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We have performed multicanonical simulations of hydrophobic-hydrophilic heteropolymers with two simple
effective, coarse-grained off-lattice models to study the influence of specific interactions in the models on
conformational transitions of selected sequences with 20 monomers. Another aspect of the investigation was
the comparison with the purely hydrophobic homopolymer and the study of general conformational properties
induced by the “disorder” in the sequence of a heteropolymer. Furthermore, we applied an optimization
algorithm to sequences with up to 55 monomers and compared the global-energy minimum found with lowest-
energy states identified within the multicanonical simulation. This was used to find out how reliable the
multicanonical method samples the free-energy landscape, in particular for low temperatures.
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I. INTRODUCTION

The understanding of protein folding is one of the most
challenging objectives in biochemically motivated research.
Although the physical principles are known, the complexity
of proteins as being macromolecules consisting of numerous
atoms, the influence of quantum chemical details on long-
range interactions, as well as the role of the solvent, etc.,
make an accurate analysis of the folding process of realistic
proteins extremely difficult. Therefore, one of the most im-
portant questions in this field is how much detailed informa-
tion can be neglected to establish effective, coarse-grained
models yielding reasonable, at least qualitative, results that
allow for, e.g., a more global view on the relationship be-
tween the sequence of amino acid residues and the existence
of a global, funnel-like energy minimum in a rugged free-
energy landscapef1g.

Within the past two decades, much work has been devoted
to introduce minimalistic models based on general principles
that are believed to primarily control the structure formation
of proteins. One of the most prominent examples is the HP
model of lattice proteinsf2g, which has been exhaustively
investigated without revealing all secrets, despite its simplic-
ity. In this model, only two types of monomers are consid-
ered, with hydrophobicsHd and polarsPd character. Chains
on the lattice are self-avoiding to account for the excluded
volume. The only explicit interaction is between nonadjacent
but next-neighbored hydrophobic monomers. This interac-
tion of hydrophobic contacts is attractive to force the forma-
tion of a compact hydrophobic core which is screened from
the shypotheticd aqueous environment by the polar residues.
Statistical mechanics simulations of this model are still the
subject of studies requiring the application of sophisticated
algorithmsf3–5g.

A manifest off-lattice generalization of the HP model is
the AB model f6g, where the hydrophobic monomers are

labeled byA and the polar or hydrophilic ones byB. The
contact interaction is replaced by a distance-dependent
Lennard-Jones type of potential accounting for short-range
excluded volume repulsion and long-range interaction, the
latter being attractive forAA andBB pairs and repulsive for
AB pairs of monomers. An additional interaction accounts
for the bending energy of any pair of successive bonds. This
model was first applied in two dimensionsf6g and general-
ized to three-dimensional AB proteinsf7,8g, partially with
modifications taking implicitly into account additional tor-
sional energy contributions of each bond.

More knowledge-based coarse-grained models are often
of Gō type, where, in the simplest lattice formulation, the
energy is proportional to the number of native contacts.
These models usually require knowledge of the native con-
formation and serve, e.g., as models for studies of folding
pathwaysf9,10g and native topologyf11,12g. There is also
growing interest in modeling the folding behavior of single-
domain proteins with simplified models as many of them
exhibit a simple two-state kineticsf13g without intermediary
states that would slow down the folding dynamicss“traps”d.
It seems, however, that native-centric models such as those
of Gō type require modifications for a qualitatively correct
description of this sharp folding transitionf14,15g.

In this paper, we report studies of thermodynamic and
ground-state properties of AB sequences known from the
literaturef7,16,17g for two representations of the AB model
f6,7g which are described in Sec. II. While, compared to
all-atom formulations, the interactions in these coarse-
grained models are greatly simplified and hence can be com-
puted much faster, they still preserve a complicated rugged
free-energy landscape, where naive simulations would easily
get trapped. In order to accurately resolve the low-
temperature behavior, we, therefore, applied a multicanonical
Monte Carlo algorithmf18,19g with an appropriate update
mechanism. For simulations of systems with complex free-
energy landscapes, multicanonical sampling has become
very popular and its application in protein simulations has a
long traditionf20g. The ground-state search was achieved by
means of the energy landscape paving minimizersELPd f21g.
Section III is devoted to a description of these methods. We
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present the results for the global energy minima and the ther-
modynamic quantities in Sec. IV. The paper is concluded by
the summary in Sec. V.

II. EFFECTIVE OFF-LATTICE MODELS

We investigated two effective off-lattice models of AB
type for heteropolymers withN monomers. The first one is
the original AB model as proposed in Ref.f6g with the en-
ergy function

EI =
1

4o
k=1

N−2

s1 − cosqkd + 4o
i=1

N−2

o
j=i+2

N S 1

r ij
12 −

CIssi,s jd
r ij

6 D ,

s1d

where the first sum runs over thesN−2d angles 0øqkøp of
successive bond vectors. This term is the bending energy and
the coupling is “ferromagnetic,” i.e., it costs energy to bend
the chain. The second term partially competes with the bend-
ing barrier by a potential of Lennard-Jones type depending
on the distance between monomers being nonadjacent along
the chain. It also accounts for the influence of the AB se-
quencessi =A for hydrophobic andsi =B for hydrophilic
monomersd on the energy of a conformation as its long-range
behavior is attractive for pairs of like monomers and repul-
sive for AB pairs of monomers,

CIssi,s jd = 5+ 1, si,s j = A,

+ 1/2, si,s j = B,

− 1/2, si Þ s j .
6 s2d

We will refer to this model as AB model I throughout the
paper.

