The Journal
of Chemical Physics

ARTICLE scitation.org/journalljcp

Influence of bonded interactions on structural
phases of flexible polymers

Cite as: J. Chem. Phys. 150, 054904 (2019); doi: 10.1063/1.5081831
Submitted: 16 November 2018 * Accepted: 15 January 2019 -

Published Online: 7 February 2019

@

Kai Qi,"?? Benjamin Liewehr,>*?
Matthew J. Williams,?*“’ and Michael Bachmann?®

Tomas Koci,” Busara Pattanasiri,”**

AFFILIATIONS

"Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation,

Forschungszentrum Julich, D-52425 Julich, Germany

2Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
3Institute of Physics, University of Rostock, Albert-Einstein-StraBe 23, D-18059 Rostock, Germany
“Department of Physics, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus,

Nakhon Pathom 73140, Thailand

SInstitute of Engineering, Murray State University, Murray, Kentucky 42071, USA

Ak.gi@fz-juelich.de

PIBenjamin.Liewehr@uni-rostock.de

Sfaasbrp@ku.ac.th

Imwilliams72@murraystate.edu
@bachmann@smsyslab.org. URL: http://www.smsyslab.org.

ABSTRACT

We introduce a novel coarse-grained bead-spring model for flexible polymers to systematically examine the effects of an adjusted
bonded potential on the formation and stability of structural macrostates in a thermal environment. The density of states obtained
in advanced replica-exchange Monte Carlo simulations is analyzed by employing the recently developed generalized micro-
canonical inflection-point analysis method, which enables the identification of diverse structural phases and the construction
of a suitably parameterized hyperphase diagram. It reveals that icosahedral phases dominate for polymers with asymmetric and
narrow bond potentials, whereas polymers with symmetric and more elastic bonds tend to form amorphous structures with non-
icosahedral cores. We also observe a hierarchy in the freezing transition behavior associated with the formation of the surface

layer after nucleation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081831

I. INTRODUCTION

Biological functions and processes of biopolymers such as
DNA and proteins are inevitably connected to their geomet-
ric structures. Numerous studies in interdisciplinary research
have been initiated by the necessity for a better understand-
ing of dynamical and structural properties of polymers. Given
the complexity of the chemical structure of biomolecules,
only experimental and computational studies can help to gain
deeper insights into the physical mechanisms guiding coop-
erative, qualitative changes of the system’s macrostate. The

understanding of the response of the polymer system to mod-
ifications of external and intrinsic parameters and the forma-
tion of stable, and potentially functional, structural phases is
essential.’-®

Generic, coarse-grained polymer models prove to be
extremely helpful for the thermodynamic analysis of struc-
tural phases of polymers. In simulations of effective models on
mesoscopic scales, model parameter spaces can be scanned
efficiently, which is hardly possible in specific, microscopic
models, whose parametrization typically requires hundreds of
force-field parameters. Therefore, generic models offer the
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option of a systematic and better understanding of the general
structural behavior for entire classes of polymers.

One of the key questions in this context is how inter-
action ranges and symmetries affect the structure formation
processes and the thermodynamic stability of conformational
phases of polymers. It could be shown that the stability and
existence of a globular or liquid phase in models of flexible
polymers depends on the effective interaction range between
nonbonded monomers.””'% A recent study of the influence
of bond confinement upon structural phases and transition
behavior of a flexible chain showed that the liquid phase
also disappears with increasing bond fluctuation range, and
the gas-liquid and the liquid-solid transition lines merge.'’
Bending restraints in helical polymers can lead to the forma-
tion of stable helix bundles, resembling tertiary structures in
biopolymers.'?

However, the influence of the energy scale of the poten-
tial between bonded monomers on thermodynamic and geo-
metric features of structural phases of the polymer has not
yet been thoroughly addressed. In this paper, we study the
effects of bonded interactions on the conformational behav-
ior of a flexible elastic homopolymer. The interaction strength
between bonded monomers is adjusted by a parameter that
controls the shape of the bonded potential. For the sampling
of the conformational state space, parallel tempering simula-
tions'*-16 were performed, supported by a parallel version of
multicanonical sampling.&17-22

We use the recently introduced generalized micro-
canonical inflection-point analysis method,?*> which has been
designed to systematically identify and classify phase transi-
tions. Based on the results obtained in the simulations, the
hyperphase diagram parameterized by the temperature and
the bond potential parameter is constructed. For the under-
standing of the freezing transition process and the discussion
of structure types dominating the solid phases, a systematic
structural analysis is performed as well.

