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Abstract. Recent analyses of least-sensitive inflection points in derivatives
of the microcanonical entropy for the two-dimensional Ising model revealed
higher-order transition signals in addition to the well-studied second-order ferro-
magnetic/paramagnetic phase transition. In this paper, we re-analyze the exact
density of states for the one-dimensional Ising chain as well as the strips with
widths/lengths of up to 64/1024 spins, in search of potential transition features.
While some transitions begin to emerge as the strip width increases, none are
found for the chain, as might be expected.
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1. Introduction

The (Lenz–)Ising model [1, 2] is one of the simplest spin models for the study of fer-
romagnetic order in crystals. Conventional statistical analysis of the exactly solvable
one-dimensional (1D) model [2] did not reveal thermodynamic phase transition fea-
tures at finite temperatures, though, despite significant energy fluctuations. However,
the two-dimensional (2D) problem, which was first solved exactly by Onsager by means
of canonical statistical analysis [3], exhibits common signatures of a second-order phase
transition between the disordered paramagnetic and the ordered ferromagnetic phase.
The simplicity of the model made it a popular standard model for investigating com-
plexity and triggered a vast number of theoretical studies aimed at a more general
understanding of thermodynamic phase transitions. It also significantly contributed to
the development of computational statistical physics as advanced algorithmic method-
ologies such as Monte Carlo sampling and finite-size scaling strategies enabled a better
understanding of how short-range interaction can cause long-range order under thermal
conditions.

The canonical statistical analysis method used in most of these studies works par-
ticularly well for very large systems, where the assumption of negligible surface contact
of the system of interest with the surrounding heat bath is justified and the heat bath
temperature can be considered a suitable and adjustable parameter controlling the equi-
librium properties of the system. One of the important consequences is that different
response quantities and an appropriate order parameter indicate the catastrophic fluctu-
ations accompanying a phase transition at a unique transition point. For finite systems,
this is not the case and the identification of a transition point is not generally possible;
different response quantities suggest different transition points. It is therefore common
to extrapolate data obtained in computer simulations, where only systems of finite size
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can be simulated, toward the thermodynamic limit by finite-size scaling. This is par-
ticularly useful for the analysis of second-order transitions where the system loses its
identity close to the phase transition point in the thermodynamic limit. All fluctuating
quantities are non-analytic at the same transition point and can be quantified by power
laws with specific critical exponents.

However, the recent enormous advances in the development of technologies that
makes possible experiments and applications on nanoscales has increased the interest of
interdisciplinary sciences like biochemistry in using statistical physics methods for the
understanding of complex behavior and long-range cooperativity in finite systems . Thus,
the foundation of the statistical methods that have been so successful in understanding
phase transitions in large systems needs to be extended to include systems such as
proteins for which the thermodynamic limit is an inappropriate assumption [4].

The recently introduced generalized microcanonical inflection-point method [5] was
developed to overcome these issues. It ultimately enables the systematic identification
and even classification of transition signals in systems of arbitrary size.

In this paper, we revisit the one-dimensional (1D) Ising spin chain and extend our
study to Ising strips with L × M spins attached to the nodes of a square lattice with
L being the length and M the finite width of the strips. It has long been known that
the 1D Ising chain does not experience a thermodynamic phase transition at finite tem-
peratures [2]. However, the specific heat curve exhibits interesting monotonic features.
It is important to note that such features like peaks in quantities such as the specific
heat are indeed often used as signals of cooperative behavior in systems of finite size, in
particular those that do not possess a thermodynamic limit (e.g., finitely long, heteroge-
neous systems such as proteins). Since the thermodynamic limit represents an artificial
situation, canonical statistical analysis faces the dilemma of not being able to rigor-
ously distinguish transition signatures in finite systems that might correspond to phase
transitions in the thermodynamic limit from those that do not. For this reason, it is
instructive to consider the exact, microcanonical solution of the 1D Ising chain first. We
then study the properties of the more interesting 2D systems, i.e., the periodic Ising
strips of length L and width M, using the exact analytic method of Beale [6], which is
based on Kaufman’s solution of the Ising model [7]. We consider both narrow (M = 3, 4)
and broader strips (M = 32, 64). Both types of strips display novel transitions absent
for the chain (M = 1), though the ones for the broader strips appear to be closer in
nature to those found recently [5, 8] for the Ising system on a square lattice (L2). We
have no reason to doubt that these additional transition features of higher order would
not survive in the thermodynamic limit.