The other model we have studied has been introduced in
Ref. f7g and is a variant of AB model I in that it also consists
of angular and distance-dependent energy terms, but with
some substantial modifications. In the following, we denote
it as AB model II. The energy is given by

EII = − k1o
k=1

N−2

bk ·bk+1 − k2o
k=1

N−3

bk ·bk+2

+ 4o
i=1

N−2

o
j=i+2

N

CIIssi,s jdS 1

r ij
12 −

1

r ij
6 D , s3d

wherebk is the bond vector between the monomersk and
k+1 with length unity. In Ref.f7g, different values for the
parameter setsk1,k2d were tested and finally set to
s−1,0.5d as this choice led to distributions for the angles
between bond vectorsbk and bk+1 as well as the torsion
angles between the surface vectorsbk3bk+1 and bk+1
3bk+2 that agreed best with distributions obtained for se-
lected functional proteins. Sincebk·bk+1=cosqk, the choice
k1=−1 makes the coupling between successive bonds “anti-
ferromagnetic” or “antibending” contrary to what was cho-
sen in Eq.s1d for AB model I. The second term in Eq.s3d
takes torsional interactions into account without being an
energy associated with the pure torsional barriers in the usual
sense. The third term contains now a pure Lennard-Jones

potential, where the 1/r ij
6 long-range interaction is attractive

whatever types of monomers interact. The monomer-specific
prefactorCIIssi ,s jd only controls the depth of the Lennard-
Jones valley,

CIIssi,s jd = H+ 1, si,s j = A,

+ 1/2, si,s j = B or si Þ s j .
J s4d

For technical reasons, we have introduced in both models a
cutoff r ij =0.5 for the Lennard-Jones potentials below which
the potential is hard-core repulsivesi.e., the potential is infi-
nited. For both models, only a few results are given in the
literature. For the first model, these are estimates for the
global energy minima of certain AB sequencesf16g, while
for AB model II, primarily thermodynamic quantities were
determinedf7g. We have performed ELP optimizationsf21g
in order to find deeper-lying energy minima than the values
quoted in the literature and, in particular, multicanonical
samplingf18,19g for enabling us to focus on thermodynamic
properties of the sequences given in Ref.f7g.

III. METHODS

In this section, we describe the computational sampling
methods and the update procedure we applied to obtain re-
sults for off-lattice AB heteropolymers.

A. Energy-landscape paving optimization procedure

In order to locate global energy minima of a complex
system, it is often useful to apply specially biased algorithms
that only serve this purpose. We used the energy landscape
paving sELPd minimizer f21g to find global energy minima
of the sequences under consideration. The ELP minimization
is a Monte Carlo optimization method, where the energy
landscape is locally flattened. This means that if a statex
with energyEsxd is hit, the energy is increased by a “pen-
alty” which itself depends on the histogram of any suitably
chosen order parameter. The simplest choice is the energy

distributionHsEd such that we defineẼt=Et+ f(HsEtd). Thus,

the Boltzmann probability exps−Ẽt /kBTd for a METROPOLIS

update, wherekBT is the thermal energy at the temperatureT,
becomes a function of “time”t. The advantage of the ELP
method is that local energy minima are filled up and the
likelihood of touching again recently visited regions de-
creases. This method has successfully proved to be appli-
cable to find global energy minima in rough energy land-
scapes of proteinsf21,22g. Of course, as a consequence of
the biased sampling, stochastic methods along the line of
ELP violate detailed balance and it is therefore inappropriate
to apply those for uncovering thermodynamic properties of a
statistical system.

B. Multicanonical method

To obtain statistical results, we applied a multicanonical
Monte Carlo algorithm, where the energy distribution is flat-
tened artificially, allowing, in principle, for a random walk of
successive states in energy space. This flattening is control-
lable and therefore reproducible. For this purpose, the
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Boltzmann probability is multiplied by a weight factorWsEd,
which in our case is a function of the energy. Then the
probability for a state with energyE reads pMsEd
=exps−E/kBTdWsEd. In order to obtain a multicanonical or
“flat” distribution, the initially unknown weight function
WsEd has to be determined iteratively: In the beginning, the
weightsWs0dsEd are set to unity for all energies letting the
first run be a usualMETROPOLIS simulation which yields an
estimateHs0dsEd for the canonical distribution. The histo-
gram is used to determine the next guess for the weights; the
simplest update is to calculateWs1dsEd=Hs0dsEd /Ws0dsEd.
Then the next run is performed with probabilitiespM

s1dsEd
=exps−E/kBTdWs1dsEd of states with energyE. The iterative
procedure is continued until the weights are appropriate in a
way that the histogram is “flat.” The introduction of a flat-
ness criterion, for instance, that the fluctuations around the
average value of the histogram are less than 20%, is useful,
but not necessary, if the number of iterations is very large.
After having determined accurate weightsWsEd, they are
kept fixed, and following some thermalization sweeps
a long production run is performed, where statistical
quantities O are obtained multicanonically, kOlM

=ohxjpM(Eshxjd)Oshxjd /ZM with the multicanonical partition
function ZM =ohxjpM(Eshxjd). The canonical statistics is ob-
tained by reweighting the multicanonical to the canonical
distribution, i.e., mean values are computed askOl
=kOW−1lM / kW−1lM.

