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Evidence for additional third-order transitions in the two-dimensional Ising model
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We employ the microcanonical inflection-point analysis method, developed for the systematic identification
and classification of phase transitions in systems of any size, to study the two-dimensional Ising model at various
lattice sizes and in the thermodynamic limit. Exact results for the density of states, which were obtained by exact
algorithmic computation, provide evidence for higher-order transitions in addition to the well-studied second-
order ferromagnetic-paramagnetic phase transition. An independent third-order phase transition is identified in
the ferromagnetic phase, whereas another third-order transition resides in the paramagnetic phase. The latter is
a dependent transition, i.e., it is inevitably associated with the critical transition, but it remains separate from the
critical point in the thermodynamic limit. For a deeper insight into the nature of these additional transitions, a
detailed analysis of spin clusters is performed.
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I. INTRODUCTION

The (Lenz-)Ising model was introduced about a century
ago for studies of the impacts of attractive local spin-spin
interaction upon macroscopic cooperative ordering across the
entire system [1,2]. As it turned out, the one-dimensional spin
chain does not exhibit signs of a thermodynamic phase transi-
tion. It took almost two decades to solve the two-dimensional
(2D) problem and to reveal the prominent second-order phase
transition that separates the paramagnetic and the ferromag-
netic phase [3,4]. In the following decades, the simplicity and
versatility of the model, an increased interest in understanding
the origins of phase transitions, and the ever growing available
computer power made the Ising model one of the most widely
employed generic models for studies of complexity.

Traditional theory dictates that phase transitions can only
occur in the thermodynamic limit, which is where energetic
and configurational response parameters tend to exhibit non-
analyticities at the transition point. From a modern point of
view, this strict definition was mostly a reference to the mathe-
matical tractability of complex problems. For the same reason,
most studies of phase transitions were performed by employ-
ing canonical statistical analysis techniques. However, this
approach is known to lead to problems in interpreting signals
in response functions for systems of finite size. With fields
like nano- and biosciences moving into the focus of statistical
analysis, where cooperative system behavior is governed or
at least strongly influenced by finite-size effects, the theory
of phase transitions has to be extended and statistical analysis
techniques appropriately adapted.

The significant evolution of computational resources
throughout the last decades now allows algorithmic access
to problems where a mathematical approach is not manage-
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able. As desirable as a rigorous treatment is, computational
methods offer additional options for estimating or calculating
quantities that are virtually inaccessible mathematically. One
of the most interesting such quantity is the number (or density)
g(E ) of microstates with system energy E . The logarithm of
the density of states is commonly interpreted as the micro-
canonical entropy [5]:

S(E ) = kB ln g(E ). (1)

The generalized microcanonical inflection-point analysis
method was introduced for the study of systems of any
size [6]. It rests on the principle of minimal sensitivity [7,8]
in the interplay between the configurational entropy S(E ) and
the system energy E . In the microcanonical theory of phase
transitions, these are considered the central quantities that
govern effects competing with each other for dominance in the
respective phases [5,9]. In consequence, their balance ensures
a stable equilibrium state. In our method, the entropy and its
derivatives with respect to energy are systematically analyzed
to identify and classify transition signals uniquely [6]. The
idea is similar to Ehrenfest’s approach to identifying and
classifying phase transitions by means of nonanalyticities in
derivatives of thermodynamic potentials [10]. However, the
Ehrenfest scheme cannot be systematically extended to ac-
commodate finite systems as nonanalyticities can only occur
in the (hypothetical) thermodynamic limit.

We recently employed our method to analyze the phase
behavior of various Ising systems [6,11,12]. As expected,
the inflection-point analysis did not reveal transition signa-
tures for the one-dimensional Ising chain. However, Ising
strips and the 2D Ising model on the square lattice exhibit
a variety of transition signals. Particularly interesting are the
higher-order transitions we found for the 2D Ising model in
addition to the well-studied critical transition. According to
our classification scheme, the critical transition is a second-
order independent transition, whereas an additional dependent
third-order transition was identified in the paramagnetic phase

2470-0045/2022/106(1)/014134(7) 014134-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.014134&domain=pdf&date_stamp=2022-07-25
https://doi.org/10.1103/PhysRevE.106.014134
http://www.smsyslab.org


KEDKANOK SITARACHU AND MICHAEL BACHMANN PHYSICAL REVIEW E 106, 014134 (2022)

that is inevitably linked to the critical transition. It can be
interpreted as the precursor of the critical transition in the dis-
ordered phase. Another independent transition is located in the
ordered phase. In this paper, we provide evidence that these
two additional transitions remain separate from the critical
transition in the thermodynamic limit and thus can be consid-
ered phase transitions in the more general context provided by
the microcanonical theory. By performing a detailed analysis
of spin clusters, we also shed light on the character of these
additional transitions.

