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Secondary-structure phase formation for
semiflexible polymers by bifurcation in
hyperphase space

Dilimulati Aierken *abc and Michael Bachmann *c

Canonical analysis has long been the primary analysis method for studies of phase transitions. However,

this approach is not sensitive enough if transition signals are too close in temperature space. The

recently introduced generalized microcanonical inflection-point analysis method not only enables the

systematic identification and classification of transitions in systems of any size, but it can also distinguish

transitions that standard canonical analysis cannot resolve. By applying this method to a generic coarse-

grained model for semiflexible polymers, we identify a mixed structural phase dominated by secondary

structures such as hairpins and loops that originates from a bifurcation in the hyperspace spanned by

inverse temperature and bending stiffness. This intermediate phase, which is embraced by the well-

known random-coil and toroidal phases, is testimony to the necessity of balancing entropic variability

and energetic stability in functional macromolecules under physiological conditions.

I. Introduction

In recent years, substantial research interest has been dedi-
cated to applications in microbiology and nanotechnology on
microscopic and mesoscopic scales, where surface effects can
not be ignored. Different aspects of biomolecules have been
studied extensively. As biomolecules fold into specific struc-
tures to perform biological functions in living cells, the com-
putational modeling of these biopolymers, with the advantage
of more precise control compared to experiments, has been a
crucial way to study structural transitions, which furthermore
leads to applications in many areas, e.g., drug discovery and
design.1–4 Depending on the objective, biopolymer models with
different degrees of complexity have been introduced. All-atom
simulations provide high resolution for studies of local struc-
ture dynamics, but this comes at a very high computational cost
and only a limited timescale can be covered.5,6 In addition, all-
atom simulations often require Oð103Þ mostly empirical ‘‘force
field’’ parameters.

On the other hand, coarse-grained models enable extensive
studies of polymer systems at far less computational cost as less
relevant degrees of freedom are integrated out. The underlying

atomic interactions are replaced by effective interactions
between monomers. Extending the coarse-graining procedure
further, a monomer can also represent an entire chemical
group of atoms or even sections of repeating structures or
subunits. Moreover, coarse-grained modeling allows for the
systematic study of specific aspects and thus provides a generic
insight into the macroscopic properties that are not limited to
specific biomolecules.7 This is the approach we pursue in
this study.

DNA, RNA, and proteins can be considered semiflexible
polymers, which are characterized by their bending stiffness
or finite persistence length. Moreover, bending stiffness has a
significant impact on biological functions and processes. It
helps DNA pack in an organized way for efficient translation
and transcription processes.8 This is important as the length of
DNA is very long compared to the size of the cell nucleus it
resides in. It is also known that RNA stiffness can affect the self-
assembly of virus particles.9

One of the simplest semiflexible polymer models is the well-
known Kratky–Porod or wormlike-chain model,10 which has
been successfully used in studies of structural and dynamic
properties of semiflexible polymers. However, the lack of self-
interactions in this model does not allow for the study of
structural phase transitions. Therefore, coarse-grained poly-
mers models with monomer–monomer interaction have been
employed to study the phase behavior of semiflexible
polymers,11–21 usually by means of conventional canonical
statistical analysis. In this context, it is important to note that
biological systems are finite in nature and finite-size scaling is

a Department of Chemical and Biological Engineering, Princeton University,

Princeton, NJ 08544, USA
b Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ

08540, USA. E-mail: d.aierken@princeton.edu
c Soft Matter Systems Research Group, Center for Simulational Physics, Department

of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.

E-mail: bachmann@smsyslab.org; Web: https://www.smsyslab.org

Received 16th June 2023,
Accepted 18th October 2023

DOI: 10.1039/d3cp02815a

rsc.li/pccp

PCCP

PAPER

Pu
bl

is
he

d 
on

 1
8 

O
ct

ob
er

 2
02

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
G

eo
rg

ia
 o

n 
11

/1
6/

20
23

 2
:4

0:
42

 P
M

. 

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0003-1727-5759
https://orcid.org/0000-0001-5972-8539
http://crossmark.crossref.org/dialog/?doi=10.1039/d3cp02815a&domain=pdf&date_stamp=2023-11-02
https://rsc.li/pccp
https://doi.org/10.1039/d3cp02815a
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP025044


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 30246–30258 |  30247

not a generally applicable approach to study the structural
phase behavior of these systems. Also, results obtained by
canonical statistical analysis are often inconsistent and ambig-
uous for finite systems. Therefore, it is certainly beneficial to
explore other approaches. One candidate is the recently intro-
duced generalized microcanonical inflection-point analysis
method that provides a systematic and consistent approach
to phase transitions in systems of any size.22

In this paper, we employ this statistical analysis method
to systematically investigate structural transitions for a
generic coarse-grained semiflexible polymer model.20 Section
II describes the model, the simulation techniques, and the
microcanonical inflection-point analysis method. This is fol-
lowed by the discussion and comparison of canonical and
microcanonical results in Section III. Finally, the paper is
concluded by a summary in Section IV.

