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Stable intermediate phase of secondary structures for semiflexible polymers
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Systematic microcanonical inflection-point analysis of precise numerical results obtained in extensive
generalized-ensemble Monte Carlo simulations reveals a bifurcation of the coil-globule transition line for
polymers with a bending stiffness exceeding a threshold value. The region, enclosed by the toroidal and
random-coil phases, is dominated by structures crossing over from hairpins to loops upon lowering the energy.
Conventional canonical statistical analysis is not sufficiently sensitive to allow for the identification of these
separate phases.
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For more than a century, canonical statistical analysis has
been the standard procedure for the quantitative description of
thermodynamic phase transitions in systems large enough to
allow for making use of the thermodynamic limit in analytic
calculations and finite-size scaling methods in computational
approaches. However, throughout the last few decades, inter-
est has increasingly shifted toward understanding the thermal
transition behavior of systems at smaller scales, including, but
not limited to, biomolecular systems such as proteins, DNA
and RNA.

The impact of finite-size and surface effects on the for-
mation of structural phases and the transitions that separate
them is so significant that conventional statistical analysis
methods are not sensitive enough to provide a clear picture of
the system behavior. Recently developed approaches like the
generalized microcanonical inflection-point analysis method
[1] overcome this issue as they allow for a systematic and
unambiguous identification and classification of transitions in
systems of any size.

One particularly intriguing problem is the characterization
of phases for entire classes of semiflexible polymers, which,
for example, include variants of DNA and RNA. This has been
a long-standing problem, but simple early approaches such
as the wormlike-chain or Kratky-Porod model [2] could not
address this problem. Significant advances in the development
of Monte Carlo algorithms and vastly improved technologies
enabled the computer simulation of more complex coarse-
grained models in recent years, though [3–7]. Yet, most of
these studies still employed conventional canonical statistical
analysis techniques that led to a plethora of results. This is
partly due to the fact that canonical statistical analysis, which
is usually based on locating extremal points in thermodynamic
response functions such as the specific heat and temperature
derivatives of order parameters or in free-energy landscapes,
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is ambiguous, inconsequential, and often not sufficiently sen-
sitive to allow for the systematic construction of a phase
diagram for finite systems.

In this Letter, we take a closer look at the most inter-
esting part of the hyperphase diagram of the generic model
for semiflexible polymers in the space of bending stiffness
and temperature, where the structurally most relevant toroidal,
loop, and hairpin phases separate from the wormlike chain
regime of random coils. As we will show, microcanonical
inflection-point analysis reveals two transitions that standard
canonical analysis cannot resolve.

For this Letter, we employ the widely used generic model
for semiflexible polymers, composed of the potentials of
bonded and nonbonded pairs of monomers and a repulsive
bending energy term. The energy of a polymer conforma-
tion with N monomers X = (x1, x2, . . . , xN ), where xn is the
position vector of the nth monomer, is given by E (X) =∑

n Vb(rn n+1) + ∑
n<m+1 Vnb(rnm) + κ

∑
k (1 − cos �k ). For

the nonbonded interactions we use the standard Lennard-
Jones (LJ) potential Vnb(r) ≡ VLJ(r) = 4ε[(σ/r)12 − (σ/r)6],
where σ is the van der Waals radius. The bonded potential
is given by the combination of the shifted LJ and the finitely
extensible nonlinear elastic (FENE) [8–10] potential, Vb(r) =
VLJ(r) − (1/2)KR2 ln[1 − (r − r0)2/R2]. We chose the same
FENE parameter values as used in previous simulations of
flexible polymers [11]: K = (98/5)ε/r2

0 and R = (3/7)r0.
Monomer-monomer distances are given by rnm = |xn − xm|,
and �k is the bending angle spanned by successive bond vec-
tors xk − xk−1 and xk+1 − xk . The bending stiffness is denoted
by κ; it is a material parameter that helps distinguish classes of
semiflexible polymers. The basic length scale for all distances
is provided by the location of the LJ potential minimum r0,
which we set to unity in our simulations. Likewise, ε is used as
the basic energy scale. Hence, throughout the Letter, energies
are measured in units of ε. For simulation efficiency, the LJ
potential was cut off at rc = 2.5σ and shifted by VLJ(rc) [11].
Whereas the systematic phase-space study on a large array of
κ values was performed for chains with N = 55 monomers,
selected simulations were also run for longer chains with up to
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FIG. 1. Canonical per-monomer fluctuations of energy CV /N =
(1/N )d〈E〉/dTcan (solid lines) and square radius of gyration �g/N =
(1/N )d〈R2

g〉/dTcan (dashed lines) for a semiflexible polymer with 55
monomers as functions of the canonical heat-bath temperature at
different values of the bending stiffness κ .

