on cuboid lattices was in-
vestigated in detail. The left picture in Fig. 7 shows the
conformation with the lowest rank~or highest designability!
with N518 monomers.

From our analysis we see that this characteristic distri-
bution of the designing sequences is not restricted to cuboid
lattices only. This result is less trivial than one may think at
first sight. As we will show later on in this paper in the
discussion of the radius of gyration, native conformations are
very compact, but only very few conformations are maxi-
mally compact~at least forN<19). For longer sequences
similar results were found in Ref. 30. Highly designable con-
formations are of great interest, since it is expected that they
form a frame making them stable against mutations and ther-
modynamic fluctuations. Such fundamental structures are
also relevant in nature, where, in particular, secondary struc-
tures~helices, sheets, hairpins! supply proteins with a stable
backbone.47

Conformational properties of polymers are usually stud-
ied in terms of the squared end-to-end distance

Re
25~xN2x1!2 ~11!

and the squared radius of gyration

Rg
25

1

N (
i 51

N

~xi2 x̄!2, ~12!

where x̄5( ixi /N is the center of mass of the polymer. In
polymer physics both quantities are usually referred to as
measures for the compactness of a conformation. A typical
conformation with minimal radius of gyration for a chain
with N518 monomers is shown in the right picture of Fig. 7.

In Fig. 8~a! we compare theN-dependence of the aver-
ages of the native conformations found in the MHP model
and all possible self-avoiding walks~SAW!. The same quan-
tities for the squared radius of gyration are shown in Fig.
8~b!. The averages were obtained by calculating

^Re,g
2 &SAW5

1

CN
(

XPCN

Re,g
2 ~X!, ~13!

^Re,g
2 &MHP5

1

SN
(

sPSN

Re,g
2

„Xgs~s!…, ~14!

whereCN is the set of all self-avoiding conformations on a sc
lattice. Figure 8~a! shows for the mixed HP model that, com-
pared to^Re,g

2 &SAW;n2n with n'0.59 ~see Ref. 48 for a
recent summary of estimates forn!, the average end-to-end
distancê Re,g

2 &MHP of the native conformations only is much
smaller. For even number of monomers, the ends of a HP
protein can form contacts with each other on the sc lattice.
Accordingly, the values of̂Re,g

2 &MHP are smaller forN being
even and the even-odd oscillations are very pronounced. The
widths bR

e
2 of the distributions of the squared end-to-end

distances are also very small. Even for heteropolymers with
N519 monomers in total, there are virtually no native con-
formations, where the distance between the ends is larger
than three lattice sites. We have checked this for the standard
HP model, too, and found the same effect. Since the number
of native conformations is very small in this model, we have

FIG. 6. DesignabilityFN of native conformations in the MHP model for
N517, 18, and 19. The abscissa is the rank obtained by ordering all des-
ignable conformations according to their designability.

FIG. 7. Structure (N518) with the highest designability of all native con-
formations~left! and with minimal radius of gyration~right!.

TABLE III. Number of designable conformationsDN in both models.

N 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

DN
HP 1 0 0 0 2 0 0 0 2 0 1 1 1 8 28 42

DN
MHP 1 0 0 2 2 0 5 6 30 8 31 58 258 708 14471623
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not included these results in the figure. Depicting the average
squared radius of gyration̂Rg

2& and the widths of the corre-
sponding distribution of the radius of gyration in Fig. 8~b!
for all self-avoiding conformations as well as for the native
ones, we see that these results confirm the above remarks. As
the average end-to-end distances of native conformations are
much smaller than those for the bulk of all conformations,
we observe the same trend for the mean squared radii of
gyration ^Rg

2&MHP and ^Rg
2&SAW and the widthsbR

g
2

MHP
and

bR
g
2

SAW
as well. In particular, the widthbR

g
2

MHP
is so small, that

virtually all native conformations possess the same radius of
gyration. For this reason, we have also searched for the con-
formations having the smallest radius of gyrationRg, min

2

~these conformations are not necessarily native as we will
see!! and inserted these values into this figure, too. We ob-
serve that these values differ only slightly from̂Rg