2. Ising chain and Ising strips

In the Ising systems we study, the energy of a spin configuration S = (s1, s2, . . . , sN),
with si = ± 1, on a rectangular, fully periodic lattice with L spins in one direction and
M spins in another (N = LM) can be written as

E(S) = −J
∑

⟨i,j⟩

sisj, (1)

https://doi.org/10.1088/1742-5468/ab97bc 3
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where ⟨i, j⟩ indicates that only interactions of nearest-neighbor spin pairs si and sj are
considered. For J > 0, ferromagnetic coupling energetically favors spins in the same
state, whereas for antiferromagnetic coupling (J < 0), configurations of alternating spins
are energetically preferred. For the discussion of the microcanonical results it is already
useful to note that for odd choices of L and/or M the total numbers of states with
negative and positive energies, respectively, are not identical. Thus, the athermal energy
distribution g(E) (‘density’ of states5) cannot be symmetric.

In this study, we re-visit the one-dimensional Ising chain with L spins (M = 1) and
periodic boundary conditions (rings). For the two-dimensional Ising strips, we investigate
the cases M = 3 and M = 4, respectively, with periodic boundary conditions in both
directions (tori)6. Eventually, this analysis is extended to broader strips with M = 32
and M = 64.

The exact solutions for the quantities needed for the statistical analysis are known,
at least in principle. Revisiting the 1D case is useful for comparison. For the 2D Ising
systems, the calculation of microcanonical quantities like the density of states requires
algorithmic procedures [6] and for large systems it is common to use stochastic methods
like Monte Carlo sampling to obtain estimates for the density of states [9]. Here, we
consider only finite systems and all analyses are exact. In the following, we first inves-
tigate the 1D Ising case from the perspective of microcanonical statistical analysis in
search of transition signals and then study transition features of the 2D strips.

3. Canonical statistical analysis of the one-dimensional Ising chain

For M = 1, the energy function of the Ising model (1) represents the 1D Ising chain with
L spins:

E(S) = −J
L∑

l=1

slsl+1, (2)

where sL+1 = s1 to satisfy periodic boundary conditions. The canonical partition func-
tion, which is the basis for the conventional canonical statistical analysis, is given by

Z =
∑

{S}

e−βthE(S), (3)

where βth = 1/kBT is the inverse thermal energy. The sum is over the complete space of
spin configurations. Using the eigenvalues of the transfer matrix

λ+ = 2 cosh(βthJ), λ− = 2 sinh(βthJ), (4)

the solution can be written as

Z = λL
+ + λL

−. (5)

5 In fact, since the problem is discrete, one should call this quantity the ‘number of states’, but density of states is a more commonly
used term even in this context.
6 We do not consider M = 2, because periodic boundary conditions are somewhat ambiguous in this case.
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Figure 1. Exact specific heat curves c(T) for the one-dimensional Ising chain for
various chain lengths L.

Since λ+ > λ−, the contributions of λ− to thermodynamic quantities vanish in the ther-
modynamic limit L →∞. This approximation is typically used to show that there cannot
be a phase transition in the 1D case [10]. However, for our following discussion, which
includes finite-size properties, it is necessary to keep working with the full solution. The
internal energy of the system is given by

⟨E⟩ = − ∂

∂βth
ln Z. (6)

From it, a somewhat lengthy expression for the specific heat (heat capacity per spin)

c =
1

L

∂⟨E⟩
∂T

(7)

can easily be obtained after some algebra. In the thermodynamic limit,

lim
L→∞

c = kBβ
2
thJ

2 sech2(βthJ). (8)

Curves of c(T) are shown in figure 1 for various finite chain lengths L and in the ther-
modynamic limit L →∞. Already for L = 1024, the curve is virtually indistinguishable
from the well-known result in the thermodynamic limit.

One interesting aspect is the way the peak for L = 16 disappears, because it does
not actually seem to converge to the peak location apparent for L →∞. Rather, with
increasing chain length, it drifts to lower temperatures and the peak height decreases.
For L = 64, only a prominent ‘shoulder’ remains (and the peak at about T = 0.8, which
survives for L →∞, has formed). Increasing L further, the ‘shoulder’ becomes weaker
and keeps shifting toward lower temperatures. For L →∞ it is completely gone. The
height of the remaining peak is finite in this limit. As expected, the 1D Ising chain does
not experience a thermodynamic phase transition. Thus, as a general conclusion, a peak
in a specific-heat curve does not necessarily signal a significant qualitative change of
the thermodynamic macrostate of the system at the temperature associated with the
specific heat peak.