100 monomers to verify the robustness of the results presented
here.

For our simulations we employed generalized-ensemble
Markov-chain Monte Carlo methodologies [12], most no-
tably an extended version of the replica-exchange (parallel
tempering) method [13–16] in the combined space of sim-
ulation temperature and bending stiffness. Advanced sets of
conformational updates were employed to sample the phase
space [17]. For reasonable statistics, up to 109 sweeps were
performed per simulation. The multihistogram reweighting
procedure [18,19] was used to determine the densities of
states. Results were verified by means of multicanonical sim-
ulations [20–22].

Canonical response quantities such as the specific heat
and fluctuations of the square radius of gyration, shown in
Fig. 1 for various values of κ , only exhibit one major peak
suggesting enhanced thermal activity between entropically
favored wormlike chains at higher temperatures and energeti-
cally more ordered structures at lower temperatures. It should
also be noted that, even for this simple signal, both quantities
locate the transition at different temperatures for any given
value of κ . This ambiguity is common to canonical statistical
analysis for finite systems.

In contrast, in the microcanonical inflection-point method
[1] employed here, least-sensitive inflection points of the mi-
crocanonical entropy S(E ) = kB ln g(E ), where g(E ) is the
density (or number) of system states at energy E , and its
derivatives with respect to the energy are considered indica-
tors of phase transitions. This has been motivated by the rapid
change of thermodynamic quantities like the internal energy
in the vicinity of canonical transition temperatures, which
causes a maximally sensitive inflection point (a small variation
in heat-bath temperature leads to a drastic response of the
system). This results in a peak of the corresponding fluctua-
tion or response quantity (which is why peaks in specific-heat
curves like in Fig. 1 often serve as indicators of transitions
in conventional canonical statistical analysis). However, in
microcanonical statistical analysis the temperature is a system

FIG. 2. (a) Microcanonical entropies S and (b) inverse tempera-
tures β as functions of the reduced energy �E (κ ) for different values
of the bending stiffness κ . Least-sensitive inflection points indicat-
ing transitions are marked by dots. Corresponding extrema in the
next-higher derivative are marked by crosses and support an easier
identification of the transition point: Minima in β indicate first-order
transitions and maxima in γ (inset) indicate second-order transitions.
Dashed vertical lines help guide the eye from the inflection points to
the corresponding extremum in the next-higher derivative commonly
used to identify the transition energy.

property. It is defined by T (E ) = [dS(E )/dE ]−1 and, conse-
quently, it is a function of the system energy. Therefore, the
corresponding inflection point marking the transition in T (E )
is least sensitive to changes in energy.

Extending this analogy in a systematic way, we classify
a transition as of first order, if the entropy S(E ) exhibits
a least-sensitive inflection point. Consequently, a second-
order transition is characterized by a least-sensitive inflection
point in the inverse microcanonical temperature β(E ) =
dS(E )/dE . For finite systems, higher-order transitions have to
be considered seriously as well and are classified accordingly.
As we will see later, third-order transitions, identified here by
inflection points in γ (E ) = d2S(E )/dE2, typically fill gaps
near bifurcation points of transition lines.

It should also be noted that there are two transition cate-
gories, independent and dependent transitions [1]. However,
in the model studied here, all transitions were found to be
independent transitions, i.e., they are not entangled with other
transition processes.