II. Models and methods
A. Coarse-grained semiflexible polymer model

For our study, we use a generic, self-interacting semiflexible
homopolymer model. The total energy of a polymer with n
monomers in a conformation X = (r1, . . ., rn), where rn is the
position vector of the nth monomer, is composed of contribu-
tions from bonded and nonbonded interactions between
monomers, along with an energetic bending penalty:

EðXÞ ¼
X
n

Vbðrnnþ1Þ þ
X

nomþ1
VnbðrnmÞ þ

X
k

VbendðykÞ: (1)

Here rnm = |rn� rm| is the distance between monomers n and m,
and yk is the bond angle between two adjacent bonds.

For the interactions between nonbonded monomers, we
employ the standard 12-6 Lennard-Jones (LJ) potential

VLJðrÞ ¼ 4ELJ
s
r

� �12
� s

r

� �6� �
; (2)

where r is the monomer–monomer distance, s = 2�1/6r0 is the
van der Waals distance associated with the potential minimum
at r0, and ELJ is the energy scale. For computational efficiency,
we introduce a cutoff at rc = 2.5s. Shifting the potential by the
constant Vshift � VLJ(rc) avoids a discontinuity at rc. Thus, the
potential energy of nonbonded monomers is given by

VnbðrÞ ¼
VLJðrÞ � Vshift; ro rc;
0; otherwise:

�
(3)

The interaction between bonded monomers is modeled by a
combination of the Lennard-Jones potential and the finitely
extensible nonlinear elastic (FENE) potential:

Vb(r) = VFENE(r) + VLJ(r) � Vshift, (4)

where the same parameter values of VLJ(r) are chosen as for
nonbonded monomer–monomer interactions. The FENE
potential is given by:23–25

VFENEðrÞ ¼ �
1

2
KR2 ln 1� r� r0

R

� �2� �
: (5)

The parameters are fixed to standard values R = (3/7)r0 and
K ¼ 98=5ð ÞELJ

�
r0
2 (ref. 26) and the bond length r is restricted to

fluctuations within the range [r0 � R, r0 + R]. With these
parameters, the minimum of Vb is located at r0.

To model bending strength, an additional standard
potential is introduced. Any deviation of bond angle y from
the reference angle y0 between neighboring bonds is subject to
an energy penalty of the form:

Vbend(y) = k[1 � cos(y � y0)]. (6)

The parameter k Z 0 controls the stiffness of the polymer
chain. For k = 0, the model describes flexible polymers.27 In this
study, we chose y0 = 0. Therefore, any deviation from the
straight chain is energetically unfavorable for k 4 0.

In simulations and statistical analysis of the results, we set
kB = 1 (Boltzmann constant), ELJ ¼ 1, and r0 = 1. The flexible
chain with n = 55 monomers has already been studied exten-
sively in the past27 and serves as the reference for the compar-
ison with the semiflexible model. This chain length is
sufficiently short to recognize finite-size effects but long
enough for the polymer to form stable phases. The results we
obtained for this polymer have also been verified for chains
with up to 100 monomers.

B. Replica-exchange simulations of semiflexible polymers

The density of states of a system is a core quantity for the
microcanonical inflection-point analysis. However, its precise
estimation is challenging for complex systems, even with
modern computer systems and advanced simulation techni-
ques. For our study, we employed an extended version of
replica-exchange Monte Carlo (parallel tempering).28–33 In con-
trast to simulating the system at fixed temperature, as it is done
in conventional Metropolis sampling, parallel tempering has
been shown to reach equilibrium faster in simulations at
low temperatures.34–38 Parallel tempering is a generalized-
ensemble method; the microstate probability distribution is
governed by the product of Boltzmann factors at all simulation
temperatures. It samples the entire state space much more
effectively than an ordinary Metropolis Monte Carlo method,
which simulates an actual canonical ensemble at a single
simulation temperature. The improved performance of parallel
tempering is achieved by occasional exchanges of the confor-
mations (replicas) between Metropolis simulation threads run-
ning at different temperatures.

Replicas of the system are simulated at different inverse
thermal energies bi A [bmin, bmax], with i = 1, 2, . . ., I, where I is
the total number of threads. Here, b = 1/kBTcan, where Tcan is
the canonical heat-bath temperature. One obvious advantage of
this algorithm is that it can simulate the system under different
conditions simultaneously. At each temperature, Metropolis
sampling is performed with the acceptance probability:

P(X - X0) = min[1, s(X, X0)o(X, X0)], (7)

where o(X, X0) = exp{�b[E(X0) � E(X)]} and s(X, X0) is the ratio of
forward and backward selection probabilities, which are
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usually not identical for composite moves such as bond-
exchange updates.39 We also used displacement updates,40

crankshaft rotations,41 and pivot rotations7 to alter polymer
conformations.