Now the problem of this argumentation is, however, that for systems, which are
necessarily of finite size (like biologically relevant macromolecules or nanoscale devices),
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peaks or ‘shoulders’ in specific heat curves and other response quantities are the only
available signals and often indeed considered important indicators of structural transi-
tions in such systems. In heterogeneous systems like proteins, finite-size scaling analysis
is not applicable and thus it is not possible to test if a non-analyticity might develop in
the hypothetical thermodynamic limit. On the other hand, the typically highly coop-
erative qualitative changes in these systems can be substantial, and it is more than
just tempting to consider these processes analogs of phase transitions in finite systems7.
In consequence, conventional canonical statistical analysis cannot resolve this dilemma.
The recently developed generalized microcanonical inflection-point analysis method [5]
was introduced to offer an alternative, consistent, and more systematic approach to
identify and even classify transitions in systems of any size. After a brief introduction,
we apply it to the 1D Ising chain, which will allow us to decide whether or not the peaks
and shoulders in the specific heat curves in figure 1 might indicate a hidden transition
that simply does not develop into a phase transition or whether these canonical features
are indeed irrelevant in the context of macroscopic cooperative behavior.

4. Generalized microcanonical inflection point analysis

The microcanonical entropy version of Boltzmann’s formula,

S(E) = kB ln g(E), (9)

has long been used as an alternative basis for identifying first-order transition signals,
which, for finite systems, show a distinctive ‘convex intruder’ in the otherwise strictly
concave monotonic behavior of this quantity. In the thermodynamic limit, the convex
region disappears and becomes linear [11]. Considering inflection points in the first
derivative of S(E), i.e., in the microcanonical inverse temperature

β(E) =
dS(E)

dE
, (10)

as indicators enabled the extension to second-order transitions [12]. The recently intro-
duced generalized microcanonical inflection-point analysis method makes use of the
principle of least sensitivity [13, 14]. Least-sensitive inflection points in all derivatives
of S(E) are analyzed systematically to identify and classify transitions of any order [5],
similar to Ehrenfest’s classification approach, which is based on thermodynamic poten-
tials [15]. However, the great advantage of the novel microcanonical method is that it
can be employed for systems of any size and does not hinge on the thermodynamic limit.

In fact, the consequent application of the method leads to the introduction of two
types of transitions: independent transitions, which are not associated with any other
transition signals, and dependent transitions that can only coexist with a corresponding
independent transition. A dependent transition, if it exists, can only occur at a higher
energy (or temperature) and has always a higher order than the independent transition
it is associated with. Consequently, there’s no first-order dependent transition. These

7 It has been common to call representative ensembles of macrostates in finite systems ‘pseudophases’ and the crossovers between
these ‘pseudophase transitions’, but this is a rather unsatisfying way of dealing with this problem.

https://doi.org/10.1088/1742-5468/ab97bc 6
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dependent transitions can be considered valuable precursor signals in the disordered
phase of imminent ordering upon lowering system energy (or temperature).

Formally, a phase transition is defined in the generalized microcanonical inflection-
point analysis method by a corresponding least-sensitive inflection point in S(E) or any
of its derivatives at the transition energy Etr. For practical purposes, it is useful to
identify the extremal point in the next-higher derivative. Consequently, for indepen-
dent transitions of odd order (2k− 1) (k positive integer), the valley of the (2k− 1)th
derivative has a positive-valued minimum at the transition energy Etr,

d(2k−1)S(E)

dE(2k−1)

∣∣∣∣∣
E=Etr

> 0, (11)

and for even order 2k the peak of the (2k)th derivative at Etr is negative-valued:

d2kS(E)

dE2k

∣∣∣∣
E=Etr

< 0. (12)

The lowest-possible order of a dependent transition is 2. In general, dependent transitions
of even order 2k are characterized by

d2kS(E)

dE2k

∣∣∣∣
E=Edep

tr

> 0, (13)

whereas for odd order (2k + 1):

d(2k+1)S(E)

dE(2k+1)

∣∣∣∣∣
E=Edep

tr

< 0. (14)

must be satisfied. For brevity, we introduce in addition to β(E) given in equation (10) the
following symbols for higher-order derivatives: γ(E) = d2S(E)/dE2, δ(E) = d3S(E)/dE3,
ϵ(E) = d4S(E)/dE4, etc.