For the determination of the multicanonical weights, we
performed 200 iterations with at least 105 sweeps each. The
histograms obtained in the iteration runs were accumulated
error-weightedf19g such that the estimation of the weights
was based on increasing statistics and not only on the rela-
tively small number of sweeps per run. In the production
period, 53107 sweeps were generated to have reasonable
statistics for estimating the thermodynamic quantities. Statis-
tical errors are estimated with the standard Jackknife tech-
nique f23,24g.

C. Spherical update mechanism

For updating a conformation, we use the procedure dis-
played in Fig. 1. Since the length of the bonds is fixed
subku=1, k=1, . . . ,N−1d, the si +1dth monomer lies on the

surface of a sphere with radius unity around theith mono-
mer. Therefore, spherical coordinates are the natural choice
for calculating the new position of thesi +1dth monomer on
this sphere. For reasons of efficiency, we do not select any
point on the sphere but restrict the choice to a spherical cap
with maximum opening angle 2umax sthe dark area in Fig. 1d.
Thus, to change the position of thesi +1dth monomer tosi
+1d8, we select the anglesu and w randomly from the re-
spective intervals cosumaxøcosuø1 and 0øwø2p, which
ensure a uniform distribution of thesi +1dth monomer posi-
tions on the associated spherical cap. After updating the po-
sition of the si +1dth monomer, the following monomers in
the chain are simply translated according to the correspond-
ing bond vectors which remain unchanged in this type of
update. Only the bond vector between theith and thesi
+1dth monomers is rotated; all others keep their direction.
This is similar to single spin updates in local-update Monte
Carlo simulations of the classical Heisenberg model with the
difference that in addition to local energy changes, long-
range Lennard-Jones interactions of the monomers, changing
their relative position to each other, have to be computed
anew after the update. In our simulations of the AB models,
we used a very small opening angle, cosumax=0.99, in order
to be able to sample also very narrow and deep valleys in the
landscape of angles.

IV. RESULTS

We applied the multicanonical algorithm primarily to
study thermodynamic properties, e.g., the “phase” behavior
of off-lattice heteropolymers. Before discussing these results,
however, we analyze the capability of multicanonical sam-
pling to find lowest-energy conformations by comparison
with the dedicated minimization algorithm ELP, in particular
the native fold, because the identification of these structures
is not only interesting as a by-product of the simulation.
Rather, since they dominate the low-temperature behavior, it
is necessary that they are generated frequently in the multi-
canonical sampling.

A. Search for global energy minima

In order to be able to investigate the low-temperature be-
havior of AB off-lattice heteropolymers, we first have to as-
sess the capabilities of the multicanonical method to sample
lowest-energy conformations and, in particular, to approach
closely the global energy minimum conformation. In Table I,
we list the Fibonacci sequencesf6g that have already been
studied in Ref.f16g by means of an off-lattice variant of the
improved versionf4g of the celebrated chain-growth algo-
rithm with population control, PERMf25g. In Ref. f16g, first
estimates for the putative ground-state energies of the Fi-
bonacci sequences with 13 to 55 monomers were given for
AB model I f6g in three dimensions. We compare these re-
sults with the respective lowest energies found in our multi-
canonical simulations and with the results obtained with the
minimization algorithm ELPf21g. It turns out that the
ground-state energies found by multicanonical sampling
agree well with what comes out by the ELP minimizer, cf.

FIG. 1. Spherical update of the bond vector between theith and
si +1dth monomer.
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Table II. Another interesting result is that our estimates for
the ground-state energies lie significantly below the energies
quoted in Ref.f16g, obtained with the off-lattice PERM vari-
ant, and our values are even lower than the energies obtained
by PERM and subsequent conjugate-gradient minimization
in the attraction basin. Not unexpectedly, this is particularly
pronounced for the longest chain considered.

We have also performed this test with AB model IIf7g.
Here we can compare our results with minimum energies
listed in Ref. f17g, where the so-called annealing contour
Monte Carlo sACMCd method was applied to these Fi-
bonacci sequences. From Table II, we see that we find with
MUCA and ELP runs lower energies for the sequences with
21, 34, and 55 monomers, while the results for the short
13mer are comparable.

Note that the multicanonical algorithm is not tuned to
give good results in the low-energy sector only. For all se-
quences studied in this work, the same algorithm also
yielded the thermodynamic results to be discussed in the
following section.