In our parallel tempering simulations an exchange between
the replica with conformation X at inverse temperature bi and
the replica in state X0 at bj is proposed after 3000 sweeps (here a
sweep corresponds to N = 55 Monte Carlo updates). The
exchange probability is given by

a(X 2 X0; bi, bj) = min(1,e(bi�bj)(E(X)�E(X0))). (8)

For the selection of temperature sets that enable efficient
exchange between replicas, we found the combination of the
geometric and energy methods42,43 most reasonable. In these
methods, short runs with geometric temperature sets at fixed
temperature limits bmin, bmax, and number of threads I are
performed. The temperature for the simulation thread i is
initialized as bi = bminGi�1, where G = (bmax/bmin)1/(I�1). Then
the temperatures are adjusted by inserting the estimated aver-
age energies in eqn (8) to get uniform expected exchange
probabilities (among all temperature points). For this study,
we used the following parameters: bmin = 0.25, bmax = 50, and I =
60. In typical simulations, up to 109 sweeps were performed.

Even though advanced updates were used in our implemen-
tation of parallel tempering, the simulation dynamics at low
temperatures was still too slow and equilibrium rarely reached.
Therefore, we expanded the exchange of replicas to the com-
bined parameter space of simulation temperature and bending
stiffness for increased efficiency.12,17 For this purpose, the
system energy is decoupled,

E(X) = E0(X) + kE1(X), (9)

where E0ðXÞ ¼
P
n

Vbðrnnþ1Þ þ
P

nomþ1
VnbðrnmÞ and E1ðXÞ ¼P

k

1� cos yk½ �. Consequently, the exchange probability of

replica X with bending stiffness ki at inverse temperature bi

and replica X0 with bending stiffness kj at inverse temperature
bj is given by

Pext = min(exp[(DbDE0) + D(bk)DE1],1). (10)

Here Db = bi � bi+1 and D(bk) = biki � bi+1ki+1. The simulation
setup is illustrated in Fig. 1.

In this study, we found Dk = 1 is a sufficient spacing for the
range of k values studied. Additional intermediate k values
were added, where a finer resolution was needed. In this region
of bending stiffnesses, we first simulated two sets of four
k values each, {7, 8, 9, 10} and {11, 12, 13, 14}, where 60
k-dependent temperatures, adjusted for parallel tempering,
are used for each k value. On occasion, we then also included
additional k values to resolve more details of phase behavior in
particularly interesting regions of the b–k hyperphase diagram.

Combining the energy histograms obtained at different
temperatures at fixed k values, the multi-histogram reweighting
method29,44 yielded an improved estimator for the density of
states g(E) that covers the entire energy range at fixed bending
stiffness. For further analysis, the Bézier method7,45,46 was used

to smooth the microcanonical entropy curves S(E) = kB ln g(E)
and to calculate its derivatives in preparation of the subsequent
microcanonical inflection-point analysis.

In order to assess the performance of the extended parallel-
tempering simulation method, we estimated the replica-
exchange acceptance rates R. The results are shown in Fig. 2
for two different k ranges. The red color shade encodes the
value of R. As we see, all pairs of connected simulation threads
(marked by squares) exhibit very good replica-exchange beha-
vior. For the most part, the extensive parameter tuning for
bcan kept exchange rates in the optimal 0:3oRo 0:7 range.
However, we also observe distinct differences. Whereas the
exchange rates are rather uniform for the larger k set as shown

Fig. 1 Illustration of the extended replica-exchange Monte Carlo scheme
in the combined parameter space of six inverse temperatures b1, . . ., b6 and
four bending stiffness values k1, . . ., k4. Each node (i,j) represents a
simulation thread with a parameter combination of (bi,kj). The four
exchange directions, which are chosen randomly from a uniform distribu-
tion, are colored differently. The additional exchanges at edge and corner
nodes provide for the conservation of replica flows. In our actual simula-
tions, typical grids contained 60 � 4 parameters in this space.

Fig. 2 Color-coded replica-exchange acceptance rates of parallel tem-
pering simulations in the combined space of inverse temperature and
bending stiffness for (a) for k = 7–10 and (b) for k = 11–14 between
simulation threads (squares) in parameter space. The darker the line color
the higher the acceptance rate.
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in Fig. 2(b), the obviously reduced exchange rates between k = 7
and k = 8 for inverse temperatures bcan 4 1.1 suggest that the
system behavior might qualitatively change for k = 7 and k = 8,
hinting at a possible phase transition in this region of para-
meter space. This will be investigated in greater detail later by
means of microcanonical inflection-point analysis.