Remarkably, for the 2D Ising model with L2 spins, not only the expected ferromag-
netic–paramagnetic transition was recovered and correctly classified as a second-order
transition with this method. Two additional transitions, a dependent transition above
and an independent transition below the critical temperature were discovered [5, 8]. For
sufficiently large systems, these transitions are of third order and the extrapolation of
the exact data calculated for finite systems with up to N = 1922 spins suggests that they
would survive in the thermodynamic limit (see figure 2).

4.1. Statistical analysis for the 1D Ising chain

The inflection-point analysis for the 1D model is straightforward and all results for any
spin chain length are easily found analytically. For simplicity, we consider an even num-
ber of spins L and periodic boundary conditions. It is convenient to introduce the number
b of ‘broken’ bonds. A single broken bond represents an energy increase by 2J. Now, a
spin flip affects a pair of bonds and only if both are broken after the flip, the energy

https://doi.org/10.1088/1742-5468/ab97bc 7
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Figure 2. The recent microcanonical inflection-point analysis for the full 2D Ising
model [5, 8] correctly identified the second-order transition, which becomes critical
at kBTc/J = 2/ ln(1 +

√
2) in the thermodynamic limit, but two additional higher-

order signals were found as well (lines are guides to the eye).

increases. Thus, b must be an even integer. The total energy of a spin configuration is
then given by

Eb = (−L + 2b)J , b = 0, 2, 4, . . . , L. (15)

Simple combinatorics yields the number of configurations gb for b broken bonds. We
exploit the route of the canonical partition function (3), since it can be expressed as a
sum over the number of states gE with given energy E:

Z =
∑

E

gE e−βthE =
∑

b

gb e−βthEb . (16)

Making use of the solution (4) and the binomial expansion yields

Z = 2
L∑

b=0,2,4,...

(
L
b

)
e−βthEb (17)

and thus

gb = 2

(
L
b

)
, (18)

as expected. With this, we can define the microcanonical entropy

Sb = kB ln gb. (19)

Curves of Sb are shown in figure 3(a) for several chain lengths.
As analogs of the continuous derivatives, we employ the following discrete, symmetric

differences:

βEb
=

Sb+2 − Sb−2

2∆Eb
, (20)

https://doi.org/10.1088/1742-5468/ab97bc 8
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Figure 3. Microcanonical curves of the 1D Ising chain for different chain lengths L
as a function of e = Eb/L (lines are guides to the eye.)

γEb
=

Sb+2 − 2Sb + Sb−2

(∆Eb)2
, (21)

δEb
=

Sb+4 − 2Sb+2 − 2Sb−2 − Sb−4

2(∆Eb)3
, (22)

where ∆Eb = 4J. For the subsequent analysis, we set the irrelevant constants to unity,
J ≡ 1 and kB ≡ 1.

If there was a first-order transition, Sb should have a least-sensitive inflection point
indicated by a positive-valued minimum in

βEb
=

1

8
ln

(L − b + 2)(L − b + 1)(L − b)(L − b − 1)

(b + 2)(b + 1)b(b − 1)
, (23)

which obviously does not exist for the 1D Ising chain. Introducing the parameter xb =
b/L, Taylor expansion yields for 0 < xb < 1 (i.e., explicitly excluding the edges xb = 0
and xb = 1)

βEb
=

1

2
ln

1 − xb

xb
+

1

4

2xb − 1

xb(1 − xb)

1

L
+ O(1/L2). (24)

Thus, in the thermodynamic limit L →∞, βEb
converges to (1/2)ln[(1− xb)/xb] for any

given value xb ∈ (0, 1). Figure 3(b) shows the βEb
curves for various chain lengths L.

The quick convergence of the curves to the result in the thermodynamic limit is already
apparent for small chain lengths. In the typically only considered negative-energy region,
associated with positive temperatures, βEb

does not exhibit inflection points at any chain
length. The same applies in the generally ignored positive-energy (negative-temperature)
space. However, since βEb

is convex for Eb < 0 and concave for Eb > 0, it possesses a

https://doi.org/10.1088/1742-5468/ab97bc 9
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least-sensitive inflection point at Eb = 0. This is confirmed by the associated peak in

γEb
=

1

16
ln

(L − b)(L − b − 1)b(b − 1)

(L − b + 2)(L − b + 1)(b + 2)(b + 1)
(25)

= −1

4

1

xb(1 − xb)

1

L
+ O(1/L2). (26)

According to our classification scheme, this signals an independent, but thermodynami-
cally irrelevant, second-order transition in the 1D model at β = 0 that does not disappear
in the thermodynamic limit. Note that, despite formally being of second order in our
scheme, this is not a critical transition; the appropriately scaled derivative γ × L does
not vanish in the thermodynamic limit [see figure 3(c)]. Although this example is not
particularly interesting, it shows that discontinuous, critical transitions represent only
a subset of second-order transitions in this scheme.