It is worth noting that the microcanonical inflection-point
analysis method has not only been successfully employed
for spin systems, but also in studies of macromolecular sys-
tems [6,13,14]. It has proven useful as a foundation for a
better understanding of general geometric properties of phase
transitions [15,16] as well.

The paper is organized as follows: The Ising model,
computational techniques, and the microcanonical analysis
method are briefly reviewed in Sec. II. Results obtained
by microcanonical inflection-point analysis are presented in
Sec. III. Properties of the additional transitions identified by
means of spin-cluster analyses are discussed in Sec. IV. The
summary of the major results in Sec. V concludes the paper.

II. MICROCANONICAL STATISTICAL ANALYSIS AND
CLUSTER SIMULATIONS OF THE 2D ISING MODEL

In the following, we briefly review the Ising model, the
microcanonical inflection-point analysis method, and the sim-
ulation methodology used for the cluster analysis.

A. Ising model

In the two-dimensional Ising model [1,2] with periodic
boundary conditions and absent external magnetic field, the
energy of the spin configuration X = (s1, s2, . . . , sN ) with
N = L × L spins on a square lattice with edge lengths L can
simply be written as

E (X) = −J
∑

〈i, j〉
sis j . (2)

Possible values of the spin orientation are si, j = ±1. The sym-
bol 〈i, j〉 indicates that only interactions of the spins si and s j

are considered, if they are nearest neighbors on the lattice. The
energy scale is fixed by the positive-valued coupling constant
J > 0 (ferromagnetic coupling).

B. Microcanonical inflection-point analysis method

The microcanonical inflection-point analysis method,
which utilizes the principle of least sensitivity [7,8], was intro-
duced to systematically identify and classify transition signals
in systems of any size [6]. Like in canonical statistical analy-
sis, the general assumption is that the interplay of entropy and
energy governs the transition behavior.

In our method, least-sensitive inflection points of S(E ), as
defined in Eq. (1), and its derivatives are used to identify phase
transitions. We denote the derivatives as follows: β(E ) =
dS(E )/dE , γ (E ) = d2S(E )/dE2, and δ(E ) = d3S(E )/dE3.
Derivatives of higher order were not considered in our study.

As it turns out, it is useful to distinguish two types of
transitions. Independent transitions are analogs of the con-
ventional transitions and their occurrence does not depend on
other cooperative processes in the system. This is in contrast
to dependent transitions, which are inevitably associated with
an independent transition. These transitions only occur at a
higher energy (i.e., usually in the less-ordered phase), and
they are of higher order than the corresponding independent
transition. Therefore, dependent transitions can be considered
precursors of a major independent transitions. This may have
noticeable consequences for applications: If a system cur-
rently in the disordered phase is adiabatically cooled down
and a dependent transition signal is detected, a major phase
transition is imminent upon further cooling.

Independent transitions are classified as of odd order (2n −
1), where n is a positive integer, if the inflection point at
transition energy Etr satisfies the condition

d (2n−1)S(E )

dE (2n−1)

∣∣∣∣
E=Etr

> 0, (3)

whereas for even-order (2n) independent transitions

d2nS(E )

dE2n

∣∣∣∣
E=Etr

< 0 (4)

holds. Inflection points are associated with even-order (2n)
dependent transitions, if

d2nS(E )

dE2n

∣∣∣∣
E=Etr

> 0, (5)

and odd-order (2n + 1) dependent transitions are character-
ized by

d (2n+1)S(E )

dE (2n+1)

∣∣∣∣
E=Etr

< 0. (6)

For finite 2D Ising systems, it is convenient to use the exact
algorithmic evaluation schemes introduced in Refs. [17,18] to
determine the density of states. The latter method also allows
for an extrapolation toward the thermodynamic limit, which
will eventually permit us to decide whether or not transitions
identified by means of the inflection-point method will survive
in this limit. The derivatives of the microcanonical entropy are
then obtained by numerical differentiation [12].