Fig. 3 shows the quantitative inverse-temperature depen-
dence of R for selected k values. Again, carefully choosing the
inverse simulation temperatures bcan establishes almost uni-
form exchange rates as desired. However, we also observe a
major fluctuation in all cases, which shifts toward higher
inverse temperatures as k is increased, from bcan E 1.15 for
k = 7.5 to bcan E 1.6 for k = 16. Typically, large deviations in the
exchange rates from a uniform distribution can be associated
with phase transitions, which, as we will see, is indeed the case
here, too.

C. Generalized microcanonical inflection-point analysis

The generalized inflection-point analysis method22 for the
systematic identification and classification of transitions
in systems of any size combines microcanonical thermo-
dynamics47 and the principle of minimal sensitivity.48,49 It
has already led to novel insights into the nature of phase
transitions. Even the Ising model, which has been excessively
studied for almost a century, possesses a more complex phase
structure than previously known.50–52 This method has also
been employed to particle aggregation,53 self-assembly kinetics
in macromolecular systems,54 and in studies of the general
geometric and topological foundation of transitions in phase
space.55–58 It motivated the further investigation of higher-
order derivatives of the Boltzmann microcanonical entropy
with an additional conserved quantity59 and has even been
used as justification for pattern recognition criteria in compu-
ter science.60

It is important to note that the attribute ‘‘microcanonical’’
has only historical reasons. The analysis method used here has
nothing to do with the microcanonical ensemble. The system
energy E is not constant. In fact, the density of states, g(E), is a

function of energy and it can also be used to calculate energetic
‘‘canonical’’ averages.

Microcanonical statistical analysis is based on the assump-
tion that entropy S and system energy E control the phase
behavior of any system. The microcanonical Boltzmann entropy
S(E) = kB ln g(E) relates these quantities to each other. If the
system does not experience phase transitions, the entropy curve
S(E) and its derivatives exhibit well-defined concave or convex
monotony. However, phase transitions in the system will alter
the monotonic behavior, even for finite systems.

From the canonical statistical analysis of first- and second-
order transitions, it is known that entropy and/or internal energy
hEi rapidly change (or are most sensitive), if the heat-bath
temperature Tcan is varied near the transition point. It can also
be interpreted as the temperature change being least sensitive to a
change of the internal energy near the transition point.

This behavior corresponds to the least-sensitive dependency
of microcanonical quantities in the space of system energies.
Thus, a phase transition causes a least-sensitive inflection
point in the microcanonical entropy or its derivatives. There-
fore, an inflection point can be associated with an extremum in
the next-higher derivative at the transition energy, which sim-
plifies the precise identification of the transition point. By
systematically analyzing these alterations, different types of
transitions can be classified.

In this scheme, a first-order transition in S(E) is signaled by
a least-sensitive inflection point at transition energy Etr. There-
fore, the first derivative, i.e., the inverse microcanonical tem-
perature b(E) � dS/dE, forms a backbending region as shown in
Fig. 4(a) that possesses a positive-valued minimum in b(E) at
Etr,

bðEtrÞ ¼
dSðEÞ
dE
jE¼Etr

4 0: (11)

Similarly, if there is a least-sensitive inflection point in b(E), the
phase transition is classified as a second-order transition. As
shown in Fig. 4(b), the derivative of b(E) has a negative-valued

Fig. 3 Measured replica-exchange acceptance rates for k = 7.5, 8.5, 15,
16 in inverse-temperature space.

Fig. 4 Sketch of independent transitions up to fourth order as defined in
the microcanonical inflection-point analysis method. (a) A first-order
independent transition is characterized by a least-sensitive inflection point
in S(E), which corresponds to a positive minimum in b = dS/dE. (b) For a
second-order transition, the inflection point in b is associated with a
negative maximum in g = d2S/dE2. (c) An inflection point in g defines a
third-order transition and d = d3S/dE3 exhibits a positive minimum. (d) A
fourth-order transition possesses an inflection point in d and E ¼ d4S

�
dE4

a negative maximum.
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peak at the transition energy Etr,

gðEtrÞ ¼
d2SðEÞ
dE2

jE¼Etr
o 0: (12)

This approach can be generalized to any order. Therefore, for
a transition of odd order (2k � 1) (k is a positive integer), the
(2k� 1)th derivative of S(E) possesses a positive-valued minimum,

dð2k�1ÞSðEÞ
dEð2k�1Þ

jE¼Etr
4 0; (13)

and a transition of even order 2k is characterized by a negative-
valued peak in the 2kth derivative,

d2kSðEÞ
dE2k

jE¼Etr
o 0: (14)