In order to check the structural similarities of the lowest-
energy conformations obtained with multicanonical sampling
and those from the ELP optimization runs,XMUCA,ELP

=sx1
MUCA,ELP,x2

MUCA,ELP, . . . ,xN
MUCA,ELPd, we calculated the

root mean square deviationDrms of the respective pairs,

Drms= minÎ 1

N
o
i=1

N

ux̃i
MUCA − x̃i

ELPu2. s5d

Here,x̃i
MUCA,ELP=xi

MUCA,ELP−x0
MUCA,ELP denotes the position

with respect to the respective centers of massx0=o j=1
N x j /N

of the ith monomer of the lowest-energy conformations

found with multicanonical sampling and ELP minimization,
respectively. Obviously,Drms is zero for exactly coinciding
conformations, and the larger the value, the worse the coin-
cidence. The minimization of the sum in Eq.s5d is performed
with respect to a global relative rotation of the two confor-
mations in order to find the best match. For the explicit cal-
culation, we used the exact quaternion-based optimization
procedure described in Ref.f26g.

As an alternative, we introduce here another parameter
that enables us to compare conformations. Instead of per-
forming comparisons of positions, it is much simpler and
less time-consuming to calculate the so-called overlap be-
tween two conformations by comparing their bond and tor-
sion angles. As an extension of the torsion-angle based vari-
ant f27,28g, we define the more general overlap parameter

QsX,X8d =
Nt + Nb − dsX,X8d

Nt + Nb
, s6d

where swith Nt=N−3 andNb=N−2 being the numbers of
torsional anglesFi and bond anglesQi =p−qi, respectivelyd

dsX,X8d =
1

p
So

i=1

Nt

dtsFi,Fi8d + o
i=1

Nb

dbsQi,Qi8dD ,

dtsFi,Fi8d = minsuFi − Fi8u,2p − uFi − Fi8ud,

dbsQi,Qi8d = uQi − Qi8u.

Since −pøFi øp and 0øQi øp, it follows immediately
that 0ødt,bøp. The overlap is unity if all angles of the
conformationsX andX8 coincide, otherwise 0øQ,1.

TABLE I. The four Fibonacci sequences, for which we analyzed the ground states in both models.

N sequence

13 AB2AB2ABAB 2AB

21 BABAB2ABAB 2AB2ABAB 2AB

34 AB2AB2ABAB 2AB2ABAB 2ABAB 2AB2ABAB 2AB

55 BABAB2ABAB 2AB2ABAB 2ABAB 2AB2ABAB 2AB2ABAB 2ABAB 2AB2ABAB 2AB

TABLE II. Estimates for global energy minima obtained with multicanonicalsMUCAd sampling and ELP
minimizationf21g for the Fibonacci sequences of Table I using both models. The values for AB model I are
compared with results quoted in Ref.f16g employing off-lattice PERM and after subsequent conjugate-
gradient minimizationsPERM+d. Minimum energies found with MUCA and ELP for AB model II are
compared with the lowest energies listed in Ref.f17g, obtained with annealing contour Monte CarlosACMCd
and improved byMETROPOLISquenchingsACMC+d.

N

AB model I AB model II

Emin
MUCA Emin

ELP Emin
PERM f16g Emin

PERM+ f16g Emin
MUCA Emin

ELP Emin
ACMC f17g Emin

ACMC+ f17g

13 −4.967 −4.967 −3.973 −4.962 −26.496 −26.498 −26.363 −26.507

21 −12.296 −12.316 −7.686 −11.524 −52.915 −52.917 −50.860 −51.718

34 −25.321 −25.476 −12.860 −21.568 −97.273 −97.261 −92.746 −94.043

55 −41.502 −42.428 −20.107 −32.884 −169.654 −172.696 −149.481 −154.505
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Note that both models are energetically invariant under
reflection symmetry. This means that also the landscape of
the free energy as a function of the bond and torsion angles is
trivially symmetric with respect to the torsional degrees of
freedom. Consequently, unless exceptional cases, there is
thus a trivial twofold energetic degeneracy of the global en-
ergy minimum, but the respective root mean square deviation
and overlap parameter are different for the associated con-
formations. The values quoted throughout the paper were
obtained by comparing the lowest-energy conformation
found with both reference conformations and quoting the
value indicating better coincidencesi.e., lower Drms and
higher Qd. This obvious ambiguity can be circumvented by
adding a symmetry-breaking term to the model that disfa-
vors, e.g., left-handed helicityf15g.

In Table III, we list the values of both parameters for the
lowest-energy conformations found for the Fibonacci se-
quences of Table I. We see that for the shortest sequences
swith 13 and 21 monomersd, the coincidence of the lowest-
energy structures found is extremely good and we are pretty
sure that we have found the ground states. In the case of the
34mer, modeled with AB model I, both structures also coin-

cide still very well and it seems that the attraction valley
towards the ground state was found within the multicanoni-
cal simulation. In the simulation of the 34mer with model II,
the situation is different. As seen from Table II, we found
surprisingly the marginally lower energy value in the multi-
canonical simulation, but the associated conformation differs
significantly from that identified with ELP. It is likely that
both conformations do not belong to the same attraction ba-
sin and it is a future task to reveal whether this is a first
indication of metastability. The situation is even more com-
plex for the 55mer. As the parameters tell us, the lowest-
energy conformations identified by multicanonical simula-
tion and ELP minimization show significant structural
differences in both models.