C. Wolff cluster algorithm

For the study of cluster properties of the Ising system,
we employed the Wolff single-cluster algorithm [19]. Instead
of performing single spin-flip Monte Carlo updates, in this
method an entire cluster of spins is updated in a single step.
This is most efficient near the critical point and in the subcrit-
ical ferromagnetic region, where the majority cluster coexists
with smaller minority clusters.

In this simple yet powerful Monte Carlo method, one spin
in the system is selected randomly. Then, nearest-neighbor
spins with the same orientation are identified and added
to the (stochastic) Wolff cluster with probability p = 1 −
exp(−2βJ ), where β = 1/kBT is the inverse thermal energy
at temperature T (the Boltzmann constant kB was set to unity
in the simulations and in the subsequent analysis). The process
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FIG. 1. (a) Microcanonical entropy per spin S(e)/L2 and its derivatives (b) β(e), (c) γ (e)L2, and (d) δ(e)L4 for various system sizes,
plotted as functions of the energy per spin e = E/L2. The dashed vertical lines mark the transition energies per spin associated with the three
transitions found in the 2D Ising model. For reference, the critical energy per spin is ec ≈ −1.414.

of adding spins to the Wolff cluster is repeated until all spins
belonging to the same geometric cluster have been tested and
the construction of the Wolff cluster is complete. Eventually,
all spins in this cluster are flipped. For the identification of
a geometric cluster, we used the standard labeling technique
introduced by Hoshen and Kopelman [20].

III. TRANSITION SIGNALS FROM
MICROCANONICAL ANALYSIS

Exact algorithmic methods [17,18] were employed to de-
termine the densities of states of the 2D Ising model with
periodic boundary conditions for lattice sizes with up to
320 × 320 spins. The method by Häggkvist et al. [18] also
allows us to find the density of states in the thermodynamic
limit (L → ∞), which is key to judging whether or not the ad-
ditional third-order transitions predicted previously [6,11,12]
survive in this limit. Based on the exact data obtained from
these algorithms, the microcanonical inflection-point analysis
method was then used to identify transitions in the curves of
the microcanonical entropy and its derivatives.

The microcanonical results are shown in Fig. 1. The quan-
tities are properly rescaled to account for obvious system
size dependence and plotted as functions of the energy per
spin, e = E/L2. Rescaled entropy and β curves in Figs. 1(a)
and 1(b), respectively, do not exhibit much system size de-
pendence on the scales plotted. However, whereas there is
no inflection point in the entropy, the β curves do possess
a unique least-sensitive inflection point, which indicates the
well-studied critical transition separating the ferromagnetic
from the paramagnetic phase. According to our microcanon-
ical classification scheme, it satisfies the criteria of an
independent second-order phase transition. In the thermody-
namic limit, the critical transition energy per spin is ec ≈
−1.414 and the critical temperature coincides with Onsager’s

result: Tc = 2/ ln(1 + √
2) ≡ 1/β(ec) ≈ 2.269, as expected.

Towards the thermodynamic limit (L → ∞), the slope con-
verges to zero, as can clearly be seen in the next derivative
γ (E ), shown in Fig. 1(c). Interestingly, the smooth peak visi-
ble for finite systems turns into a cusp in the thermodynamic
limit. Consequently, the nondifferentiability of γ at the critical
transition energy leads to a discontinuity in the next-higher
derivative δ [Fig. 1(d)].

In addition to the critical transition, the microcanonical
inflection-point analysis method identifies two additional tran-
sitions of higher order. An independent third-order transition
(fourth order for L � 64) is identified in the ferromagnetic
phase. The corresponding least-sensitive inflection point in
γ [Fig. 1(c)] leads to a pronounced positive-valued local
minimum in δ(e). In the thermodynamic limit, the transition
energy is eind ≈ −1.502, which corresponds to the transition
temperature Tind ≈ 2.229.