We call this transition type an independent phase transition.
These turn into the known thermodynamic phase transitions in
the thermodynamic limit of infinitely large systems. However,
this terminology implies that there is another transition type,
dependent transitions.22 A dependent transition is inevitably
associated with an independent transition and it is located in
the disordered phase closest to the independent transition.
Therefore a dependent transition can be interpreted as pre-
cursor of the independent transition it coexists with. Although
dependent transitions are less common than independent
transitions (only few independent transitions seem to have a
dependent companion), they can provide valuable insights into
the general nature of transition behavior in complex systems.
In the microcanonical inflection-point study of the two-
dimensional Ising model, a third-order dependent transition,
associated with the well-known critical transition, was

identified.52 It was found to be caused by a collective preorder-
ing of spins in the paramagnetic phase. In our study of the
phase behavior of semiflexible polymers, dependent transitions
were not found, though.

III. Bifurcation in the hyperphase
diagram of semiflexible polymers

In the following we analyze the transition behavior of semi-
flexible polymers from both canonical and microcanonical
perspectives. For this purpose we distinguish the canonical
inverse heat-bath temperature bcan as a thermodynamic state
variable from the microcanonical temperature b(E), which is a
system property.

1. Canonical statistical analysis

Canonical response quantities, such as heat capacity CV = dhEi/
dTcan and fluctuations of the square radius of gyration, Gg =
dhRgyr

2i/dTcan, are shown in Fig. 5 as functions of bcan for a
broad range of bending parameter values. For 7 r k r 10
(Fig. 5(a)), we find that peak values of CV increase for larger
bending stiffness. The peak locations shift to larger inverse
transition temperatures. The same trend is observed for the
peaks in the fluctuations of the square radius of gyration,
shown in Fig. 5(b). In fact, these signals are extrapolations
of the Y collapse transition, well-known from flexible polymers
(k = 0), into the nonzero k regime.

However, surprisingly, a different trend is observed for the
heat capacities in the range 11 r k r 16 (Fig. 5(c)). The peak
values consistently decrease and the peaks broaden again for

Fig. 5 Thermal fluctuations of (a) energy (heat capacity CV = dhEi/dTcan) and (b) square radius of gyration (Gg = dhRgyr
2i/dTcan), plotted as functions of

bcan at selected values of the bending stiffness in the range 7 r k r 10. (c) and (d) Same for examples in the interval 11 r k r 16.
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larger k values. The peak values of the fluctuations of the radius
gyration do not keep increasing either. It is important to note
that only one major peak is found in these quantities that still
suggests a single collapse transition with enhanced thermal
activity between entropically favored wormlike chains at higher
temperatures and energetically more ordered structures at
lower temperatures. As it will turn out later in the structural
analysis, this is an incomplete interpretation. Canonical statis-
tical analysis averages out vital information.

Also note the typical ambiguity in the canonical analysis for
finite systems. As it can be seen in Fig. 5, peaks in the energetic
and structural fluctuations locate the transition points at
different temperatures at any given k value. Therefore, in the
following, we employ a different analysis approach that helps
dissolve the canonical ambiguities in this interesting para-
meter range for semiflexible polymers and provides a quite
clear picture of the actual transition behavior of the system.

2. Microcanonical inflection-point analysis

Fig. 6 nicely illustrates the relationship between inverse tem-
perature and energy in both canonical and microcanonical
statistical analysis. The canonical expectation value of the
energy hEi(bcan) averages out all fluctuations in system energy
E and bcan(hEi) (blue solid curve) exhibits only a single inflection
point, indicating a single transition. In contrast, the microca-
nonical curve b(E) (red dashed curve) reveals two (first-order)
transition signals instead in this energy region. The shaded area
represents the canonical standard deviation or fluctuation range
(which corresponds to the heat capacity). It completely con-
sumes the hierarchical microcanonical transition signals and,
therefore, we conclude that the canonical statistical approach is
not sufficiently sensitive for the analysis of intricate transition
behavior in finite systems.

Consequently, we now perform a systematic microcanonical
inflection-point analysis. The microcanonical entropy and
its derivatives up to second order in the collapse transition
region are shown in Fig. 7 as functions of the reduced energy

DE(k) = E � E(k)
min, where E(k)

min is the putative ground-state energy
found for a polymer with bending stiffness k.

The entropy S does not possess any least-sensitive inflection
point in this energy region for k = 7. However, we identified a
least-sensitive inflection point in the b curve at DE(k) E 162.
According to our microcanonical inflection-point classification
scheme, we consider it an independent second-order transi-
tion. It corresponds to a negative maximum in the next-higher
derivative, g(E). Similar to chains with bending stiffness k r 6,
only this single second-order transition occurs in this tempera-
ture region.