Answering the question of metastability is strongly re-
lated with the problem of identifying the folding path or an
appropriate parametrization of the free energy landscape.
Due to hidden barriers, it is practically impossible that ordi-
nary stand-alone multicanonical sampling will be able to
achieve this for such relatively long sequences. Note that, in
our model I multicanonical simulation for the 55mer, we
precisely sampled the density of states over120 orders of
magnitude, i.e., the probability for finding randomly the
lowest-energy conformationsthat we identified with multica-
nonical samplingd in the conformational space is even less
than 10−120! In Fig. 2, we show two views of the global
energy minimum conformation with energyEmin<−42.4 for
the 55mer found by applying the ELP minimizer to AB
model I. The hydrophobic core is tubelike and the chain
forms a helical structureswhich is here an intrinsic property
of the model and is not due to hydrogen-bonding obviously
being not supplied by the modeld.

B. Thermodynamic properties of heteropolymers

Our primary interest of this study is focused on thermo-
dynamic properties of heteropolymers, in particular on con-

TABLE III. Root mean square deviationsDrms and overlapQ of
lowest-energy conformations found with multicanonical sampling
and with the ELP optimizer for the Fibonacci sequences of lengthN
given in Table I.

N

AB model I AB model II

Drms Q Drms Q

13 0.015 0.994 0.006 0.998

21 0.025 0.992 0.009 0.997

34 0.162 0.979 1.412 0.840

55 2.271 0.766 1.904 0.857

FIG. 2. sColor onlined Sidesleftd and top view
srightd of the global energy minimum conforma-
tion of the 55mersAB model Id found with the
ELP minimization algorithmsdark spheres: hy-
drophobic monomers—A, light spheres:
hydrophilic—Bd.

MULTICANONICAL STUDY OF COARSE-GRAINED OFF-… PHYSICAL REVIEW E 71, 031906s2005d

031906-5



formational transitions heteropolymers pass from random
coils to native conformations with compact hydrophobic
core. We investigated six heteropolymers with 20 monomers
as studied by Irbäcket al. in Ref. f7g with AB model II. The
associated sequences are listed in Table IV. Notice that the
hydrophobicitys=no. A monomers in the sequenced is iden-
tical s=14d for the first four sequences 20.1–20.4, while se-
quences 20.5 and 20.6 possess only 10 hydrophobic residues.
In Ref. f7g, the thermodynamic behavior of these sequences
was studied by means of the simulated tempering method.
For revealing low-temperature properties, an additional
quenching procedure was performed. In our simulations, we
used multicanonical sampling over the entire range of tem-
peratures without any additional quenching.

1. Multicanonical sampling of heteropolymers
with 20 monomers

As described in Sec. IV A, the multicanonical method is
capable of finding even the lowest-energy states without any
biasing or quenching. We proved this also for the 20mers of
Table IV by comparing once more with the ELP minimiza-
tion method. In Tables V and VI, we present the estimates of
the global energy minima in both models we found in these
simulations. Once more, the values obtained with multica-
nonical sampling agree pretty well with those from ELP
minimization. The respective structural coincidences are
confirmed by the values for the root mean square deviation

and the overlap also being given in these tables. In order to
identify conformational transitions, we calculated the spe-
cific heat
CVsTd=skE2l−kEl2d /kBT2 with kEkl=oEgsEdEk exps−E/
kBTd /oEgsEdexps−E/kBTd from the density of statesgsEd.
The density of states was foundsup to an unimportant over-
all normalization constantd by reweighting the multicanoni-
cal energy distribution obtained with multicanonical sam-
pling to the canonical distributionPcan,TsEd at infinite
temperaturesb;1/kBT=0d, sincegsEd=Pcan,̀ sEd. Figure 3
shows, as an example, the density of statesgsEd snormalized
to unityd and the multicanonical histogram for sequence 20.1
simulated with AB model II. We sampled conformations with
energy values lying in the intervalf−60.0,50.0g, discretized
in bins of size 0.01, and required the multicanonical histo-
gram to be flat for at least 70% of the core of this interval,
i.e., within the energy rangef−43.5,33.5g. Within and partly
beyond this region, we achieved almost perfect flatness, i.e.,
the ratios between the mean and maximal histogram value,
Hmean/Hmax, as well as the ratio between minimum and
mean,Hmin/Hmean, exceeded 0.9. As a consequence of this
high-accurate sampling of the energy space, we were able to
calculate the density of states very precisely over about 70
orders of magnitude. The energy scale is, of course, bounded
from below by the ground-state energyEmin, and the fact that
we closely approximated this value can be seen by the strong
decrease of the logarithm of the density of states for the
lowest energies. This strong decrease of the density of states
curves near the ground-state energy is common to all short
heteropolymer sequences studied. It reflects the isolated
character of the ground state within the energy landscape.