Eventually, we find

δEb =
1

128
ln

(L − b + 4)(L − b + 3)(L − b − 2)(L − b − 3)

(L− b + 2)(L − b + 1)(L − b)(L− b − 1)

(b + 2)(b + 1)b(b − 1)

(b + 4)(b + 3)(b − 2)(b − 3)
, (27)

= −1

8

2xb − 1

x2
b(1 − xb)2

1

L2
+ O(1/L3) ∀ xb ∈ (0, 1) (28)

and, as shown in figure 3(d), the scaled δ × L2 curves do not reveal any features of
higher-order transitions.

To conclude, microcanonical inflection-point analysis does not uncover any transition
features among the equilibrium states of the 1D Ising model. This confirms the expected
result from conventional analysis, although response quantities like the specific heat show
pronounced thermal activity, which in fields like the polymer sciences is often considered
a sign of significant cooperative behavior. This can lead to confusion or an ambiguity of
interpretations for finite systems, which the microcanonical analysis method used here
does not allow.

4.2. Transition properties of narrow Ising strips

In order to investigate the onset of the paramagnetic–ferromagnetic phase transition
in the 2D Ising model, we extend our consideration from the 1D Ising chain (ring)
to 2D strips (tori with finite tube diameter). We initially choose to study the L × 3
and L × 4 systems (with L even as before) with periodic boundary conditions in both
dimensions. This will allow us to discuss potential differences in the phase behavior
for systems that are finite in the second dimension and (non)symmetric under periodic
boundary conditions. Later on, we will study the impact of M on the transition signals
by investigating broader strips.

Since the focus will be on the microcanonical analysis and interpretation, we use
the algorithmic solution by Beale for the exact number of states gE [6] to calculate the
microcanonical entropy and its derivatives needed for our analysis. This method makes
use of the low-temperature expansion for the partition function of the L × M Ising model
with periodic boundary conditions, which was first calculated by Kaufman [7].

https://doi.org/10.1088/1742-5468/ab97bc 10
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Figure 4. (a) Specific heat curves c(T) and (b) microcanonical entropies S(e) with
e = E/LM for L × M Ising strips with M = 3, 4 at various chain lengths L. Note
that both figures contain two sets of curves.

For comparison, we also use gE to determine the canonical moments of the energy
and from these the specific heat,

c =
1

LMkBT 2

(
⟨E2⟩ − ⟨E⟩2

)
, (29)

which is shown in figure 4(a) for both M = 3 and M = 4 and various strip lengths L.
Apparently, the curves for each scenario fall almost on top of each other, which, similarly
to the 1D case, suggests that c does not exhibit singular scaling properties. Broadening
the 1D chain to a narrow strip does not enforce a spontaneous breaking that could cause
a phase transition (for a recent review on spontaneous symmetry breaking, see reference
[10]).

It is noteworthy, though, that the peak value for the broader strip (M = 4) is larger
than for the smaller one, which indicates the development of a transition signal upon
increasing M. We will further elaborate on this in the subsequent discussion of broader
strips with M = 32, 64. For now it is sufficient to observe that the sole introduction
of a second dimension does not lead to a thermodynamic phase transition in the sys-
tem. Conventional canonical statistical analysis thus discards this scenario as not being
thermodynamically interesting. But what does the microcanonical analysis yield?

In figure 4(b), the microcanonical entropy curves are shown for both cases. As
expected, the curves for M = 3 are nonsymmetric, because fewer positive energy configu-
rations are possible (as they favor antiferromagnetic alignments while periodic boundary
conditions lead to frustration). Like in the 1D case, the entropies scale with system size
LM in the reduced energy space e = E/LM. The entropy curves do not show significant
features so let us now focus on the derivatives plotted in figures 5(a)–(d). In fact, the
microcanonical results are very intriguing, although they also do not show any indication
of critical behavior in the thermodynamic limit.