For slightly increased bending stiffness k = 7.5, surprisingly,
least-sensitive inflection points are identified in both b and g,
in contrast to the expectation of a single transition point from
the canonical analysis. One inflection point in b is located at
DE(k) E 158 and another emerges at the lower energy DE(k) E
144 in g, suggesting an independent third-order transition
besides the second-order transition.

At the bending stiffness k = 8.0, an inflection point at
DE(k) E 148 is found in the entropy curve and, thus, corre-
sponds to an independent first-order transition, and associated
with it is a positive-valued minimum in b. This indicates that
the extension of the second-order collapse transition known
from flexible polymers develops into a first-order transition,
whereas the other inflection point in g at DE(k) E 138 corre-
sponds to a third-order transition.

For k = 8.5 and k = 9.0, least-sensitive inflection points show
up in the entropy curves at DE(k) E 142 and DE(k) E 138,
respectively. Therefore, these transitions are classified as first-
order transitions. Interestingly, identified by the least-sensitive
inflection points in b, the transitions at energies DE(k) E 143
for k = 8.5 and DE(k) E 127 for k = 9.0, respectively, change to
second-order transitions from the third-order signals we found
in this transition region for k = 7 and k = 7.5.

Strikingly, for k = 10.0, both least-sensitive inflection points
are found in S, which are identified best from the two separate
positive minima in b at DE(k) E 130 and at DE(k) E 110. Thus,

Fig. 6 Canonical and microcanonical results for the relationship between inverse temperatures and energies [bcan(hEi) and b(E), respectively] for the
semiflexible 55mer at k = 16. The shaded area is the standard deviation of the system energy s(E), which represents the thermal fluctuations of the system
energy E at the corresponding inverse heat-bath temperature bcan.
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the new transition branch finally turns into another first-order
transition line.

Extending the analysis further to bending stiffness values k =
11, . . ., 16, we obtain the results shown in Fig. 8. For each k
value, only pairs of least-sensitive inflection points in the
entropy curves are found in this energy region. Therefore, these
are independent first-order transitions that are clearly signaled
by positive minima in the b curves. As can be seen in Fig. 8(a),
the transition energy difference between the two first-order
transitions increases for stiffer chains. For larger bending
stiffness values, the difference of the corresponding microca-
nonical inverse transition temperatures is larger as well. The
back-bending features in the b curves near the transitions
points are more prominent for chains with greater bending
stiffness. This is an important result as it shows that the two
transition lines that have formed out of the bifurcation point,

embrace an entirely new phase and the fact that the first-order
transition characteristics become more pronounced means that
the phase is getting more stable as k increases in this region of
the phase diagram.

The b � k hyperphase diagram constructed from the results
we obtained by microcanonical inflection-point analysis in the
vicinity of the bifurcation point is shown in Fig. 9. The exten-
sion of the coil-globule transition line remains intact as a single
second-order transition from the flexible case (k = 0) up to the
bifurcation located at about k = 7 and b = 1.08. Note that, for
bending stiffness values k 4 7, transition types on the upper
line change from third via second to first order. We have
already discussed this transition behavior in the context of
the microcanonical analysis. For finite systems, this is a char-
acteristic feature of transition lines branching off a main
transition line. Transitions of higher-than-second order are
also common in finite systems.22,27 Without their considera-
tion, the phase diagram would contain a gap.

In the higher-temperature regime (low b), the disordered
phase C is governed by wormlike random-coil structures. In
this regime, entropic effects enable sufficiently large fluctua-
tions that suppress the formation of stable energetic contacts
between monomers. For k r 7, coil structures directly transi-
tion into the toroidal phase T upon lowering the temperature
(increasing b). However, more interestingly, the formation of a
new stable phase between the random-coil phase C and the

Fig. 7 (a) Microcanonical entropy S and its derivatives (b) b = dS/dE, and
(c) g = db/dE for semiflexible polymers with k = 7.0, . . ., 10.0, plotted as
functions of the reduced energy DE(k). Least-sensitive inflection points are
marked by dots and transition energies are indicated by dotted lines.

Fig. 8 (a) Microcanonical entropy S and its derivative (b) b = dS/dE for k =
11, . . ., 16, plotted as functions of DE(k). Dots show the locations of least-
sensitive inflection points; dotted lines were drawn at the transition
energies.
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toroidal phase T is observed for k 4 7. This phase is character-
ized by the coexistence of hairpins (H) and loop (L) structures.
Therefore, we call it a mixed phase. Wormlike chains fold into
hairpins and eventually loops in this transition process. Further
cooling leads to another transition into the toroidal phase T.