We used the density of states to calculate the specific
heats of the 20mers in both models. The results are shown in
Fig. 4. A first observation is that the specific heats obtained
from simulations of AB model I show up two distinct peaks
with the low-temperature peak located atTC

s1d and the high-
temperature peak atTC

s2d compiled in Table V. The AB model
II, on the other hand, favors only one pronounced peak atTC
with a long-range high-temperature tail. In Table VI, we
compare our peak temperaturesTC with the values given in
Ref. f7g. They are in good correspondence.

TABLE IV. Sequences used in the study of thermodynamic
properties of heteropolymers as introduced in Ref.f7g. The number
of hydrophobic monomers is denoted by no.A.

No. sequence no.A

20.1 BA6BA4BA2BA2B2 14

20.2 BA2BA4BABA 2BA5B 14

20.3 A4B2A4BA2BA3B2A 14

20.4 A4BA2BABA 2B2A3BA2 14

20.5 BA2B2A3B3ABABA 2BAB 10

20.6 A3B2AB2ABAB 2ABABABA 10

TABLE V. Minimal energies and temperatures of the maximum specific heats for the six 20mers of Table
IV using AB model I as obtained by multicanonical sampling. The global maximum of the respective specific
heats is indicated by a stars!d. For comparison, we have also given the globally minimal energies found from
minimization with ELP as well as the respective root mean square deviationDrms and the structural overlap
parameterQ of the corresponding minimum energy conformations.

No. Emin
MUCA Emin

ELP Drms Q TC
s1d TC

s2d

20.1 −33.766 −33.810 0.048 0.954 0.27s3d! 0.61s5d
20.2 −33.920 −33.926 0.015 0.992 0.26s4d! 0.69s4d
20.3 −33.582 −33.578 0.025 0.990 0.25s3d! 0.69s3d
20.4 −34.496 −34.498 0.030 0.985 0.26s3d 0.66s2d!

20.5 −19.647 −19.653 0.017 0.988 0.15s2d 0.41s1d!

20.6 −19.322 −19.326 0.047 0.989 0.15s2da 0.35s1d!

aSpecific heat of sequence 20.6 possesses only one maximum atTC
s2d<0.35. The value given forTC

s1d belongs
to the pronounced turning point.
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The sequences considered here are very short and the na-
tive fold contains a single hydrophobic core. Interpreting the
curves for the specific heats in Fig. 4 in terms of conforma-
tional transitions, we conclude that the heteropolymers simu-
lated with AB model I tend to form, within the temperature
region TC

s1d,T,TC
s2d, intermediate statessoften also called

trapsd comparable with globules in the collapsed phase of
polymers. For sequences 20.5 and, in particular, 20.6, the
smaller number of hydrophobic monomers causes a much
sharper transition atTC

s2d than atTC
s1d swhere, in fact, the spe-

cific heat of sequence 20.6 possesses only a turning pointd.
The pronounced transition nearTC

s2d is connected with a dra-
matic change of the radius of gyration, as can be seen later in
Fig. 7, indicating the collapse from stretched to highly com-
pact conformations with decreasing temperature. The confor-
mations dominant for high temperaturesT.TC

s2d are random
coils, while for temperaturesT,TC

s1d primarily conforma-
tions with compact hydrophobic core are favored. The inter-
mediary globular “phase” is not at all present for the exem-
plified sequences when modeled with AB model II, where
only the latter two “phases” can be distinguished. We have to
remark that what we denote as “phases” are not phases in the
strict thermodynamic sense, since for heteropolymers of the
type we used in this studysthis means we are not focused on
sequences that have special symmetries, as, for example
diblock copolymers AnBmd, a thermodynamic limit isin
principle nonsensical. Therefore conformational transitions
of heteropolymers are not true phase transitions. As a conse-

quence, fluctuating quantities, for example the derivatives
with respect to the temperature of the mean radius of gyra-
tion, dkRgyrl /dT, and the mean end-to-end distance,
dkReel /dT, do not indicate conformational activity at the
same temperatures, as well as when compared with the spe-
cific heat.

We conclude that conformational transitions of het-
eropolymers happen within a certain interval of tempera-
tures, not at a fixed critical temperature. This is a typical
finite-size effect and, for this reason, the peak temperatures
TC

s1d and TC
s2d sfor model Id and TC sfor model IId defined

above for the specific heat are only representatives for the
entire intervals. In order to make this more explicit, we con-
sider sequence 20.3 in more detail. In Figs. 5sad sfor AB
model Id and 5sbd sAB model IId, we compare the energetic
fluctuationssin form of the specific heatCVd with the respec-
tive fluctuations of radius of gyration and end-to-end dis-
tance, dkRee,gyrl /dT=skRee,gyrEl−kRee,gyrlkEld /kBT2. Obvi-
ously, the temperatures with maximal fluctuations are not
identical and the shaded areas are spanned over the tempera-
ture intervals, where the strongest activity is expected. We
observe for this example that in model IfFig. 5sadg, two such
centers of activity can be separated, linked by an intermedi-
ary interval of globular traps. In fact, there is a minimum of
the specific heat atTC

min betweenTC
s1d andTC

s2d, but the height
of the barrier atTC

s2d is rather small and the globules are not
very stable. From Fig. 5sbd, we conclude for this sequence
that in model II no peculiar intermediary conformations oc-
cur, and the folding of the heteropolymer is a one-step pro-
cess.

