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ABSTRACT
Many variants of RNA, DNA, and even proteins can be considered semiflexible polymers, where bending stiffness, as a type of energetic
penalty, competes with attractive van der Waals forces in structure formation processes. Here, we systematically investigate the effect of
the bending stiffness on ground-state conformations of a generic coarse-grained model for semiflexible polymers. This model possesses
multiple transition barriers. Therefore, we employ advanced generalized-ensemble Monte Carlo methods to search for the lowest-energy
conformations. As the formation of distinct versatile ground-state conformations, including compact globules, rod-like bundles, and toroids,
strongly depends on the strength of the bending restraint, we also performed a detailed analysis of contact and distance maps.
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I. INTRODUCTION

Biomolecules form distinct structures that allow them to per-
form specific functions in the physiological environment. Under-
standing the effects of different properties of these conforma-
tions is crucial in many fields, such as disease studies1 and drug
design.2 With the recent development of computational resources
and algorithms, computer simulations have become one of the
most powerful tools for studying macromolecular structures. How-
ever, atomistic or quantum level modeling is still limited by the
computational power needed to properly describe complex elec-
tron distributions in the system, not to mention the thousands
of “force field” parameters to be tuned in semiclassical models.3–5

Moreover, such models are so specific that their results usually lack
generality. Thus, coarse-grained polymer models have been widely
used in recent years. Focusing on few main features, while other
less relevant degrees of freedom are considered averaged out, pro-
vides a more general view of the generic structural properties of
polymers.

Semiflexible polymer models play an important role as they
allow for studies of various classes of biopolymers,6–10 for which the
bending stiffness is known to be one of the key factors to be reckoned
with in structure formation processes. Bending restraints help DNA
strands fold in an organized way, enabling efficient translation and
transcription processes.11 RNA stiffness affects the self-assembly of

virus particles.12 In addition, protein stiffness has been found to be
an important aspect in enzymatic catalysis processes, where proteins
increase stiffness to enhance efficiency.13

The well-known Kratky–Porod or worm-like chain (WLC)
model14 has frequently been used in studies of basic structural and
dynamic properties of semiflexible polymers. However, the lack of
self-interactions in this model prevents structural transitions. In
this paper, we systematically study the competition between attrac-
tive interactions, which are usually caused by hydrophobic van
der Waals effects in solvent, and the impact of the bending stiff-
ness for ground-state conformations of a coarse-grained model for
semiflexible polymers by means of advanced Monte Carlo (MC)
simulations.

Our study helps identify the conditions that allow semiflexi-
ble polymers to form distinct geometric structures closely knitted to
their biological function. For example, sufficient bending strength
of the polymer chain is necessary for the formation of toroidal
shapes. Such conformations are relevant for stable DNA–protein
complexes.15,16 In addition, DNA spooled into virus capsids tends
to form toroidal structures, which support both an optimal accom-
modation of DNA in a tight environment and a fast release due to
the tension built up inside the capsid.17,18

This paper is organized as follows: Semiflexible polymer mod-
els and simulation methods are introduced in Sec. II. The results
of energetic and structural analyses of lowest-energy conformations
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are discussed in Sec. III. The summary in Sec. IV concludes the
paper.

II. MODEL AND METHODS
A. Coarse-grained model for semiflexible polymers

In a generic coarse-grained model for linear homopolymers,
the monomers are identical and connected by elastic bonds. Three
energetic contributions are considered in the model used in our
study: bonded interactions, non-bonded interactions, and the ener-
getic penalty due to bending stiffness. The interaction between non-
bonded monomers, which depends on the monomer–monomer
distance r,

VNB(r) =
�������

VLJ(r) −Vshift, r < rc,
0, otherwise,

(1)

is governed by the standard 12-6 Lennard-Jones (LJ) potential,

VLJ(r) = 4εLJ��σ
r
�12 − �σ

r
�6�. (2)

The energy scale is fixed by εLJ. The potential minimum is located at
r0 = 21/6σ, where σ is the van der Waals radius. A cutoff at rc = 2.5σ is
applied to reduce the computational cost, and the potential is shifted
by a constant Vshift ≡ VLJ(rc) to avoid a discontinuity.