2&MHP.
Thus we conclude that native conformations are very com-
pact but not necessarily maximally compact. This property
has already been utilized in enumerations being performeda
priori on compact lattices,2,11,47 where the proteins are con-
fined by hand to live in small cuboids~e.g., of size 333
33 or 43333). Our results on the general sc lattice con-
firm that this assumption is justified to a great extent. Nev-
ertheless, the slight deviation from the minimal radius of

gyration native conformations exhibit is a remarkable result
as it concerns about 90% of the whole set of native confor-
mations! This can be seen in Fig. 9, where we have plotted
the distribution of the squared radii of gyration for all self-
avoiding conformations withN518 and the native states in
the MHP model. All native conformations have a very small
radius of gyration but only a few of them share the smallest
possible value. A structure with the smallest radius of gyra-
tion is shown on the right-hand side of Fig. 7. It obviously
differs from the most-designable conformation drawn on the
left of the same figure.

V. DENSITY OF STATES AND THERMODYNAMICS

In this section we systematically compare energetic ther-
modynamic quantities of designing and nondesigning se-
quences. In Ref. 49 it was conjectured for exemplified se-
quences of comparable 14mers, one of them being designing,
that designing sequences in the HP model seem to show up a
much more pronounced low-temperature peak in the specific
heat than the nondesigning examples. This peak may be in-
terpreted as kind of a conformational transition between
structures with compact hydrophobic cores~ground states!
and states where the whole conformation is highly compact
~globules!.29,30 Another peak in the specific heat at higher
temperatures, which is exhibited by all lattice proteins, is an
indication for the usual globule—coil transition between
compact and untangled conformations.

In order to study energetic thermodynamic quantities,
such as mean energy and specific heat, we determined from
our enumerated conformations for a given sequence the den-
sity of statesg(E) that conveniently allows the calculation of
the partition sumZ(T)5(Eg(E)exp(2E/kBT) and the mo-
ments ^Ek&T5(EEkg(E)exp(2E/kBT)/Z, where the sub-
script T indicates the difference of calculating thermal mean
values based on the Boltzmann probability from averages
previously introduced in this paper. Then the specific heat is
given by the fluctuation formulaCV5(^E2&T2^E&T

2)/kBT2.

FIG. 8. ~a! Average squared end-to-end distances^Re
2& of native conforma-

tions in the MHP model compared with those of all self-avoiding walks
~SAW!. We have also inserted the widthsbR

e
2 of the corresponding distribu-

tions of end-to-end distances.~b! The same for the average squared radius of
gyration^Rg

2&. Since the radius of gyration is an appropriate measure for the
compactness of a conformation, we have also plottedRg, min

2 for the confor-
mations with the minimal radius of gyration~or, equivalently, maximal com-
pactness!.

FIG. 9. DistributionhR
g
2 ~normalized to(hR

g
251) of squared radii of gyra-

tion ~normalized with respect to the maximal radius of gyrationRg, max
2

5(N221)/12 of a completely stretched conformation! of native conforma-
tions with N518 in the MHP model, compared with the histogram for all
self-avoiding conformations. The vertical line refers to the minimal radius of
gyration (Rg, min

2 /Rg, max
2 50.0579 forN518) and an associated structure is

shown on the right-hand side of Fig. 7. The inset shows the distribution up
to Rg

2/Rg, max
2 50.5.
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A. Sequences in the HP model

In the HP model with pure hydrophobic interaction the
density of states shows up a monotonic growth with increas-
ing energy, at least for the short chains in our study~for
longer chains, e.g., the 42mer investigated in Refs. 29 and
30, the number of states in the high-energy region decreases,
i.e., the density of states possesses a global maximum at an
energyE residing within the intervalEmin,E,Emax50). For
a reasonable comparison of the behavior of designing and
nondesigning sequences, we have focused on 18mers having
the same hydrophobicity (mH58) and ground-state energy
Emin529. There are in total 527 sequences with these prop-
erties, two of which are designing. The densities of states for
the two designing sequences and an example of a nondesign-
ing sequence are plotted in Fig. 10. We have already divided
out a global symmetry factor 6~number of possible direc-
tions for the link connecting the first two monomers! that all
conformations on a sc lattice have in common. Since the
ground-state conformations of the designing sequences
spread into all three dimensions, an additional symmetry fac-
tor 43258 ~four for rotations around the first bond, two for
a remaining independent reflection! makes a number of con-
formations obsolete and the ground-state degeneracy of the
designing sequences is indeed unity. Obviously this is not the
case for the sequences we identified as nondesigning. In fact,
the uniqueness of the ground states of designing sequences is
a remarkable property as there are not less than;1010 pos-
sible conformations of HP lattice proteins with 18 mono-
mers. As we also see in Fig. 10, the ratio of the density of the
first excited state (E528) for the designing and the nonde-
signing sequences is smaller than for the ground state. This
means that, at least for these short chains, the low-
temperature behavior of the HP proteins in this model
strongly depends on the degeneracy of the ground state. Fur-
thermore, we expect that the low-temperature behavior of
both designing sequences is very similar as their low-energy
densities hardly differ. We have investigated this, once more