Like in the 1D case, the first derivative β(e) is virtually scale independent, but in
striking contrast to the 1D case, there is no least-sensitive inflection point at e = 0
anymore. Instead, in the symmetric case L × 4, it has been replaced by a pair of inflec-
tion points within e ̸= 0 regions. These signals of independent second-order transitions,
which appear prominently as peaks in the γ curves for L × 4 [figure 5(b)], mark the
existence of the boundaries between the disordered paramagnetic phase (with e around

https://doi.org/10.1088/1742-5468/ab97bc 11



J.S
tat.M

ech.
(2020)073204

Exact microcanonical statistical analysis of transition behavior in Ising chains and strips

Figure 5. Derivatives of the microcanonical entropies for the L × 3 and L × 4
Ising strips.

0) and the familiar ordered ferromagnetic phase (in the e < 0 region), as well as the less
familiar antiferromagnetic phase (with e > 0, corresponding to negative microcanoni-
cal temperatures). This is the precursor to the known behavior of the 2D Ising system
in the thermodynamic limit (in both dimensions). Hence we confirm that this qualita-
tive change in β(e) accompanied by the creation of a new phase is caused by the sole
existence of the second dimension.

The nonsymmetric system falls short of developing a second-order transition signal
in the positive-energy space due to lack of available microstates, but the least-sensitive
inflection point in γ(e) at e ≈ 0.2 suggests a (dependent) third-order transition in addi-
tion to the prominent second-order signal in the negative-e region. Though we have not
studied systems with odd strip widths M > 3, there are good reasons to believe that
this asymmetry will fade away as M becomes large8.

Both systems possess another independent transition of fourth order (again two
symmetric signals for L × 4, but one only for L × 3), as indicated by the least-sensitive
inflection points in δ(e).

Figure 6 summarizes all information about the transition points identified in the
canonical and microcanonical analysis of the various systems sizes studied. For the dis-
cussion of equilibrium behavior only non-negative temperatures are relevant. The dashed
line is located at the critical temperature of the 2D Ising system in the thermodynamic
limit and serves as a reference. First of all, as already expected, none of the transition
curves shows any trend to converge to the critical point in the thermodynamic limit, but
the fact that the signals do not disappear or ‘fade out’ either is remarkable. It tells us
that the inherent phase structure of the 2D Ising system is already present in the narrow
Ising strip scenarios, although critical behavior is not achieved even for infinitely long

8 We should note that, if we had imposed free boundary conditions instead of periodic ones, there would be no asymmetry.

https://doi.org/10.1088/1742-5468/ab97bc 12
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Figure 6. Dependence of the microcanonical transition temperatures on strip length
L for strip widths (a) M = 3 and (b) M = 4. Analyses were done for lengths marked
by a cross. For comparison, the peak temperatures of the specific heat c are also
included in the figures for the respective strip parameter values. Lines are guides
to the eye only. The horizontal dashed lines are located at the critical temperature
of the 2D Ising model in the thermodynamic limit, kBTc/J = 2/ ln(1 +

√
2).

strips (L →∞). The transition temperatures found for M = 4 are closer to the critical
point of the 2D Ising model than those identified for M = 3.

4.3. Qualitative changes for broader Ising strips

The results discussed above provoke the question, whether or not there is a finite thresh-
old strip width M, beyond which the Ising strip develops symptoms of critical behavior.
In order to keep the ability of using the Beale method to obtain exact microcanonical
results, we restrict our discussion to widths M = 32 and M = 64. We also investigate
only the thermodynamic behavior at positive microcanonical temperatures (i.e., negative
energies).

Let us first take a look at the specific-heat curves shown in figure 7. For M = 32, we
observe that initially the peak height increases, but for strip lengths L > 96, it decreases
again and converges to a finite height, similar to the 1D case. If M = 64, the peak of
the specific heat is almost independent of L, although we still notice a slight decrease
of the peak height upon increasing L for L > 128. The peak heights are higher and the
peak regions narrower for the broader strip, supporting the development of the expected
singularity at the critical temperature in the limits M →∞ and L →∞. From the 1D
case we know that a peak in the specific heat curves does not necessarily mean that the
system undergoes qualitative macrostate changes. However, the microcanonical analysis
seems to be more capable of distinguishing significant from insignificant fluctuations.
In contrast to the 1D case we found noticeable transition features for the narrow Ising
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Figure 7. Specific heat curves c(T) for Ising strips with (a) M = 32 and (b) M = 64
at various chain lengths L.

strips as discussed above. This encourages the use of the microcanonical approach for
the broader strips, too.