The bond elasticity between adjacent monomers is described by
the combination of Lennard-Jones and finitely extensible nonlinear
elastic (FENE) potentials,27–29 with the minimum located at r0,

VB(r) = −1
2

KR2 ln �1 − � r − r0

R
�2� +VLJ(r) −Vshift. (3)

Here, the standard values R = (3�7)r0 and K = (98�5)εLJ�r2
0 are

used.30 Due to bond rigidity, the fluctuations of the bond length r
are limited to the range [r0 − R, r0 + R].

To model the impact of chain rigidity, a bending potential
is introduced. The energetic penalty accounts for the deviation of
the bond angle θ from the reference angle θ0 between neighboring
bonds,

Vbend(θ) = κ[1 − cos (θ − θ0)], (4)

where κ is the bending stiffness parameter. In this study, we set
θ0 = 0.

Eventually, the total energy of a polymer chain with conforma-
tion X = (r1, . . . , rN) is given by

E(X) = �
i> j+1

VNB(ri, j) +�
i

VB(ri,i+1) +�
l

Vbend(θl), (5)

where ri,j = �ri − rj� represents the distance between monomers at
positions ri and rj.

The length scale r0, the energy scale εLJ, and the Boltzmann
constant kB are set to unity in our simulations. The polymer chain
consists of N = 55 monomers.19

B. Stochastic sampling methods
The model we have studied has a complex hyperphase diagram

that exhibits a multitude of structural phases. Crossing the transition

lines separating these phases in the search for ground-state con-
formations is a challenging task. Advanced generalized-ensemble
Monte Carlo (MC) techniques have been developed to cover the
entire energy range of a system, including the lowest-energy states.
In this study, we primarily used the replica-exchange Monte Carlo
method (parallel tempering)20–24 and an extended two-dimensional
version of it9 with advanced MC update strategies.

In each parallel tempering simulation thread k, Metropolis
Monte Carlo simulations are performed. The Metropolis acceptance
probability that satisfies the detailed balance is generally written as

a(X → X′) = min �σ(X, X′)ω(X, X′), 1�, (6)

where ω(X, X′) = exp �−(E(X′) − E(X))�kBTk� is the
ratio of microstate probabilities at temperature Tk and
σ(X, X′) = s�X′ → X��s�X → X′� is the ratio between forward
and backward selection probabilities for specific updates. The
replicas with the total energy Ek and Ek+1 are exchanged between
adjacent threads k and k + 1 with the standard exchange acceptance
probability

P = min (exp [(βk − βk+1)(Ek − Ek+1)], 1), (7)

where βk = (kBTk)−1 and βk+1 = (kBTk+1)−1 are the corresponding
inverse thermal energies. The displacement moves with adjusted
box sizes for different temperatures were used to achieve about a
50% acceptance rate. A combination of bond-exchange moves,25

crankshaft moves,26 and rotational pivot updates helped to improve
the sampling efficiency.

FIG. 1. (a) Total energy E and Lennard–Jones contribution ELJ of ground-
state conformations. (b) Total bending energy Ebend and renormalized bending
contributions εbend = Ebend�κ for the entire array of κ parameter values simulated.
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In order to expand the replica exchange simulation space, the
total energy of the system was decoupled,

E(X) = E0(X) + κE1(X), (8)

where E0(X) = ∑i>j+1VNB(ri,j) +∑iVB(ri,i+1) and E1(X)= ∑l [1 − cos (θl − θ0)]. After every 1500–3000 sweeps (a sweep
consists of N = 55 MC updates), replicas at neighboring threads(Tk, κk) and (Tk+1, κk+1) were proposed to be exchanged according
to the probability9

Pext = min (exp [(�β�E0) + �(βκ)�E1], 1). (9)

Here, �β = βk − βk+1 and �(βκ) = βkκk − βk+1κk+1.
In selected cases, optimization methods, such as

Wang–Landau,31,32 simulated annealing,33 and energy land-
scape paving,34 were also employed to validate the results obtained
from the replica-exchange simulations.