Equally interesting is the occurrence of the dependent
third-order transition in the paramagnetic phase. As it is in-
evitably coupled to the critical transition, it can be imagined
as a precursor of this major transition in the disordered phase.
The least-sensitive inflection point in γ (e), which converges
to the transition energy edep = −1.053 (corresponding to the
transition temperature Tdep = 2.567) in the thermodynamic
limit, is characterized by a negative-valued peak in δ. The
inset in Fig. 1(d) shows that this peak is also present in the
thermodynamic limit.

Whereas these additional transitions do not exhibit nonana-
lytic features in the way the critical transition does, the distinct
signals indicating their existence survive in the thermody-
namic limit and do not converge toward the critical point.
This is a remarkable result as the subphases between them
and the critical point create an “atmosphere” surrounding the
critical transition. The dependent transition may potentially
provide additional clues as to the loss of identity in the
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FIG. 2. Transition temperatures Ttr obtained by microcanonical
inflection-point analysis (MIPA) and cluster properties plotted as a
function of L. Symbols mark the transition temperatures at finite
system size (solid lines are only guides to the eye). Horizontal dashed
lines are located at the transition temperatures in the thermodynamic
limit (L → ∞) found by microcanonical analysis. For reference, the
critical temperature is kBTc/J = 2/ ln(1 + √

2) ≈ 2.269. The small
uncertainties in the microcanonical results originate from the numer-
ical error in locating the transition signals due to the necessity of
using discrete differences methods for calculating derivatives.

system when it approaches the critical point upon cooling.
However, it is important to emphasize that the third-order
transition in the ferromagnetic phase is independent of the
critical transition and thus does not necessarily help under-
standing better the approach toward the critical transition upon
adiabatic heating. It does not serve as a precursor of it in
the way the dependent transition in the paramagnetic phase
does.

Figure 2 contains the results for the transition tempera-
tures obtained by microcanonical analysis for various lattice
sizes and in the thermodynamic limit (dashed lines). It is
important to note that the additional third-order transitions
neither disappear nor converge toward the critical point in the
thermodynamic limit. The transition temperatures remain well
separated from the critical temperature, but the microcanon-
ical transition features do not develop into nonanalyticities.
Hence, these transitions are not phase transitions in the con-
ventional Ehrenfest scheme. However, it should be reiterated
that significant changes in system behavior in modern scien-
tific problems and industrial applications—for many of which
the thermodynamic limit is a nonsensical simplification—are
not signaled by catastrophic changes in observables and data,
but are rather subtle. Processes like folding and aggregation
transitions of macromolecules, weather phenomena, swarm
formation, and even synchronization in computer networks
and social behavior occur on mesoscopic rather than macro-
scopic length scales. In fact, the early detection of sublying
patterns leading to a catastrophic event may be more im-
portant and revealing than a thorough study of the major
transition itself.

FIG. 3. Clusters identified in a typical spin configuration on the
1500 × 1500 lattice in the paramagnetic phase at T = 2.605, which
is just above the dependent-transition point Tdep ≈ 2.567.

IV. ANALYSIS OF SPIN CLUSTERS

We now discuss the results obtained by Wolff spin-cluster
simulations and cluster analysis to shed more light on the
system behavior associated with the additional transitions in
the Ising model identified by microcanonical inflection-point
analysis.

A. Third-order dependent transition in the paramagnetic phase

In order to gain more insight into the nature of the addi-
tional third-order transitions identified for the 2D Ising model,
cluster simulations were performed and cluster sizes analyzed
by means of canonical statistical analyses of suitable order
parameters. A typical example of a spin configuration on
the square lattice with 1500 × 1500 with all clusters colored
differently is shown in Fig. 3.

The first quantity we take a closer look at is the average
cluster size, 〈A〉. We define A as the average size of clusters
containing more than a single spin in a given spin configura-
tion X:

A = 1

n′
∑

l ′
Cl ′ , (7)

where l ′ labels the clusters with more than one spin, Cl ′ is the
number of spins in cluster l ′, and n′ is the total number of
clusters with more than one spin in X. The statistical average
is then obtained as

〈A〉 = 1

Z

∑

X

A(X)e−E (X)/kBT , (8)

where T is the canonical temperature and Z=∑
X exp[−E (X)/kBT ] is the canonical partition function.
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FIG. 4. (a) Average cluster size 〈A〉 and (b) derivative d〈A〉/dT
as functions of temperature T for the two-dimensional Ising model
at various system sizes. The inset enlarges the area surrounding the
dependent third-order transition in the paramagnetic phase. Note that
cluster simulations for system sizes 800 × 800 and 1500 × 1500
were only performed for temperatures T � 2.46. The black dashed
line indicates the location of the dependent third-order transition in
the thermodynamic limit as obtained from microcanonical analysis,
Tdep ≈ 2.567. The other dashed lines locate the critical second-order
and the subcritical independent third-order transition, respectively.

