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We present a temperature-independent Monte Carlo method for the determination of the density of
states of lattice proteins that combines the fast ground-state search strategy of the new pruned-enriched
Rosenbluth chain-growth method and multicanonical reweighting for sampling the complete energy
space. Since the density of states contains all energetic information of a statistical system, we can
directly calculate the mean energy, specific heat, Helmholtz free energy, and entropy for all tempera-
tures. We apply this method to lattice proteins consisting of hydrophobic and polar monomers, and for
the examples of sequences considered, we identify the transitions between native, globule, and random
coil states. Since no special properties of heteropolymers are involved in this algorithm, the method

applies to polymer models as well.
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The simulation of protein folding is extremely chal-
lenging, since the interactions between the constituents of
the macromolecule and the influence of the environment
require sophisticated models. One of the most essential
aspects in the description of the folding process is the
formation of a compact core of hydrophobic amino acid
residues (H) which is screened from water by hydrophilic
or polar residues (P). This characteristic property of
realistic proteins can qualitatively be studied with simple
lattice models such as the HP model [1]. By taking into
account the attractive interaction between hydrophobic
monomers only, the energy of a lattice protein with cer-
tain conformation and sequence is calculated as follows:

E=- Y o0 1)

(i,j<i=1)

where (i, j < i — 1) symbolizes that the sum is taken only
over nearest lattice neighbors being nonadjacent along the
self-avoiding chain of monomers. If the ith monomer is
hydrophobic, o; = 1, while for a polar monomer o; = 0.

As it is one of the main goals in off-lattice simulations
to find low-lying energy states within a rough free energy
landscape, good lattice folders are expected to have
ground states with low degeneracy. Much work has been
done on identifying designing sequences with such native
states. Ground-state search strategies for lattice models
range, for example, from enumeration [2,3] over hydro-
phobic core construction [4,5] and contact interaction [6]
to chain-growth methods [7-10]. Low-lying energy states
for HP sequences with up to 136 monomers were identi-
fied with these methods.

In contrast, there were only a few attempts to study the
thermodynamic properties of the HP model in three
dimensions [11]. The main reason is that conventional
Monte Carlo methods like Metropolis sampling, but
also more sophisticated methods like simulated [12] and
parallel [13] tempering as well as histogram reweighting
Monte Carlo algorithms such as multicanonical sampling
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PACS numbers: 87.15.Aa, 05.10.Ln, 87.15.Cc

[14] or the Wang-Landau method [15] expose problems in
tackling ‘““hidden” conformational barriers in combina-
tion with chain update moves which usually become
inefficient at low temperatures, where many attempted
moves are rejected due to the self-avoidance constraint.
One possibility to update the conformation is to apply
move sets. Widely used sets usually consist of operations
that change a single bond (end flips), two bonds (corner
flips), three (crankshaft) or even more bonds, and pivot
rotations.

Alternatively, it is possible to let the polymer grow; i.e.,
the nth monomer is placed at a randomly chosen next-
neighbor site of the (n — 1)th monomer (n = N with N
being the total length of the polymer). If this new site is
already occupied, the entire chain would have to be dis-
carded to obtain correct statistics. This simple chain
growth is not efficient, since the number of discarded
chains grows exponentially with the chain length.
Rosenbluth chain growth [16] avoids occupied neighbors
at the expense of a bias, since the probability of such a
chain is p, ~ ([Tf—, m;)~!, where m, is the number of free
lattice sites to place the /th monomer. This bias is bal-
anced out by assigning each conformation a Rosenbluth
weight WR ~ p-1. Chain-growth methods with popula-
tion control such as PERM (pruned-enriched Rosenbluth
method) [8,9] and its recent modifications nPERM; [10]
improve this procedure considerably by utilizing the
counterbalance between Rosenbluth weight and
Boltzmann probability. The weight factor WR is therefore
replaced by

n
WEERM - l_[ mle_(El_El—l)/kBT’ 2)
=2
2=n=N (E =0 WM =)

where E; is the energy of the partial chain X; =

© 2003 The American Physical Society 208105-1



VOLUME 91, NUMBER 20

PHYSICAL REVIEW LETTERS

week ending
14 NOVEMBER 2003

(xy, ..., x;) created with Rosenbluth chain growth and T
is the temperature.

To explain the main ideas, we shall confine ourselves
for the moment to the original PERM formulation [8],
where the sample of chains of length n is enriched by
making identical copies once WFERM is bigger than a
certain threshold value W, . In this case, the weight
WPERM s divided among the clones. For WFPERM being
smaller than a lower bound W;, the chain is pruned with
probability 1/2 and the weight of a surviving chain is
doubled. The partition sum is proportional to the sum of
weight factors (2) for the conformations X, , of length n
sampled at “time” ¢,

Z, ~ > WIERM(X,, ). 3)

The PERM algorithms are very successful as ground-
state searchers and the canonical distribution at a given
temperature 7 is well reproduced over some orders of
magnitude, but states that are highly suppressed at this
temperature are not hit in a reasonable time. Standard
reweighting techniques are applicable only in a small
region around 7. Thus, recording temperature-dependent
quantities such as the specific heat requires simulations at
different temperatures.