The paper is organized as follows: Our novel versatile
coarse-grained model for flexible polymers, the simulation
methods, and the statistical analysis techniques employed are
described in Sec. II. In Sec. I1I, we discuss the results of the
canonical, microcanonical, and structural analyses. The paper
is concluded by the summary in Sec. IV.

Il. POLYMER MODEL, SIMULATION, AND STATISTICAL
ANALYSIS METHODS

A. Versatile model for flexible polymers

In this study, we systematically investigate the influence
of the shape and the effective range of the potential between
bonded monomers in a generic model of a self-interacting
flexible elastic homopolymer with 55 monomers. This “magic”
chain length has been chosen because of the stable icosahe-
dral ground-state conformation in conventional models for
flexible polymers.?#25> We assume that the molecular inter-
action between non-bonded monomers is of van der Waals
type and can be modeled by a standard 12-6 Lennard-Jones
(LJ) potential,
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where o is the van der Waals radius and r denotes the
monomer-monomer distance. For computational efficiency,
the non-bonded potential is truncated at r. = 2.50- and shifted
by the constant Ug, = Ups(rc) to avoid a discontinuity of the
potential at r = r¢:

Uns(1) = Usni,
0, otherwise.

T <te,
ot - | @
The minimum of the potential is located at o = 2!/6¢-, which
fixes the length scale associated with this interaction. In the
simulations, we set rg = 1.

The elastic bond between two adjacent monomers is
modeled by the combination of the finitely extensible nonlin-
ear elastic (FENE) potential?62¢ and a Lennard-Jones poten-
tial,

Ug(r) = —%KRZ In

1- (T _RTO )2] + 17 [Ups(r) + €] = (Uspige + €), (3)

where the bond potential parameter 7 controls the width and
asymmetry of the potential.

The maximum bond extension is limited by the FENE
potential, which diverges for r — ro = R. The FENE parame-
ters are set to standard values R = 3/7 and « = 98/5.2° The
Lennard-Jones potential of the bonded interaction causes an
asymmetry for » > 0 and reduces the potential width, while
the location of the minimum r( = 1is unchanged for this choice
of parameters. The potential is shifted to have the same min-
imum value as in the non-bonded case: Up(rg) = —€ — Ugpift
= Ung(ro). Figure 1shows the bonded potentials for various val-
ues of 1. We chose e as the overall energy scale and set it to
unity in the simulations.

In our model, the total energy of a conformation for a flex-
ible polymer with N monomers, X = (ry, ..., ry), is thus given

by
N-2 N Nt
E(X) = Z Z Ung(Tj) + Z Up(rjj1), 4
j=1 k=j+2 =1
I L ,
31 vl n = 0.000 — [E
Yy, ot =0005-- -l
iy 7=0010 ----- .
2p P\VyL Y p=0020-——
Sy L =000 —.
= \“\\‘ ' . 7]:0.200 .
= ! Ay L n=1.000 - - -/
0
T Al
0.6 0.8 1 19 W
T

FIG. 1. Potential between bonded monomers Ug(r) for different values of the
parameter r; € [0, 1], which we introduced to control the range and shape of the
bonded potential.
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where 1y, = [rj
jand k.

- 1| is the distance between monomers

B. Simulation method

We performed parallel tempering simulations’>-'¢ for 21
different values of € [0, 1] to measure thermodynamic and
structural quantities needed for the structural analysis. In our
implementation of this replica-exchange Monte Carlo method,
Metropolis sampling was performed at temperatures T; € [0.11,
3.00] withi =1, 2, ..., I. The number of temperature threads
I ranged from 96 to 128, depending on the level of com-
plexity imposed on the system by the different choices of
the model parameter 7. At each temperature, random dis-
placement updates r — r + d were performed within a cubic
box with edge lengths I; > |dy|, n = 1, 2, 3. The parameter [;
was adjusted for every temperature thread separately prior
to the simulation in order to achieve a Metropolis acceptance
rate of approximately 50%. To facilitate the decorrelation of
structures, exchanges of replicas between neighboring tem-
peratures were proposed and accepted with the exchange
probability

P(Ei, Bi; Eis, Bint) = min (1, eEiEuBihi), ©)

where B = 1/kgT (with kg = 1 in the simulations). The tem-
peratures T; were chosen equally distant in B space to
guarantee sufficiently high exchange probabilities in the low-
temperature regime, where large autocorrelation times are
expected.?? Between each of the 106 replica exchanges, 10°
Metropolis Monte Carlo sweeps were performed.