for the 18mers with the properties described above, by con-
sidering the mean energy^E&T and the specific heatCV(T).
The results are shown in Figs. 11~a! and 11~b!, respectively.
The two solid curves belong to the two designing sequences
and the dashed lines are the minimum/maximum bounds of
the respective quantities for the nondesigning sequences. As
a main result we find that designing and nondesigning se-
quences behave indeed differently for very low temperatures.
There is a characteristic, pronounced low-temperature peak
in the specific heat that can be interpreted as kind of transi-
tion between low-energy states with hydrophobic core and
very compact globules. This confirms a similar observation
for the 14mers studied in Ref. 49.

The upper bound of the specific heats for nondesigning
sequences in Fig. 11~b! exposes two peaks. By analyzing our
data for all 525 nondesigning sequences we found that there
are two groups: some of them experience two conforma-
tional transitions while others do not show a characteristic
low-temperature behavior. Thus, the only appearance of
these two peaks is not a unique, characteristic property of
designing sequences. In order to quantify this observation,
we have studied all relevant 32896 sequences with 16
monomers. Only one of these sequences is de-
signing (HP2HP2HPHPH2PHPH, with minimum energy
Emin529), but in total there are 593 sequences, i.e., 1.8% of
the relevant sequences, corresponding to curves of specific
heats with two local maxima. It should be noted that the

FIG. 10. Density of statesg(E) for two designing sequences~d! with N
518, mH58, and Emin529 in the HP model. We have divided out the
symmetry factor 6 that is common to all conformations. Three-dimensional
conformations have an additional symmetry factor 8, such that the states
with minimal energy for these two curves are indeed unique and the se-
quences are designing. For comparison we have also plottedg(E) for one
exemplified nondesigning sequence~n! out of 525 having the same proper-
ties as quoted above, but different sequences. The ground-state degeneracy
for this example isg05g(Emin)5631840 ~including all symmetries!.

FIG. 11. ~a! Mean energŷ E&T and~b! specific heatCV for the two design-
ing sequences withN518, mH58, andEmin529 ~solid lines! in the HP
model, whose densities of states were plotted in Fig. 10. The curves of the
same quantities for the 525 nondesigning sequences are completely included
within the respective areas between the dashed lines. The low-temperature
peak of the specific heat~near T50.14) is most pronounced for the two
designing sequences which behave similarly for low temperatures.
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degeneracies of the ground states associated with these se-
quences are comparably small.

B. Properties of the MHP model

In the MHP model, the energy levels are no longer
equally spaced due to the additional nonintegerHP interac-
tion. Moreover, the absolute value of the energy of the lattice
heteropolymer is not necessarily identical with the number of
hydrophobic contacts. The formation of a highly compact
core is still energetically favored, but also the attractive con-
tacts betweenH and P monomers reduce the energy of the
heteropolymer. For this reason, the relatively manifest dis-
tinction between ‘‘phases’’ with compactH-core states and
entirely compact conformations is expected to be much less
pronounced, even for the designing sequences.