As mentioned, spin configurations at different tempera-
tures were obtained in Wolff cluster simulations [19]. At each
temperature, up to 108 spin configurations were generated.
Spin clusters were labeled by means of the Hoshen-Kopelman
method [20] and the average cluster size A in a given configu-
ration was determined. The canonical average of this quantity
and its derivative with respect to the temperature are plotted
as functions of the temperature for various lattice sizes in
Fig. 4.

Figure 4(a) shows that at low temperatures, in the fer-
romagnetic phase, the average cluster size decreases with
increasing temperatures. Near the critical temperature, 〈A〉
exhibits a backbending pattern, which becomes more pro-
nounced for larger lattices. For temperatures T > Tc, i.e., in
the paramagnetic phase, the average cluster size decreases
again. The temperature derivative of the average cluster size,
d〈A〉/dT , is shown in Fig. 4(b). It is a measure for the rate
of change of the average cluster size with respect to the
temperature. The curves for the different system sizes all
show a prominent peak associated with the inflection point
in the backbending pattern in Fig. 4(a). The peak location
converges to the critical point, as expected. As a thermody-
namic response quantity, it eventually becomes nonanalytic at
the critical point in the thermodynamic limit.

More interesting is the inflection point of 〈A〉 in the para-
magnetic phase close to the dependent third-order transition
identified by microcanonical analysis. It does not disappear

even for the largest lattices simulated (1500 × 1500). The
curves of the derivative d〈A〉/dT exhibit a local minimum and
there is no indication for it to flatten out in the thermodynamic
limit. Its close proximity to the transition temperature of the
dependent third-order transition Tdep ≈ 2.567 suggests that
this feature is related to the transition.

The decrease of the average cluster size with increasing
temperature is expected in the paramagnetic phase. However,
it is noteworthy that this decrease accelerates for temperatures
T < Tdep, before slowing down for T > Tdep. This is an unex-
pected system behavior; the average cluster size could simply
drop monotonously in the paramagnetic phase (in which case
the third-order dependent transition would not exist). Al-
though it seems to be a minor effect, this change of monotony
is, in fact, an important signature of the catastrophic critical
transition, because, as we have shown in the microcanonical
analysis, these transitions are inevitably associated with each
other. This means that the third-order dependent transition
is a precursor of the critical transition in the paramagnetic
phase, and—as our results from the cluster analysis show—is
due to the change of the rate by which clusters decay in the
disordered phase.

The estimates for the peak temperatures in d〈A〉/dT in
the paramagnetic phase have already been included in Fig. 2.
They clearly converge to the third-order dependent transition
temperature obtained by microcanonical analysis in the ther-
modynamic limit. Even for the finite lattices, the respective
microcanonical estimate and the estimate from the cluster
analysis are very close to each other, suggesting that the third-
order transition signaled by microcanonical analysis is indeed
due to the enhanced fluctuations about the average cluster size
in this temperature region.

B. Third-order independent transition
in the ferromagnetic phase

For the study of properties of the third-order independent
transition in the ordered (ferromagnetic) phase, we look at
signs of emerging disorder and entropic variability, which
is dependent on the formation of minority clusters in this
phase, where the ferromagnetic states are always dominated
by a majority cluster. The simplest of these is obviously what
we call the “single-spin cluster,” i.e., an isolated single spin
surrounded by nearest-neighbor spins with opposite orienta-
tion. Figure 5 shows plots of the statistical average of the
number of isolated spins 〈n1〉 as a function of temperature for
two different lattice sizes. These results were also obtained
in Wolff cluster simulations. Dashed vertical lines mark the
transition points found by microcanonical analysis.

Most noteworthy is the peak near the third-order indepen-
dent transition temperature Tind ≈ 2.229 in the ferromagnetic
phase and the subsequent drop toward the critical point. As
expected, the number of isolated spins increases again with
temperature in the paramagnetic phase.