It is widely believed and experimentally consolidated that
realistic short single-domain proteins are usually two-state
foldersf13g. This means, there is only one folding transition
and the protein is either in the folded or an unfoldedsor
denaturedd state. Therefore, AB model II could indeed serve
as a simple effective model for two-state heteropolymers.
The main difference between the two models under study is
that model II contains an implicit torsional energy which is
not present in model I. This is in correspondence with more
knowledge-based Gō-like models with explicit torsional en-
ergy contributions for the study of small proteins with known
typical two-state folding-unfolding kineticsf14g.

Nonetheless, there are also examples of small peptides
exhibiting two clear peaks in the specific heat. In Ref.f29g,
the artificial peptide Ala10Gly5Ala10 was studied in detail and
it turned out that two transitions separate the ground-state

TABLE VI. Same as Table V, but using AB model II. For comparison, the specific-heat maximum
locationsTs, estimated in Ref.f7g, are also given.

No. Emin
MUCA Emin

ELP Drms Q TC Ts f7g

20.1 −58.306 −58.317 0.006 0.999 0.35s4d 0.36

20.2 −58.880 −58.914 0.009 0.997 0.33s4d 0.32

20.3 −59.293 −59.338 0.010 0.997 0.29s3d 0.30

20.4 −59.068 −59.079 0.007 0.998 0.27s4d 0.27

20.5 −51.525 −51.566 0.012 0.998 0.33s5d 0.33

20.6 −53.359 −53.417 0.014 0.996 0.25s2d 0.26

FIG. 3. Density of statesgsEd snormalized to unity over the
plotted energy intervald and flat multicanonical histogramHsEd for
sequence 20.1sAB model IId.
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conformation and random coil states. One is the alanine me-
diated helix-coil transition and the second the formation of a
glycine hairpin that leads to a more compact conformation.

2. Comparison with a homopolymer

It is also interesting to compare the thermodynamic be-
havior of the heteropolymers with 20 monomers as described
in the previous section with the homopolymer consisting of
20 A-type monomers, A20. This is the consequent off-lattice
generalization of self-avoiding interacting walks on the lat-
tice sISAWd that have been extensively studied over the past
decades. In contrast to heteropolymers, where, because of the
associated sequence of finite length, a thermodynamic limit
does not exist, homopolymers display a characteristic tricriti-
cal second-order phase transition between random coil con-
formations s“good solvent”d and compact globuless“poor
solvent”d, the so-calledQ transitionf30g.

In this study, our interest was not focused on theQ tran-
sition but more on the direct comparison of the finite-size
homopolymer and the different heteropolymer sequences. In

Fig. 6, we have plotted the specific heats of this homopoly-
mer for both models under study. The first observation is
that, independent of the model, the collapse from random
coils shigh temperaturesd to globular conformationsslow
temperaturesd happens, roughly, in one step. There is only
one energetic barrier, as indicated by the single peak of the
specific heats.

In Fig. 7, we have plotted for both models the mean radii
of gyration as a function of the temperature for the sequences
from Table IV in comparison with the homopolymer. For all
temperatures in the interval plotted, the homopolymer obvi-
ously takes more compact conformations than the het-
eropolymers, since its mean radius of gyration is always
smaller. This different behavior is an indication for a rear-
rangement of the monomers that is particular for heteropoly-
mers: the formation of the hydrophobic core surrounded by
the hydrophilic monomers. Since the homopolymer trivially
also takes in the ground state a hydrophobic core conforma-
tion ssince it only consists of hydrophobic monomersd, which
is obviously more compact than the complete conformations

FIG. 4. Specific heats of the 20mers listed in Table IV.
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of the heteropolymers, we conclude that hydrophobic mono-
mers weaken the compactness of low-temperature conforma-
tions. Thus, homopolymers and heteropolymers show a dif-
ferent “phase” behavior in the dense phase. Homopolymers
fold into globular conformations which are hydrophobic
cores with maximum number of hydrophobic contacts. Het-
eropolymers also form very compact hydrophobic cores
which are, of course, smaller than that of the homopolymer
due to the smaller number of hydrophobic monomers in the
sequence. In total, however, heteropolymers are less compact
than homopolymers because the hydrophilic monomers are
pushed off the core and arrange themselves in a shell around
the hydrophobic core. For model I, we also see in Fig. 7sad a
clear tendency that the mean radius of gyration and thus the
compactness strongly depends on the hydrophobicity of the
sequence, i.e., the number of hydrophobic monomers. The
curves for sequences 20.5 and 20.6slong-dashed curvesd

with 10 A’s in the sequence can clearly be separated from the
other heteropolymers in the studyswith 14 hydrophobic
monomersd and the homopolymer. This supports the assump-
tion that for heteropolymers, the formation of a hydrophobic
core is more favorable than the folding into an entire maxi-
mally compact conformation.