With this method, we recently found that even the two-
dimensional Ising model possesses two third-order transitions
in addition to the familiar second-order phase transition
[1,23]. Our method has already been successfully employed
in previous studies of macromolecular systems [24,25]. It has
also proven useful in supporting the understanding of the
general geometric and topological foundation of transitions in
phase spaces [26–29].
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FIG. 3. Hyperphase diagram for semiflexible polymers with 55 monomers, parametrized by bending stiffness κ and inverse microcanonical
temperature β. Red diamonds mark first-order, blue dots second-order, and purple triangles third-order transitions. Solid transition lines are
guides to the eye. Representative structures, characterizing the dominant types in the respective phases (C, wormlike random coils; H, hairpins;
L, loops; T, toroids), and their distance maps (lower triangles in the insets) are also shown. Monomer labels are ordered from the black (first
monomer) to the white end (last monomer).

Microcanonical entropies S(E ) and inverse temperatures
β(E ) are shown in Fig. 2 for various κ values. The quanti-
ties are plotted as functions of the reduced energy �E (κ ) =
E − E (κ )

0 , where E (κ )
0 is the ground-state energy estimate for

the polymer with bending stiffness κ . The least-sensitive in-
flection points are marked by dots. For the actual quantitative
identification of these inflection points, it is useful to search
for extrema in the corresponding next-higher derivative. These
extrema are marked by crosses.

For κ = 7, we only find a single signal in the β curve
(and none in S), suggesting a single second-order transition
in the plotted energy range. However, at κ = 9, two different
transitions emerge in close proximity: Least-sensitive inflec-
tion points in both S and β identify independent first- and
second-order transitions. Most striking among these results
are the two strong first-order transition signals found in the
β curve for κ = 13.

Therefore, it is intriguing to construct the complete hy-
perphase diagram, parametrized by bending stiffness κ and
inverse microcanonical temperature β, in the vicinity of the bi-
furcation point. It is shown in Fig. 3 for this range of κ values.
We see that the coil-globule transition line, still intact from
the flexible case (κ = 0), begins to split into two branches at
about κ = 7. In fact, the structural behavior of the polymers
changes qualitatively from there.

Transition points identified by microcanonical analysis of
simulation data are marked by symbols. In the plotted re-
gion, the hyperphase diagram is clearly dominated by three
phases. The disordered regime C is governed by wormlike
random-coil structures. In this phase, entropic effects en-
able sufficiently large fluctuations that suppress the formation
of stable energetic contacts between monomers. For κ val-
ues just below the bifurcation, a direct transition into the

toroidal phase T occurs as β is increased beyond the transi-
tion point. However, more interestingly, a stable intermediate
phase forms if κ > 7. We characterize it as a mixed phase with
hairpin (H) and loop (L) structures coexisting. Eventually,
further cooling leads to another transition into the toroidal
phase T. It is worth noting that upon increasing κ beyond
the bifurcation point, the upper line starts off with third-order
transitions, then turning to second order, and eventually to first
order. This is a typical characteristic feature of transition lines
branching off a main line. Transitions of higher-than-second
order are common in finite systems. Without their considera-
tion, the phase diagram would contain gaps.

Exemplified simulations of longer chains with up to 100
monomers confirm the bifurcation of transition lines, but the
bifurcation point shifts to larger κ values and lower tempera-
tures in this model, as expected.

The characterization of the phases was made simple by
utilizing the distinct maps of pairwise monomer-monomer
distances of the different structure types. Regions shaded red
(rnm < 1.2) correspond to close contacts between monomers.
Representative conformations for each phase are included in
Fig. 3. The triangular maps shown underneath the structures
exhibit the characteristic features of the class of structures
they belong to. For extended coil-like structures prominent
features are not present. Also, loops have only a small number
of contacts near the tails, resulting in a short contact line
parallel to the diagonal. In contrast, the toroidal structure
possesses multiple windings and therefore an additional streak
parallel to the diagonal appears. Hairpin structures are eas-
ily identified by the contact line that is perpendicular to the
diagonal.