III. ENERGETIC AND GEOMETRIC ANALYSIS OF
PUTATIVE GROUND-STATE CONFORMATIONS

In this section, we perform a detailed analysis of the differ-
ent energy contributions governing ground-state conformations of
semiflexible polymers and discuss geometric properties based on the
gyration tensor. Eventually, we introduce monomer-distance and
monomer-contact maps to investigate internal structural patterns.

A. Energy contributions
Putative ground-state conformations and their energies

obtained from simulations for different choices of the bending
stiffness κ are listed in Table I. By increasing the bending stiffness

κ, the semiflexible polymer folds into different classes of structures:
compact globules (κ < 5), rod-like bundles (5 ≤ κ ≤ 9), and toroids(κ > 9).

In order to better understand the crossover from one struc-
ture type to another, we first investigate the separate contributions
from LJ and bending potentials to the total ground-state energies.
Since bond lengths are at almost optimal distances (≈r0), the bonded
potential VFENE can be ignored in the following analysis. The main
competition is between

ELJ =�
i>j
(VLJ(ri, j) −Vshift), (10)

including the contributions from bonded monomers, and the
bending energy

Ebend =�
l

Vbend(θl). (11)

We also introduce the renormalized contribution from the bending
potential,

εbend = Ebend�κ, (12)

for studying the relative impact of bending on these conformations.
The energies E, ELJ, bending energy Ebend, and renormalized

bending quantity εbend are plotted for all ground-state conformations
in Fig. 1. Not surprisingly, the total energy E increases as the bend-
ing stiffness κ increases. Similarly, ELJ also increases with increased
bending stiffness κ, but rather step-wise. Combining these trends
with the corresponding structures, it can be concluded that each
major global change in ground-state conformations with increased
bending stiffness leads to reduced attraction between monomers (an

TABLE I. Lowest-energy conformations and corresponding energy values obtained from simulations for the selected values of the bending stiffness ranging from κ = 0 (fully
flexible) to κ = 19.

κ Structure E/εLJ κ Structure E/εLJ κ Structure E/εLJ κ Structure E/εLJ

0 −261.72 5 −175.70 10 −132.42 15 −110.60

1 −230.93 6 −166.53 11 −128.23 16 −107.60

2 −222.80 7 −157.49 12 −124.24 17 −104.67

3 −204.82 8 −146.98 13 −120.51 18 −100.98

4 −187.33 9 −140.14 14 −116.71 19 −97.92
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increase in ELJ). Whereas the bending energy Ebend does not exhibit a
specific trend, the renormalized bending energy εbend decreases step-
wise as well for increased bending stiffness κ, as shown in Fig. 1(b).
It is more interesting, though, to see that there are clear alterations
of ELJ and εbend within the same structure type (compact globules,
rod-like bundles, or toroids).

In certain κ intervals (e.g., 3 < κ < 5 and 9 < κ < 10), a rapid
increase in ELJ correlates with a decrease in εbend, which seems
counter-intuitive. However, these are the regions in which the struc-
tural type of the ground state changes significantly. This means that
a loss of energetically favorable contacts between monomers is not
primarily caused by a higher bending penalty but rather by the global
rearrangement of monomers.

For κ = 0–2, the overall attraction ELJ does not change much, in
contrast to εbend, suggesting that the polymer chain is able to accom-
modate the bending penalty without affecting energetically favorable
monomer–monomer contacts.

Even though the energetic analysis provides more information
about the competition between different energetic terms, conclu-
sions about the structural behavior are still qualitative. Therefore,
a more detailed structural analysis is performed in the following.