V. SUMMARY

We have investigated two coarse-grained off-lattice het-
eropolymer models of AB type that mainly differ in the mod-
eling of energetic bending and torsional barriers. While the
original AB modelsmodel Id f6g, which was first introduced
for two-dimensional heteropolymers, treats the polymer as a
stiff chain of hydrophobicsAd and hydrophilicsBd monomers
without considering torsional barriers, model II favors bend-
ing, and an additional contribution containing also torsional
energy is regardedf7g. Another noticeable property of model
I is that contacts betweenA and B monomers are always
suppressed, in contrast to model II.

We studied these models by means of the multicanonical
Monte Carlo method. In a first test, we checked the ability of
the algorithm to find lowest-energy conformations. The re-
sults were compared with minimum energy values obtained
with the energy-landscape pavingsELPd algorithm by mea-
suring the root mean square deviation and a generalized
overlap parameter that in addition to torsional degrees of
freedom also allows the comparison of bond angles. We
found very good coincidences for minimum energies and as-
sociated conformations for all sequences under study, with

FIG. 5. Fluctuations of energysspecific heatd, radius of gyration,
and end-to-end distance for sequence 20.3 from simulations withsad
AB model I andsbd AB model II.

FIG. 6. Specific heats of the homopolymerA20 with 20 mono-
mers for both models.

FIG. 7. Mean radius of gyrationkRgyrl as a function of the
temperatureT for the sequences 20.1–20.4ssolid curvesd, 20.5, 20.6
slong dashesd, and the homopolymerA20 sshort-dashed curved for
sad AB model I andsbd AB model II.
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the exception of the 34mer in model II and the 55mer in both
models. In the latter case, the random walk in the energy
space, which is considered as the system parameter, in not
sufficient to find the global energy minimum, and a more
detailed study of the origin of the free energy barriers, i.e.,
the identification of an appropriate order parameter, is re-
quired. Nonetheless, for all sequences we obtained much
lower values for the respective putative global-energy mini-
mum than formerly quoted in the literature using an off-
lattice chain-growth algorithmf16g and also considerably
lower values than with the annealing contour Monte Carlo
sACMCd methodf17g.

Our main objective was the comparison of the conforma-
tional transitions in both models. We primarily studied ener-
getic and conformational fluctuations of several sequences
with 20 monomers and found that in model I there is a gen-
eral tendency that, independent of the sequence, the folding
from random coilsshigh temperaturesd to lowest-energy con-
formations is a two-step process and the folding is slowed
down by weakly stable intermediary conformations. This is
different in model II, where traps are avoided and the het-
eropolymers exhibit a two-state folding behavior. This is
squalitativelyd in correspondence with the observation that
many short peptides seem to possess a rather smooth free-
energy landscape, where only a single barrier separates un-
folded states and native foldf13g. Most of the previous in-
vestigations in this regard were performed by means of a
kind of knowledge-based potentials, where topological prop-
ertiesse.g., the native contactsd of the folded state explicitly
enter. These potentials allow then quantitative studies of the
dynamics of the folding process for the specified protein. In
our study, however, we were more interested in the influence
of basic principles on the folding transition, and therefore a
quantitative comparison with the folding kinetics of realistic
proteins is not appropriate at this level of abstraction.

In order to reveal folding properties specific to het-
eropolymers, we also compared with a purely hydrophobic
polymer. Our results for the homopolymer are in accordance
with the widely accepted view of the formation of compact
globular conformations below theQ transition temperature.

The globules, which are in our interpretation only compact
hydrophobic cores with maximum number of hydrophobic
contacts, minimize the surface exposed to thesimplicitd sol-
vent. This behavior was observed for both models which
differ, for the purely hydrophobic homopolymer, only in lo-
cal covalent bond properties, but not in the nonbonded inter-
action between the monomers. Since heteropolymers with
the same chain length contain less hydrophobic monomers,
the hydrophobic core is, although still very dense, smaller
and the hydrophilic monomers form a shell surrounding the
core and screen it from the solvent. This, in consequence,
leads to a native conformation that qualitatively differs from
the typical globules known from polymers. In models allow-
ing for intermediary statesssuch as model I in our studyd, the
globular “phase” is actually present for heteropolymers, too,
and is dominant in a temperature interval between the
hydrophobic-core phase at very low temperatures and the
random coils that are present at high temperatures.

In conclusion, simple, coarse-grained off-lattice het-
eropolymer models without specific or knowledge-based pa-
rametrization are attractive as they allow for the study of
how basic energetic contributions, bonded and nonbonded, in
the model are related to and influence the conformational
folding process of heteropolymers, respectively. Herein, the
main focus is on the study of general properties of these
systems. In perspective, such models, after refinements with
respect to a few specific interatomic interactionsse.g., hydro-
gen bondsd, will be suitable for studying heteropolymers of a
few hundreds of monomers even quantitatively without the
requirement of a prior knowledge of the final fold.
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