Entropy curves are not shown here, because they do not exhibit any striking mono-
tonic feature of interest. Furthermore, the first derivative [or β(e); not shown either] only
exhibits a single obvious least-sensitive inflection point indicating a second-order transi-
tion for all studied systems sizes with M = 32 and M = 64. The corresponding peaks are
clearly present in the next-higher derivative γ(e) shown in figures 8(a) and (d). In this
context it is important to notice that the peak height drops, which effectively means
that the inflection point in β(e) becomes more sensitive the larger the system size. This
leads to the conclusion that whereas the second-order signal is prominent and does not
show any tendency of disappearing in the thermodynamic limit, the transition is not
‘thermodynamic’ in the traditional sense. For this to be the case, the peak in γ(e) × LM
must converge to zero, which essentially means that the inflection point in β(e) becomes
a saddle point and thus minimally sensitive. The transition signal we observe, how-
ever, is remarkable as the peak locations converge toward the 2D Ising transition point
in energy space (vertical dashed line in figure 8 associated with the critical point in
temperature space). Figure 9 shows the microcanonical transition temperatures versus
the strip lengths for both M = 32 and M = 64. The second-order signals very quickly
converge to the critical temperature (dashed line) for larger systems. Thus, the second-
order transition found for the broader Ising strips is the analog of the critical transition
in the 2D Ising model. Note that such convergence was not observed for the narrower
strips [cf figure 6].

In addition to the prominent second-order transition a number of higher-order tran-
sition signals can be identified. The γ curves in figures 8(a) and (d) already hint at two
other significant transitions; one in the upper-critical and the other in the subcritical
regime.
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Figure 8. Derivatives of the microcanonical entropies for the L × 32 and L × 64
Ising strips. Horizontal dashed lines mark zero and vertical dashed lines are located
at the transition energy associated with the critical transition temperature of the
2D Ising model.

Employing our classification scheme, the lowest-order transition at energies above
the critical energy (or, equivalently, temperature above the critical temperature) is of
third order and its existence depends on the second-order transition described above. As
figures 9(a) and (b) show, the transition point does not show any convergence toward
the critical point and, like in the 2D Ising case [5, 8], we conclude that this is a separate
transition in the paramagnetic phase. Since it is dependent on the second-order transi-
tion, one may want to interpret it a precursor of the latter. As the insets in the respective
figures 8(b) and (e) of the third entropy derivative δ(e) show, the peak heights associ-
ated with this transition signal are very robust and do not change much upon increasing
the strip length.

The other noteworthy transition develops in the subcritical regime. It is signaled by
the lowest-energy peaks in figure 8(c) near e ≈ −1.6 for M = 32 and the developing local
minimum in figure 8(e) at about e ≈ −1.55 for M = 64. It is an independent transition of
fourth order for all strip lengths studied and width M = 32, and turns into a third-order
independent transition for M = 64 if L ! 72. As can be seen in figures 9(a) and (b),
this transition also seems to converge toward a transition point away from the critical
point. This transition line was observed in the 2D Ising case as well [5, 8], see figure 2.
In fact, as exemplary tests we performed show, strips with M ! 64 behave very similar
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Figure 9. Microcanonical transition temperatures and peak temperatures of the
specific heat curves c versus strip length L for (a) M = 32 and (b) M = 64 (lines
are guides to the eye). The dashed lines mark the critical temperature of the 2D
Ising model in the thermodynamic limit, kBTc/J = 2/ ln(1 +

√
2).

to the full 2D Ising system; the second-order transition (which becomes critical in the
thermodynamic limit) and the two additional third-order transitions consolidate.

These two transitions seem to bracket what one might want to call the ‘critical
atmosphere’ around the critical point. There is an additional independent fourth-order
transition in the vicinity of the critical point which we included in figures 9(a) and
(b). For M = 32 we clearly see it crossing the critical transition, which may indicate a
qualitative change in the system that is unrelated to the ferromagnetic–paramagnetic
transition.

Higher-than-fourth-order transitions were not included in our analysis, because the
relevance of a transition signal diminishes with increasing order. Nonetheless, an in-
depth discussion of the individual transition behavior and characteristics of Ising systems
may require the consideration of additional precursor signals.

Finally, we would like to remark that the peaks observed in the specific heat curves for
the broader Ising strips in figure 7 indeed indicate the onset of the critical transition. As
the c line in figure 9 shows, the peak temperatures converge to the critical temperature
known from the 2D Ising system. This was neither the case for the 1D system nor for the
narrow strips with M = 3 and M = 4, which suggests that the qualitative cooperative
behavior of spins in Ising strips changes between M = 4 and M = 32.