B. Gyration tensor analysis
In order to provide a quantitative description of the structural

features, we calculated the gyration tensor S for the ground-state
conformations with components

Sα,β = 1
N

N�
i=1
�r(i)α − rCM

α ��r(i)β − rCM
β �, (13)

where α, β ∈ {x, y, z} and rCM = 1
N∑N

j=1 r j is the center of mass of the
polymer. After diagonalization, S can be written as

SD =
������

λ2
x 0 0

0 λ2
y 0

0 0 λ2
z

������
, (14)

where the eigenvalues are principal moments and ordered as
λ2

x ≤ λ2
y ≤ λ2

z . These moments describe the effective extension of
the polymer chain in the principal axial directions. Thus, differ-
ent invariant shape parameters can be derived from combinations
of these moments. Most commonly used for polymers, the square
radius of gyration R2

gyr is obtained from the summation of the
eigenvalues,

R2
gyr = λ2

x + λ2
y + λ2

z. (15)

The radius of gyration describes the overall effective size of a poly-
mer conformation. In addition, another invariant shape parameter
we employed is the relative shape anisotropy A, which is defined as

A = 3
2

λ4
x + λ4

y + λ4
z

�λ2
x + λ2

y + λ2
z�2 − 1

2
. (16)

It is a normalized parameter, of which the value is limited to the
interval A ∈ [0, 1], where A = 0 is associated with spherically sym-
metric polymer chains (λx = λy = λz) and A = 1 is the limit for the

perfectly linear straight chain (λx = λy = 0, λz > 0). Other than these
two limits, A = 1�4 refers to perfectly planar conformations (λx = 0,
0 < λy = λz). Square principal components λ2

x, λ2
y , λ2

z , square radius
of gyration R2

gyr, and the relative shape anisotropy A of ground-state
conformations are plotted in Fig. 2 as functions of κ.

Starting with κ = 0–3, the three principal moments of the
corresponding lowest-energy conformations are small and nearly
equal. These are the most compact conformations we found (see
Table I). For these structures, A < 10−3. Furthermore, for κ < 4, the
lowest-energy conformations of semiflexible polymers possess an
icosahedral-like arrangement of monomers, similar to that of the
purely flexible chain (κ = 0).

For κ = 4, the increased bending stiffness already forces confor-
mations to stretch out noticeably. This is reflected by the imbalance
of the principal moments. Consequently, A is nonzero and the
overall size of the conformations becomes larger, as R2

gyr suggests.

FIG. 2. (a) Square principal moments λ2
x , λ2

y , λ2
z from the diagonalized gyration

tensor S, (b) square radius of gyration R2
gyr, and (c) relative shape anisotropy A for

ground-state conformations on a large array of κ values.
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If the bending stiffness is increased to κ = 5–7, rod-like struc-
tures with seven bundles are formed to minimize the total energy.
One principal moment increases dramatically, while the other
two moments decrease. As a result, R2

gyr reaches a higher level
but remains almost constant in this κ range. The relative shape
anisotropy climbs to A ≈ 0.69, indicating that the shape straightens
out further.

The number of bundles reduces to six for κ = 8 and 9, resulting
in longer rod-like structures. Both R2

gyr and A increase further, of
which the change is not visually obvious in Table I, however.

With the bending energy even more dominant for 10 ≤ κ ≤ 14,
the appearance of conformations changes significantly. Toroidal
structures with up to four windings are energetically more favored
than rod-like bundles. Instead of forming a few sharp turns to
accommodate the bending penalty as in the bundled conformations,
the polymer chain now takes on a rather dense toroidal shape. The
successive bending angles are comparatively small. In this case, the
two largest principal moments converge to an intermediate value. As
a consequence of the more compact structures, R2

gyr decreases with
increased bending stiffness. The asphericity A drops below the char-
acteristic limit 1�4, reflecting the planar symmetry of the toroidal
structures.