The drop in the number of isolated spins in the ferromag-
netic phase just below the critical point can be attributed to
the dissolution of the majority cluster. Isolated spins serve as
“bond breakers.” Their increased numbers and the subsequent
recombination into clusters of smaller size with more and
more rugged fractal boundaries occur near the third-order
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FIG. 5. Average number of isolated spins per spin, 〈n1〉/L2, as a
function of temperature for two lattice sizes. Vertical dashed lines are
located at the transition temperatures of the 2D Ising model obtained
by microcanonical analysis.

transition temperature. These cluster structures are not present
in the pure ferromagnetic phase below Tind. In fact, clusters of
intermediate size do not exist at all.

For example, an analysis of cluster sizes for the 500 × 500
lattice revealed that near Tind clusters of sizes in the range
10–70% of the system size are completely absent. The pop-
ulation of intermediate-size clusters rapidly increases toward
the critical temperature, though. The isolated spins help seed
the formation of these clusters. Representative configurations
on the 200 × 200 Ising lattice are shown in Fig. 6 for temper-
atures (a) below Tind, (b) near Tind, and (c) close to Tc. Note
that the transition at Tint ≈ 2.229 is an independent transition,
i.e., it is not associated with the critical transition.

In Fig. 2, we have already included the transition tempera-
tures of this transition for various lattice sizes. Even for the
largest system simulated in this phase, 1024 × 1024 spins,
the peak temperature read off from 〈n1〉 is very close to the
microcanonical estimate at this system size. Most importantly,
the transition temperature estimates for 1024 × 1024 and even
smaller lattice sizes are located well within the narrow uncer-
tainty region of the microcanonical estimate for the transition
temperature in the thermodynamic limit. This increases the
confidence that the peaking in the average number of isolated
spins in the ferromagnetic phase is a major feature of the
system behavior in the vicinity of this third-order transition.
As expected, the finite-size transition temperatures of this
additional transition do not converge toward the critical tem-
perature, but remain separate from the critical point even in
the thermodynamic limit.

V. SUMMARY

The purpose of this paper was twofold: First, it was nec-
essary to verify that the recently found additional phase
transitions in the two-dimensional Ising model flanking the
critical transition remain present and well separated from the
critical transition in the thermodynamic limit. This goal could
be achieved by microcanonical inflection-point analysis of the

(a)

(b)

(c)

FIG. 6. Representative Ising configurations on the 200 × 200 lat-
tice at (a) T = 2.10, (b) T = 2.23, and (c) T = 2.28. In white areas,
spins point up and in gray areas down. Isolated spins, independent of
their orientation, are colored blue. The numbers of isolated spins di-
vided by the total number of spins, n1/L2, are (a) 0.0169, (b) 0.0197,
and (c) 0.0179.
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microcanonical entropy and the relevant derivatives [6] in
the thermodynamic limit. This was made possible by means
of the exact enumeration method for the density of states of
the Ising model introduced by Häggkvist et al. [18].

The second objective was to find evidence of the third-
order transitions in the way the Ising system forms clusters in
both the paramagnetic and the ferromagnetic phase. For this
purpose, extensive Wolff single-cluster simulations [19] for
lattice systems with up to 1500 × 1500 spins were performed
and suitably introduced order parameters measured.

It turned out that the fluctuations of the average clus-
ter size (excluding isolated single spins) become extremal
at about the temperature of the third-order dependent tran-
sition in the paramagnetic phase. This suggests that a
collective preordering of spins occurs in this temperature re-
gion in the disordered phase as a precursor of the critical
transition.

In the ferromagnetic phase, the average number of iso-
lated spins peaks at the independent third-order transition
temperature that was identified by microcanonical analysis.

Here, the increased number of such “seeds” of disorder in the
ferromagnetic phase enables the formation of critical clusters
once the critical point is approached.

These results are encouraging and may initiate a search for
higher-order transitions in other systems as well. Our analysis
also shows that the study of sublying transitions in ordered
and disordered phases can lead to a better understanding of
the system-inherent reasons leading to major phase transi-
tions. Dependent transitions, which are inevitably coupled to
a major transition, are precursors of imminent global ordering
processes in the disordered phase. The understanding of such
precursor transitions may aid predicting significant ordering
effects such as cooperativity and synchronization in complex
systems before they actually happen.
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