5. Conclusion

By means of exact statistical analysis, we identified and classified transition features in
ferromagnetic one-dimensional Ising chains and two-dimensional Ising strips for various
finite sizes. For this purpose, we employed the algorithmic approach proposed by Beale
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[6] for the exact evaluation of the number of states. The logarithm of this quantity
can be interpreted as the microcanonical (energy-dependent) entropy. We then used the
generalized microcanonical least-sensitive inflection-point analysis method [5] to sys-
tematically identify and classify transition signals in the entropy and its derivatives. We
contrasted these results with features represented by extremal energetic fluctuations,
i.e., maxima in corresponding (canonical) specific-heat curves, which are often used as
indicators of transitions in systems of finite size (most prominently in thermodynamic
studies of biological processes such as the folding of proteins, for which the thermo-
dynamic limit is nonsensical due to the intrinsic disorder in their primary amino-acid
sequence).

As expected, the microcanonical analysis of the one-dimensional Ising chain did not
reveal any transition signals. Neither could we locate least-sensitive inflection points for
finite chain lengths, nor did the extrapolation toward larger systems hint at potential
transitions for the infinitely long chain. This is consistent with the historic findings for
this system. It is worth noting that the specific heat curves in fact do exhibit a peak ,
which converges to a finite value in the thermodynamic limit. However, this extremal
energetic fluctuation cannot be associated with any transition feature, even for finite
systems, as there is no support for it by microcanonical analysis. Thus, we conclude that
considering only extremal fluctuations in canonical response quantities as indicators for
transitions may be misleading in the analysis of qualitative macroscopic changes in
finite systems upon changing external state variables such as the canonical (heat-bath)
temperature.

We then turned our attention to effectively two-dimensional Ising strips. For different
constant strip widths M = 3, 4, 32, 64 we systematically extended the strip lengths L to
find trends for transition signals. Like in the 1D case, we exclusively used the exact
Beale solutions for the density of states to avoid numerical errors (the use of Monte
Carlo simulations and finite-size scaling analysis to consolidate our results is a future
project). In all cases studied, the maxima of the specific heat curves do not show any
trend to grow beyond finite limiting values. In fact, the narrower strips (M = 3, 4) behave
like a one-dimensional Ising chain. For the broader strips (M = 32, 64), the peak region is
significantly narrower, suggesting a qualitative change in the crossover regime between
paramagnetic and ferromagnetic states. As expected, the specific-heat curves are not
very helpful in revealing more specific information.

However, microcanonical inflection-point analysis enables a more diverse discussion.
For all strip widths, and in contrast to the 1D case, we find a second-order transition,
which we expect to be the analog of the critical transition in the full 2D case. For the
narrower strips, the transition temperature does not show any tendency to converge
toward the critical temperature, but settles at a larger value. Remarkably, the results
for the broader Ising strips suggest that the observed second-order transition is closely
related to the critical transition, despite the finite widths of the strips. In these cases,
the second-order transition temperatures do converge to the critical value as the strip
length is increased. For the broader strips, the microcanonically determined second-
order transition temperatures correspond very well to the peak locations of the specific
heat curves.
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Like for the 2D Ising model on the square lattice [5, 8], we identify a number of
additional transitions of higher order. Most striking are the dependent third-order tran-
sitions in the paramagnetic phase for M = 32, 64, which do not show indications of
disappearing in the thermodynamic limit, although they do not seem to be linked to
any catastrophic singularity in the thermodynamic limit either, which is probably the
reason why to the best of our knowledge these signals have not been reported until
recently [5, 8]. Since this transition is inevitably linked to the second-order transition,
we consider it a precursor of the latter in the paramagnetic phase.

The lowest-temperature transitions we find occur in the ferromagnetic phase of the
M = 32 and M = 64 systems and are independent of the critical transition. There is no
tendency of the transition line to merge with the critical (or second-order) transition in
the thermodynamic limit either. For M = 32 this transition is of fourth order, but rises
to third order for sufficiently long M = 64 strips. This transition does also exist for the
Ising system on the square lattice [5, 8].

The investigation of these transitions for larger systems requires Monte Carlo sim-
ulations and is left to future work. This will also allow the characterization of the
additional (non-critical) transitions by systematically analyzing structural properties of
spin configurations.
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