It becomes more difficult for the polymer in the ground state
to maintain the same small bending angles for increased bending
stiffness values κ = 15–17. As a result, whereas the smaller bending
angles still cause similar toroidal structures as in the previously dis-
cussed case, the radius of the toroids increases and fewer windings
are present. Therefore, two main principal moments increase, as well
as R2

gyr. Meanwhile, the relative shape anisotropy A approaches 1�4.
Fewer windings reduce the overall thickness in the normal direction
of the toroidal conformations. As can be seen from the conforma-
tions in Table I, these structures are stabilized by the attraction of
close-end monomers.

However, for κ > 17, the attraction of two end monomers is
not sufficient to sustain the structure. Thus, expanding the toroid
becomes an advantageous option to offset strong bending penal-
ties. The toroidal structure is stretched out, which is clearly shown
in Table I for κ = 18 and 19. The radius of the toroid keeps getting
larger, so does R2

gyr. We find that A keeps converging to the planar
symmetry limit of 1�4.

It is expected that increasing the bending stiffness further
ultimately leads to a loop-like ground state and eventually to an
extended chain, in which case no energetic contacts that could
maintain the internal structural symmetries are present anymore.

FIG. 3. Representations of ground-state conformations (left panel) and their contact maps (right) for κ ≤ 5. The upper triangle contains the monomer distance map, where
the distance r i,j of monomers i and j are colored. The contact map is shown in the lower triangle. Monomers i and j are in contact if r i,j < 1.2.
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C. Contact map analysis
Even though the previous gyration tensor analysis yields a rea-

sonable quantitative description of the overall structural properties
of the ground-state conformations, it does not provide insight into
internal structures. Therefore, we now perform a more detailed
analysis by means of monomer distance maps and contact maps.

To find the relative monomer positions, we measured the
monomer distance ri,j between monomers i and j for all monomer
pairs. Furthermore, we consider nonbonded monomer pairs with
distances ri,j < 1.2 to be in contact. The limit, which is close to the
minimum distance r0 of the Lennard–Jones potential, allows us to
distinguish unique contact features of conformations while avoiding
counting nonnearest-neighbor contacts. In the figures, we colored
the monomers from one end to the other to visualize the chain
orientation.

The combined results for κ ≤ 5 are shown in Fig. 3. For κ = 0
(flexible polymer), the structure is icosahedral, and the maps do
not exhibit particularly remarkable structural features. Without the
energetic penalty from bending, maximizing the number of near-
est neighbors is the optimal way to gain energetic benefit. For κ = 1,
the introduced small bond angle restraint already starts affecting
the monomer positions. In the contact map, short anti-diagonal

streaks start appearing, which indicate the existence of a U-turn
like segment with two strands in contact. Interestingly, we find
similar conformations for κ = 2 and 3, as confirmed by similar dis-
tance and contact maps. There are fewer but longer anti-diagonal
strands located in the interior of the compact structure. The for-
mation of new streaks parallel to the diagonal is associated with
the helical wrapping of monomers, which is visible in the colored
representations. As for κ = 4, the ground-state conformation is the
compromise of two tendencies. The bending stiffness neither is
weak, as for κ = 3 the semiflexible polymer is still able to maintain
a spherical compact structure with more turns, nor is it particularly
strong, as for κ = 5, where the polymer forms a rod-like bundle struc-
ture. Therefore, the lowest-energy conformations shown in Fig. 3
contain only helical turns trying to minimize the size, as indicated
by several diagonal streaks in the contact map. For κ = 5, the poly-
mer mediates the bending penalty by allowing only a few sharp turns
between the rods. For the seven-bundle structure, the randomness
completely disappears in both distance and contact maps. The blue
square areas in the distance map mark the separation of monomer
groups belonging to the two ends of a bundle. Furthermore, the
diagonal streaks indicate the contact of two parallel bundles, while
the turns of the chain form anti-diagonal streaks. It is also worth

FIG. 4. Same as Fig. 3, but for 6 ≤ κ ≤ 11.
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mentioning that in this case, the two end monomers are located on
opposite sides.