For each ensemble generated in the parallel-tempering
simulation, an estimate of the density of states g;(E) was cal-
culated from the energy histogram of the single-temperature
canonical ensemble hi(E), utilizing g;(E) = hi(E)e’E. The esti-
mated density of states calculated for a particular value of
Bi is a relative quantity which is only reliable in the energy
region that is adequately covered by the ensemble of states
statistically representative at this temperature. We used the
multi-histogram reweighting method3°>" to combine the esti-
mates of the density of states obtained from the different
temperature threads. The estimator §(E) for the density of
states covering the whole energy space sampled is thus given
by

Z{;l hl(E)
5L Mz e
where M,; is the total number of sweeps and Z; the individual
partition function estimator in the ith thread

Zi= > 4(E)ePE, )
E

9(E) = (6)

This system of equations is iterated until convergence is
achieved.

We also performed parallel simulations of multicanonical
sampling®'7-22 as a supportive method for the structural anal-
ysis of the solid phase. Multicanonical sampling is more effec-
tive at overcoming hidden free-energy barriers associated
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with first-order transitions than parallel tempering schemes
which do not artificially enhance the sampling of entropi-
cally suppressed regions in phase space. This combination of
simulation methods enabled the verification of the simula-
tion results achieved by parallel tempering and the estimates
for the density of states to be used in the microcanonical
statistical analysis.

C. Generalized microcanonical inflection-point
analysis method

For the identification and classification of the struc-
tural polymer phases, we use the recently developed
generalized microcanonical inflection-point method.?* This
statistical analysis method consequently combines micro-
canonical thermodynamics? and the principle of minimal
sensitivity,>*>“ and generalizes earlier approaches®® limited
to low-order transitions. As it turns out, though, higher-order
phase transitions are potentially relevant as well, but have
widely been ignored in conventional canonical analyses. Typi-
cal first- and second-order indicator functions (order param-
eters and response functions) are not sensitive enough to
expose higher-order transition signals.

The general idea is to focus on the essential quantities
entropy and energy, which govern any possible macroscopic
behavior of a physical system in response to environmental
conditions. In other words, the response is already encoded in
the system’s energetic and entropic properties. Consequently,
entropy can be defined microcanonically as the logarithm
of the available energetic phase space. This makes entropy
dependent of energy and the sole function that governs the
system behavior. It is common to introduce the microcanon-
ical entropy, up to an irrelevant constant, by the logarithm of
the density of states,

S(E) = ke In g(E), ®)

where kg is the Boltzmann constant. Alternatively, the inte-
grated density of states fEEO dE’ g(E’) (integrating from the
ground-state energy Ep) can be used as well as a repre-
sentative of the energetic phase-space volume, but both
versions lead to virtually identical results near the most inter-
esting features, phase transitions, as entropy varies rapidly
in these energy regions. We use the simpler form (8) in the
following.

The microcanonical entropy and its derivatives have a
well-defined monotonic behavior within energy regions asso-
ciated with a single phase. A transition between significantly
different macrostates, however, disturbs the monotony and
is signaled by inflection points. Referring to the principle
of minimal sensitivity, only least-sensitive inflection points
have a physical meaning, though. Including the derivatives
of S(E) in this consideration enables the introduction of a
systematic identification and classification scheme for phase
transitions,?* reminiscent of Ehrenfest’s idea of using ther-
modynamic potentials.>® However, microcanonical inflection-
point analysis is not based on the response of the system to
changes of external thermodynamic state variables such as the
(canonical) temperature.
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If S(E) contains a least-sensitive inflection point, it must
clearly be signaled by a minimum in the first derivative, which
is the microcanonical temperature

B(E) = TY(E) = dS(E)/dE. 9)

We classify this as a first-order transition signal. In conse-
quent analogy, we define second-order transitions by means
of least-sensitive inflection points in B(E). If a least-sensitive
inflection point occurs first in the second derivative, which is
symbolized by y(E) = d*S(E) /dE?, we refer to it as a third-order
transition, etc.

Generally, transitions of odd order (2v — 1) (v positive inte-
ger) possess a least-sensitive inflection point in the (2v — 2)th
derivative of S(E), which is characterized by a positive-valued
minimum in

> IS(E
dET(D) > 0. (10)
E=Etr
Transitions of even order 2v are least sensitive at the transition

energy in the (2v — 1)th derivative of S(E), and the correspond-
ing maximum in the (2v)th derivative must be negative

d2S(E)
dE2v

<0. (12)
E=E¢

We call this class of transitions independent because there is
another category, dependent transitions, which can only occur
as precursors of independent transitions.?® In this paper, we
can focus on independent transitions as dependent transitions
were not observed for this model.