By analyzing the structures in these phases, we found that
they possess unique arrangements of nonbonded monomer–
monomer contacts. Therefore, we used distance maps of mono-
mers to characterize these phases. As shown in Fig. 9, the
representative conformations as well as their distance maps for
each phase are included. The two nonbonded monomers n and
m are considered to be in close contact if their distance rnm o
1.2, but the results are not very sensitive to this choice, as long
as counting nonnearest neighbor contacts is avoided. This
threshold distance is close to the minimum of the Lennard-
Jones potential. Nonbonded monomer pairs in contact are
represented by the yellow region in the triangular distance
maps shown underneath the conformations. For the extended
coil structures, stable contacts of monomers are prevented by
thermal fluctuations, and thus they do not exhibit any parti-
cular features. In the intermediate phase, the tails of hairpin
structures are in contact, with antiparallel orientation. This

results in the contact line that is perpendicular to the diagonal
in the contact map, which makes it easy to identify these
structures. In loops, on the other hand, the tails align with
parallel orientation. Consequently, the short contact line is
parallel to the diagonal in the contact map. In contrast to
loops, toroids try to reduce system energy by forming additional
contacts. As a result, a second streak parallel to the diagonal in
the contact map accounts for another winding.

In order to quantify the population of different structures in
each phase and to gain more insights into the transition
behavior in this energy range, we have also measured the
probabilities for each structure type as functions of the system
energy. Detailed results for k = 16 are presented in Fig. 10. The
b curve is shown in Fig. 10(a) and the frequencies of the
different structure types in Fig. 10(b). The microcanonical
Maxwell constructions for b in the transition regions define
the coexistence regions of first-order transitions. These regions
are shaded gray; their widths are a measure for the latent heat.
There is a clearly visible energetic gap between the two transi-
tions (the two coexistence regions do not overlap), confirming
that the hairpin-loop crossover is a stable intermediate phase.
The canonical energy probability distributions Pcan(E) shown in

Fig. 9 Hyperphase diagram for semiflexible polymers with 55 monomers, parametrized by bending stiffness k and inverse microcanonical temperature
b. Red diamonds mark first-order, blue dots second-order, and purple triangles third-order transitions as identified by microcanonical inflection-point
analysis of results obtained in our simulations. Solid transition lines are guides to the eye. Conformations characteristic for the respective phases and their
distance maps (lower triangles in the insets) are shown below the phase diagram. We distinguish the following structure types: C: random coils in the
wormlike-chain regime, H: hairpins, L: loops, and T: toroids. Monomer labels are ordered from the blue (first monomer) to the red end (last monomer).
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Fig. 10(c) for various canonical temperatures support this
interpretation. There are two noticeable suppressed regions
in the envelope of these curves, each caused by a first-
order transition. The locations nicely coincide with the
corresponding first-order transition regions we identified by
microcanonical inflection-point analysis. Interestingly, the dis-
tribution for bcan = 1.435 (blue curve) spans the entire energy
range, and the presence of two transitions is only reflected by
the two shoulders on either side of the peak. This also helps
explain the single peak in the specific heat curve for k = 16 in
Fig. 5(c): the fluctuation range covers the entire energy region of
both transitions. Therefore, the two individual transitions
cannot be distinguished by the canonical analysis of response
quantities.

At high energies, coil structures dominate the phase beha-
vior. Upon lowering the energy, there are mainly two ways for
the extended coils to fold and create tail contacts, parallel and
antiparallel. During the ensuing transition, the presence of
hairpins with antiparallel tail contacts rapidly increases. These
conformations still provide sufficient entropic freedom for the
dangling tail, which is already stabilized by van der Waals
contacts, however. The loop part of the hairpin helps reduce
the stiffness restraint. It is noteworthy that the pure loop
structures with parallel tails also significantly contribute to
the population, although at a lesser scale in this region. The
actual crossover from hairpins to loops happens within the
phase. For lower energies in this mixed phase, the population
of hairpins decreases, whereas loops take over dominance.
Moreover, the energy difference between these two types of
structures is sufficiently small for thermal fluctuations to easily
convert one structure type to the other by folding the tails back
to or away from the loop part. This also explains why there is no
phase transition between them. Importantly, even though hair-
pin and loop structures are irrelevant at very low temperatures,
they are biologically significant secondary structure types at
finite temperatures. The tail can be easily spliced, contact pair
by contact pair, with little energetic effort, which supports
essential micromolecular processes on the DNA and RNA level
such as transcription and translation. Therefore, it is important
to discern the phase dominated by these structures.