The results for 6 ≤ κ ≤ 11 are shown in Fig. 4. Similar to κ = 5,
the polymer still forms a seven-bundle rod-like structure for κ = 6
and 7. The anti-diagonal symmetry in maps for κ = 6 and 7 is only
a consequence of the opposite indexing of monomers. For κ = 8 and
9, the increased bending stiffness leads to a decrease in the number
of sharp turns from 7 to 6, where the two end monomers are now
located on the same side. The relative positions of monomers are
almost identical for κ = 8 and 9, as shown in their distance maps.
However, the difference in contact maps is caused by the way the
straight rods following the sharp turns are aligned. For κ = 8, four
monomers (the orange turn in the colored presentation in Fig. 4 for

κ = 8) form the sharp turn. This allows the rods to align closer com-
pared to the κ = 9 case, where only three monomers are located in
the turn that holds two parallel rods (blue shades). For κ = 10, 11,
the optimal way to pack monomers is by toroidal wrapping. Thus,
the contact maps exhibit only three diagonal streaks.

The results for κ ≥ 11 are shown in Fig. 5. The contact maps
for κ = 12–14 still feature three diagonal streaks. However, for
κ = 15–17, the increased bending stiffness causes a larger radius of
the toroidal structure and the two end monomers are stabilized by
Lennard–Jones attraction. Thus, the number of parallel diagonals
reduces to two and the attraction of two end monomers is marked
in the corners of the maps. Finally, for polymers with even larger
bending stiffness, i.e., κ = 18 and 19, the contact between the two

FIG. 5. Same as Fig. 3, but for κ ≥ 11.
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end monomers breaks and the whole structure stretches out even
more. As a result, the distance map for κ = 19 contains extended sec-
tions of increased monomer distances. At the same time, the contact
map still shows two streaks slightly shifted to the right, indicating a
reduction in the number of contacts.

IV. SUMMARY
In this study, we have examined the effect of bending stiff-

ness on ground-state conformations of semiflexible polymers using
a coarse-grained model. In order to obtain estimates of the ground-
state energies, we employed an extended version of parallel tem-
pering Monte Carlo and verified our results by means of global
optimization algorithms. We find that the semiflexible polymer folds
into compact globules for relatively small bending stiffness, rod-like
bundles for intermediate bending strengths, and toroids for suffi-
ciently large bending restraints. Eventually, we performed energetic
and structural analyses to study the impact of the bending stiffness
on the formation of ground-state structures.

We decomposed the energy contributions to gain more insight
into the competition between attractive van der Waals forces and
the bending restraint. The total energy of ground-state conforma-
tions increases smoothly with increased bending stiffness, but not
the attraction and bending potentials. Interestingly, renormalizing
the bending energy reveals that local bending effects of ground-state
conformations actually reduce for increased bending stiffness.

The structural analysis by means of gyration tensor and invari-
ant shape parameters provided a general picture regarding the
size and shape changes of conformations under different bending
restraints. In a further step, studying distance maps and contact
maps exposed details of internal structure ordering and helped dis-
tinguish conformations, especially for small values of the bending
stiffness, where the gyration tensor analysis has been inconclusive.
Contact map analysis also caught slight differences, where different
structure types are almost degenerate.

In conclusion, the bending stiffness significantly influences the
formation of low-energy structures for semiflexible polymers. Vary-
ing the bending stiffness parameter in our model results in shapes
such as compact globules, rod-like bundles, and toroids with abun-
dant internal arrangements. The semiflexible polymer structures
remain stable within a certain range of bending strengths, which
makes them obvious candidates for functional macromolecules. The
monomer–monomer attraction provides stability and bending stiff-
ness adaptability to allow semiflexible polymers to form distinct
structures under diverse physiological conditions.35
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