As the partition sum of a polymer or a heteropolymer
with a fixed sequence can be expressed in terms
of the density (or degeneracy) of states g(E), Z =
Z{X}e_[”E({X}) = Y .g(E;)e PE (B = 1/kgT), all energetic
quantities such as the mean energy (E)T) =
—(8/9B) InZ, specific heat C\/(T) = ((E*) — (E)*)/kpT?,
Helmholtz free energy F(T) = —kzTInZ, and entropy
S(T) = ((E) — F)/T can directly be calculated if g(E) is
known. These quantities are of particular interest, since
they are indicators of temperature-dependent conforma-
tional transitions.

Our method allows within one simulation the direct
sampling of the density of states g(E) over the entire
range of the energy space with probabilities ranging
over many orders of magnitude, due to combining the
advantages of energetic flat histogram reweighting and
chain growth. The flat distribution can then be reweighted
to any desired temperature. Rare, i.e., low-lying energy
states are also hit, and therefore the low-temperature
behavior of the polymer can be reproduced well, in par-
ticular, the low-temperature transition between compact
globules and ground states of lattice proteins with low
ground-state degeneracy. Using the HP model, we applied
the method to lattice proteins with more than 40 mono-
mers and different ground-state degeneracies and found
for examples with low ground-state degeneracy pro-
nounced low-temperature peaks in the specific heat in-
dicating ground-state—globule transitions. Since our
method is completely general, it is also applicable to other
polymer models.
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In order to achieve a flat distribution of energetic states
using chain growth, we introduce into the partition sum
(3) an additional weight Wi?(E, (X,,)) that depends on the
energy E, of a given conformation X,

Z, ~ > WEERM(X, YWIR(E,, (X, HWE(E, (X, )] 7"

4

Since the histograms at all intermediate stages of the
chain-growth process are required to be flat, the new
reweighting factor is rewritten in product form and we
have

Wiat(E))
Wi (E)-y)
%)

with Wit = 1. The PERM weight factors (2) lead to a
canonical distribution P‘}la“'T(E,,) which shall be deformed
fa.T(E ) over the entire energy

n
Z, ~ > WI(E,)] ] meE-E-0/ksT
! =2

to a constant distribution P,
space. This requires the weights W& to be proportional
to the inverse of the canonical distribution, Wil ~
1/P$™T(E,), a condition that can obviously be satisfied
only iteratively [14]. As we are mainly interested in the
density of states, which is proportional to the canonical
probability distribution at B8 = 1/kzT =0, g,(E,) ~
P3™*(E,), it is convenient (but inessential) to choose
B = 0 in the multicanonical formulation. Consequently,
Wrglat ~ l/gn(En) and Zn -~ Ztgn(En(Xn,t))Wn(Xn,t)- Here
we have introduced the combined weight

n -1
_ g '(Ep)
W,(X,) = l_[mlT)y
1=2 81-1\L-1

which can also be written
Wn—lmnngl(En)/g;—ll(En—l)-

The most important technical part of the algorithm is
the determination of the weights Wf since they are
directly connected with the desired densities of states
gn(E). As the weights are completely unknown in the
beginning, we evaluate them iteratively, starting from
unity, wiaO(E) = 1 (2 = n < N) for all values of E.
This means that the zeroth iteration is a pure chain-
growth run at infinite temperature without reweighting.

Each time, a chain of length n with energy E is created,
the corresponding histogram value H,(E) is increased by
the weight W,, of the chain. This weight is used to decide
about enriching the sample (if W, = W,), pruning
(W, = Wy, or simply continuing the chain (if W <
W, <W.). For updating the threshold values we
apply similar rules as in Ref [10], ie, W, =
C(z )z (¢, /c))? and W, = 0.2W,”, where Zilat =
> W, is an estimate for the partition function associated
with the flat distribution H,(E). The number of created
chains having length n is denoted by c¢,,. The parameter C
controls the pruning-enrichment statistics.

Wi=g =1 (6

recursively, W, =
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FIG. 1. Specific heat for four 14mers with different sequences

from exact enumeration. Only the 14mer with the native ground
state shows a pronounced low-temperature peak indicating a
transition between ground states and globules. We have not
included the simulation results because they are indistinguish-
able on the scale of this figure.

Once a certain number of chains with total length N
has been produced, the iteration is finished and
the new weights w0 (E) are determined by calculating
wieO () = win@=V(g) /g (E),2 < n = N. Before the
next iteration starts, the histogram is reset to H,(E) = 0,
and the threshold values are initialized to W, = oo and
W = 0. The weight iteration is stopped when H,(E)
looks “flat,” i.e., once it has approximately the same
value for all energies. In our actual implementation we
employed a suitably adapted multicanonical variant of
nPERMis (new PERM with importance sampling) [10].
For the results presented here, 10-20 iterations were
found to be sufficient to determine the multicanonical
weight factors with reasonable accuracy. The number of
conformations of total length N created in each iteration
was chosen to be of order 10°-10°, except in the measur-
ing run, where we accumulated statistics of up to 103
chains. We adjusted the pruning/enrichment control pa-
rameter to C = 0.01 such that less than 20% of the chains
were pruned or enriched. On average 10 chains of total
length N were generated per tour with this choice. Still
more important for efficiency, in almost all started tours
at least one such chain was created. The technical details
of our implementation will be described elsewhere [17].