Upon further reducing the energy (and therefore also
entropy), forming energetically favorable van der Waals con-
tacts becomes the dominant structure formation strategy
and loops coil in to eventually form toroids. In contrast to
loops, toroidal structures are more ordered and stabilized
further by additional energetically favorable attractions
between monomers.

To test the robustness of the obtained results, we have also
performed selected simulations of semiflexible chains of this
generic model with 70 and 100 monomers, essentially yielding
the same qualitative results. Most importantly, the bifurcation
of the collapse transition line is also observed for these chain
lengths. Quantitatively, the bifurcation point is shifted toward
higher bending stiffness. For N = 70, it is located at about k =
20, whereas it is near k = 40 for N = 100. This is expected, of
course, as the number of possible energetic contacts scales with
the number of monomers, which requires a larger energy
penalty to break these contacts. It also helps understand why
microbiological structures are not only finite but exist on a
comparatively small, mesoscopic length scale. At the physiolo-
gical scale, structure formation processes of large systems
would be much more difficult to control and stabilize. This
also means that studying such systems in the thermodynamic
limit may not actually aid in understanding physics at meso-
scopic scales.

We also analyzed the structure population for the two first-
order transitions at these chain lengths. The results for (N = 70,
k = 30) and (N = 100, k = 45) are shown in Fig. 11 and 12,
respectively. In both cases the same crossover behavior of
hairpins and loops in the intermediate phases as for N = 55

Fig. 10 (a) Microcanonical temperature and (b) system energy depen-
dence of frequencies for the different structure types at k = 16. (c)
Canonical energy probability distributions Pcan at various inverse thermal
energies bcan = 1/kBTcan.
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is observed. The two suppressed regions of canonical energy
distribution probabilities are clearly visible as well. These
results support the generality of our conclusions for semiflex-
ible polymers on mesoscopic scales.

IV. Summary

We employed the microcanonical inflection-point analysis
method to study the transition behavior of a generic semiflex-
ible polymer model with self-interactions. The replica-exchange
Monte Carlo simulation method, extended to cover both tem-
perature and bending stiffness parameter spaces, was used
to obtain highly accurate estimates of the density of states
needed for the microcanonical statistical analysis. Advanced
structural Monte Carlo updates helped improve the efficiency
of our simulations. Least-sensitive inflection points in the

microcanonical entropy and its derivatives were used as indi-
cators for the systematic identification and classification of
phase transitions.

The coarse-grained semiflexible polymer we mainly studied
consists of 55 repetitive units (monomers). This chain has been
extensively studied in the flexible limit. Therefore, in this study,
we focused on the transition line that extends from the collapse
transition point for flexible polymers upon increasing the value
of the bending stiffness parameter of the chain. Below a certain
threshold, for nonzero bending stiffness, the line separates
wormlike-chain coil structures from toroidal conformations.
However, remarkably, we find that the line bifurcates at a
certain bending strength, which leads to the formation of an
intermediate, mixed phase of stable secondary structures such
as hairpins and loops. Whereas the extended collapse transi-
tion line below the bifurcation point is of second order, the two

Fig. 11 Same as Fig. 10, but for N = 70, k = 30. Fig. 12 Same as Fig. 10, but for N = 100, k = 45.
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transitions embracing the novel intermediate phase eventually
turn into comparatively strong first-order transitions. In the
bifurcation region, the new transition branch starts off with
third-order, then second-order, and finally first-order transition
behavior for sufficiently large values of the bending stiffness.

It is worth emphasizing that these transition signals are
indistinguishable in canonical statistical analysis, where the
energetic fluctuations are large enough to envelop both transi-
tions. Therefore, conventional canonical statistical analysis of
fluctuations of response quantities was found to be too insen-
sitive to reveal the separate phase of microbiologically impor-
tant secondary structures.

As detailed structural analysis showed, the mixed intermedi-
ate phase is populated by both loop and hairpin structures,
which are biologically relevant secondary structures present in
DNA and RNA under physiological conditions. These structures
are inherently finite in size. Yet, studies of chains with different
lengths also confirmed that our results are robust and this
intermediate phase is stable.

Our results support the conclusion that biomolecular func-
tion is inevitably connected to structural features of segments
of macromolecules on mesoscopic scales. For semiflexible
polymers, hairpins and loops are the optimal secondary struc-
ture types that represent the best compromise of structural
stability and variability under thermal conditions. Stability is
achieved by reducing energy and variability by increasing
entropy. Therefore, biologically relevant functional polymers
must be able to adapt to environmental conditions by resisting
random energetic fluctuations, but also allowing for structural
changes on small energetic scales to ensure predictable func-
tional behavior. Therefore, as our study showed, only semiflex-
ible polymers with sufficient bending stiffness exceeding a
certain threshold can form a separate intermediate phase of
secondary structures, making them excellent candidates for
functional biomolecules.
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