Once more, we have first enumerated the densities of
states for a set of sequences that have similar properties but
differ only in the ordering of the sequence. For this study we
chose all 18mers sharing the same hydrophobicitymH53
and identical ground-state energyEmin52uHH

MHP18uHP
MHP

'25.478, since there are twoHH and eightHP contacts in
each of the ground-state conformations. We found 13 design-
ing and 40 nondesigning sequences that satisfy these speci-
fications. In order not to be confused by too many curves, in
Fig. 12 again only the minimum and maximum boundaries
of the designing sequences~solid lines! are shown as well as
the corresponding bounds for the nondesigning sequences
~dashed lines!. We observe that the regions enclosed by the
boundaries do not exhibit significant differences in both
cases except for the ground-state energyEmin , where the
ground-state degeneracy for the designing sequences isg0

d

5g0, min
d 5g0, max

d 548 ~i.e., identical with the global symme-
try factor for three-dimensional conformations!, while the
degeneracies for the nondesigning sequences lie within the
interval g0, min

n 596<g0
n<g0, max

n 53888. Note thatgmin
d (E'

23.913)50 and gmin
d (E'24.913)5gmin

n (E'24.913)50.
Interestingly, the state with energyE'23.913 is never oc-
cupied by the designing sequences, in contrast to the nonde-
signing sequences.

Since the densities of states for designing and nonde-
signing sequences hardly differ, it is difficult to identify a
particular thermodynamic behavior being characteristic for
designing sequences only. This is indeed true as can be seen
from Figs. 13~a! and 13~b!, where we have plotted the lower
and upper boundaries for the respective mean energies and
specific heats of these 18mers. In contrast to the results for
the HP model@cf. Figs. 11~a! and 11~b!#, where, within a
certain low-temperature interval, the regions enclosing the
curves for the designing and nondesigning sequences do not
overlap, a separation of this kind is not apparent in the MHP
model. Nevertheless, these figures also show that for very
low temperatures (0,T,0.1), the general behavior is very
similar for all designing sequences, but it is not for the non-
designing sequences, where the temperature dependence of
energy and thus specific heat can be significantly different.

VI. SUMMARY

We have exactly analyzed the combined space of se-
quences and conformations for proteins on the simple cubic
lattice for two HP-type models that differ in the contact en-
ergy between hydrophobic and polar monomers. In the origi-
nal HP model3 this interaction is zero, while in the more
realistic MHP model2 there is a nonzero contribution as sug-
gested by the Miyazawa-Jernigan matrix of contact energies
between amino acids in proteins.34 Since there were only a
few known exact results for heteropolymers in three dimen-
sions, mainly on compact cuboid lattices, we generated by
exact enumeration the sets of designing sequences and native
conformations on noncompact simple cubic lattices. We

FIG. 12. Minimum and maximum boundaries for the densities of states of
the 13 designing~filled boxes, connected by solid lines! and the 40 nonde-
signing sequences~open circles, connected by dashed lines! with 18 mono-
mers, hydrophobicitymH53, and ground-state energyEmin'25.478 in the
MHP model. Once more, a global symmetry factor 6 has already been di-
vided out.

FIG. 13. Minimum and maximum boundaries of the~a! mean energŷE&T

and ~b! specific heatCV for the designing~solid lines! and nondesigning
sequences~dashed lines! in the MHP model, with the properties listed in the
caption of Fig. 12.
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studied, how their properties, measured, e.g., in terms of
quantities like designability, end-to-end distance, radius of
gyration, etc., differ from the bulk of all possible sequences
and all self-avoiding conformations, respectively. We found
that ground states of designing sequences, i.e., native confor-
mations, have a much smaller mean end-to-end distance than
the set of all conformations with the same length. Moreover,
we confirmed that these conformations are very compact,
i.e., they have a smaller mean radius of gyration than the
whole set. This is valid for both models under consideration.

We have also studied energetic thermodynamic proper-
ties, in order to investigate how characteristic the low-
temperature behavior of designing compared to nondesign-
ing sequences is. We determined the densities of states for
respective sets of selected 18mers with comparable proper-
ties. In the HP model, where the number of designing se-
quences is rather small compared with the MHP model, we
could observe that energetic fluctuations are different for de-
signing and nondesigning sequences within a certain low-
temperature region. Designing sequences show up a more
pronounced low-temperature peak in the specific heat being
related to a conformational transition between low-energy
states with hydrophobic core and highly compact globules.
For the MHP model the situation is more diffuse, and a clear
distinction between designing and nondesigning sequences
based on characteristic thermodynamic properties is not pos-
sible. Nevertheless, we have also seen in this model that
designing sequences behave similarly for very low tempera-
ture while nondesigning sequences react quite differently on
changes of the temperature, over the entire range of tempera-
tures.
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