As a first example and for validation of the new algo-
rithm, we discuss general properties of heteropolymers
exemplified for 14mers. These results can still be com-
pared with data obtained from exact enumeration. Among
all 2'4 sequences for 14mers there is only one designing
sequence, i.e., a sequence to which a unique ground state
belongs (up to a reflection symmetry). We compared
thermodynamic properties of four 14mers with different
sequences but the same hydrophobicity (ny = 8) and
identical lowest energy (E;, = —8). Figure 1 shows the
specific heat for the different 14mers. With a statistics of
10% chains in the production run of our algorithm, our
curves cannot be distinguished from the exact ones at this
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FIG. 2. Density of states of the 42mer, normalized to unity.

level of resolution. A pronounced low-temperature peak
that indicates the transition between ground states and
compact globule states is observed only for the 14mer
with the native ground state, 14.1. These results show
qualitatively how the conformational transitions depend
on the ground-state degeneracy of the polymer. For the
sequences 14.2 and 14.3 it is twice that of the designing
sequence, and 14.4 is even 4 times higher degenerate.
The next example to which we applied our multicanon-
ical chain-growth algorithm is a 42mer with the sequence
PH, PHPH, PHPHP, H;PHPH, PHPH;P,HPHPH,PHPH, P
whose ground-state properties have similarities with the
parallel B-helix of pectate lyase C [18]. The lattice model
with only fourfold ground-state degeneracy has a ground-
state energy of E.;, = —34. In order to investigate the
low-temperature behavior of this system it is necessary
that the algorithm correctly samples the low-energy
states and that it also hits the ground states. The measured
density of states ranges over about 25 orders of magnitude
and covers the entire energy space [—34, 0], as shown in
Fig. 2. From the density of states it is straightforward to
compute the specific heat and mean energy shown in Fig. 3
as well as the free energy and entropy [17]. Writing out the
raw energies and weights from the simulation, we ana-
lyzed the data and calculated the statistical error by
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FIG. 3 (color online). Specific heat and mean energy as
functions of the temperature for the 42mer. The ground-
state—globule and the globule—random coil transition occurs
at Ty = 0.27 and T, = 0.53, respectively.
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FIG. 4. Specific heat and mean energy for the two 48mers
with different ground-state properties. The low-temperature
conformational transition is more pronounced for the example
48.1 with lower ground-state degeneracy.

means of the jackknife blocking method. Because of the
low degeneracy of the ground states, the transition be-
tween native states and globule states is very pronounced
and occurs at a temperature 7, = 0.27. The globule—
random coil transition at 7| = 0.53, on the other hand,
is rather weak. This confirms the results of Ref. [11]. We
also compared with results obtained from multihisto-
gram reweighting of independent nPERMis runs at five
different temperatures with overlapping canonical distri-
butions. Consistent results were found, but the patching
approach is much more cumbersome and turned out to be
less accurate than our method [17].

Finally, similar to the consideration of the 14mers,
we compare two 48mers with different ground-state prop-
erties. The first one, which we denote by 48.1, has
the sequence PHPH, PH4P,HPHP,HPH, PHPHP;HP,H, P,
H,P,HPHP,HP and its ground state with the energy —34
is approximately 5000-fold degenerate. The ground
state of the other 48mer (48.2) with the sequence
HPH2P2H4PH3P2H2P2HPH3PHPH2P2H2P3HP8H2 has a
much higher degeneracy of order 10° and possesses the
energy —32 [5,17]. As is demonstrated in Fig. 4, we also
observe for these longer chains that the conformational
transition between the lowest-energy states and the glob-
ules is stronger the lower the ground-state degeneracy
is. Further applications to longer HP sequences with
around 100 monomers also perform well [17] and gave,
for instance, a new upper bound (E;, = —56) for the
ground-state energy of a designed 103mer [6,10].

In conclusion, we have developed a multicanonical
chain-growth algorithm that allows the simulation of
the thermodynamic properties of polymers and hetero-
polymers. It is based on energetic flat histogram sampling
of the density of states in combination with PERM chain
growth. For heteropolymers with more than 40 monomers
accurate densities of states over more than 25 orders of
magnitude were obtained that cover the entire energy
range, thus yielding very good results for all derived
energetic quantities such as mean energy, specific heat,
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free energy, and entropy. In particular, this enabled us to
determine the low-temperature behavior of the systems
with high precision and to observe pronounced low-tem-
perature peaks of the specific heat for lattice proteins with
low ground-state degeneracy indicating the ground-state—
globule transition.
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