In order to quantify the population of the different struc-
tures in each phase, we have estimated the probabilities for
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FIG. 4. (a) Microcanonical temperature and system energy de-
pendence of frequencies for the different structure types at κ = 16.
(b) Canonical energy probability distributions Pcan(E ) at various
inverse thermal energies βcan = 1/kBTcan.

each structure type in the energetic range that includes the
two first-order transitions. Detailed results for κ = 16 are
shown in Fig. 4(a). To provide the context, we also included
the β curve as a dashed line. The two first-order transition
regions are shaded in gray. The respective microcanonical
Maxwell constructions define the coexistence regions of those
transitions. They clearly do not overlap and leave an energetic
gap, in which the intermediate mixed hairpin-loop crossover
phase is located. This is also confirmed by the plot of the
energy probability distributions Pcan(E ) = g(E )e−E/kBTcan/Zcan

(where Zcan = ∫
dEg(E )e−E/kBTcan is the canonical partition

function) as shown in Fig. 4(b) for various canonical tem-
peratures in the transition region. The envelope of these
curves exhibits two noticeable suppression regions, where the
inflection-point method indicated the first-order transitions.

As expected, coil structures dominate at high energies, but
their presence is rapidly diminished by the formation of more
ordered hairpin structures. These conformations still provide
sufficient entropic freedom for the dangling tail, which is
already stabilized by van der Waals contacts, however. The
loop part of the hairpin helps reducing the stiffness restraint.
It is noteworthy that pure loop structures also significantly
contribute to the population, although at a lesser scale in this
region. The actual crossover from hairpins to loops happens
within the intermediate phase, which is why we consider
it a mixed phase. Even though hairpin and loop structures
may be irrelevant at very low temperatures, they represent
biologically significant secondary structure types at finite
temperatures. The tail can be easily spliced, contact pair
by contact pair, with little energetic effort, which supports

essential micromolecular processes on the DNA and RNA
level such as transcription and translation. The phase diagram
shown in Fig. 3 tells us how important it is to discern the phase
dominated by these structures.

Upon reducing the energy (and therefore also entropy),
forming energetically favorable van der Waals contacts be-
comes the dominant structure formation strategy and loops
coil in to eventually form toroids. Further lowering the energy
toward the ground state may even lead to knotting [6,7].

We would like to emphasize that we have also performed
selected simulations of semiflexible chains in this generic
model with 70 and 100 monomers, which essentially led to the
same qualitative results. Quantitatively, we observe a shift of
the bifurcation point toward higher bending stiffness values.
This is expected, of course, as the number of possible ener-
getic contacts scales with the number of monomers, which
requires a larger energy penalty to break these symmetries. It
also helps understand why microbiological structures are not
only finite, but exist on a comparatively small, mesoscopic
length scale. At the physiological scale, structure formation
processes of large systems would be much more difficult to
control and to stabilize. This also means that studying such
systems in the thermodynamic limit may not help under-
standing physics at mesoscopic scales. Therefore, employing
alternative statistical analysis methods as in this Letter is more
beneficial than the application of standard procedures, how-
ever successful they have been in studies of other problems.

To conclude, neither canonical energetic nor structural
fluctuation quantities hint at the existence of two clearly sep-
arated transitions for semiflexible polymers, which we could
identify by microcanonical inflection point-analysis, though.
Conventional canonical analysis is too rugged—the interme-
diate phase is simply washed out in the averaging process.
This should be considered a problem, particularly when stan-
dard canonical analysis methods are employed in studies of
finite systems. In the generic model for semiflexible polymers
used in our Letter, the intermediate phase accommodates loop
and hairpin structures, which are found in biomacromolecular
systems including types of DNA and RNA. We conclude that
bending stiffness is not only a necessary property of polymers
in the formation of distinct and biologically relevant structures
at finite temperatures; it also stabilizes the phase dominated
by these structure types in a thermal environment, where
entropy and energy effectively compete with each other. Nei-
ther flexible polymers nor crystalline structures would be
equally adaptable and stable like semiflexible polymers are
under physiological conditions. This is fully compliant with
Nature’s governing principle, in which sufficient order is pro-
vided to enable the formation of stable mesostructures, but
at the same time enough disorder allows these structures to
explore variability. This makes them functional in a stochas-
tic, thermal environment, with sufficient efficiency enabling
lifeforms to exist and survive under these conditions.

We thank the Georgia Advanced Computing Resource
Center at the University of Georgia for providing computa-
tional resources.
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