Note that due to binning, i.e., the discretization of the
energy space in the simulations, the numerical results for the
entropy are discrete. Employing discrete differentiation meth-
ods naively to get the derivatives needed for the subsequent
microcanonical analysis would enhance the noise associated
with the numerical error of the data and obscure transition
signals. Therefore, we use the discrete set of Q +1 data points
Sy at energies Eq (with q = 0, 1, ..., Q) obtained in the simu-
lations as control points for the Bézier algorithm,®*7% which
generates the smooth function

=3 (I (B (E s

The derivatives required for the statistical analysis can be
calculated from this function.

Although we do not expect to observe divergences in the
transition region for finite systems, we do find clear signals
indicating structural transitions in the microcanonical curves,
which serve as finite-system analogs of classical phase tran-
sitions. The order of these structural transitions is discernible
from subtle details of the relationship between microcanonical
entropy or its derivatives and the energy of the system. This
approach is not based on catastrophic behavior of thermody-
namic quantities. Consequently, it does not require a scaling
analysis in the artificial thermodynamic limit of infinitely large
systems, which for many realistic systems (such as biopoly-
mers) is not even possible.

ARTICLE scitation.org/journalljcp

Ill. RESULTS

A. Canonical statistical analysis

Canonical analysis is the conventional approach to under-
standing thermodynamic properties of a system. Extremal
thermal fluctuations of any observable O, defined by

(OE) — (OXE)
kpT? '

are used to locate regions of temperature space with
enhanced thermal activity. The most commonly considered
observable is the system energy E, which is readily available
from the simulations since Monte Carlo simulations require
its calculation after each update. The thermal fluctuation of
the energy, the heat capacity Cy(T) = d(E)/dT, is a useful
generic indicator for transitions in complex systems. Peaks
in the Cy(T) curve signal rapid changes of (E)(T), which typ-
ically accompany significant macrostate changes of the sys-
tem like in thermodynamic phase transitions. More specific
for locating structural transitions in polymer systems, we also
estimated the squared radius of gyration,

N
Réyr = % Z(rj - rc‘m.)z, (14)
=

d
ﬁ<o> = (13)

where r;j is the coordinate of monomer j and rem, = Zsz 1j/Nis

the center of mass of the polymer conformation. The radius of
gyration can be interpreted as a measure for structural com-
pactness and, therefore, helps to distinguish structural phases
in which the macrostates notably differ in size. The corre-
sponding thermal fluctuation quantity d(RéyQ/dT is particu-
larly useful for the identification of structural transitions if Cy
fails to provide a pronounced signal. This typically occurs for
entropy-driven transitions in small systems that do not exhibit
large energetic fluctuations. The most prominent example is
the coil-globule (or @) transition in finite polymer systems.

Figure 2 shows the plots of d(R,)/dT and Cy of the
55-mer as functions of temperature T for various 7 values,
respectively. The clearly visible peaks in the fluctuations of
structural compactness at T ~ 1.6 in Fig. 2(a) indicate the ©
transition, where extended coil structures collapse and form
the more compact globules. Increasing » slightly shifts the ®
transition point to lower temperatures.

By lowering the temperature further, globular structures
eventually freeze into solid conformations. The correspond-
ing transition signals can be observed in the group of peaks
at temperatures around T = 0.3 [Figs. 2(b) and 2(c)]. These
transition signals shift to lower temperatures for small 77 val-
ues but start to move up in temperature for > 0.2. This
observation suggests a significant change in system behav-
ior if n exceeds a certain threshold value. Among these vis-
ible features, the signals with narrow widths and high peak
heights at > 0.2 indicate the freezing transition. These sig-
nals become less pronounced and broader as n decreases.
Instead of being indicators for a specific type of transition,
these wide and low peaks are rather envelopes of multi-
ple transition signals. This ambiguity in distinguishing and
classifying the transitions at small » values is caused by
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FIG. 2. (a) and (b) Thermal fluctuation of the squared radius of gyration
d<R§yr>/dT as a function of temperature for a flexible polymer with N = 55
monomers at different values of 77, and (c) low-temperature region of the heat
capacity Cy.

finite-size effects which cannot be resolved by means of
canonical statistical analysis of Cy and d<R§yr> /dT. Therefore, it
is necessary to employ other systematic and robust methods
such as microcanonical inflection-point analysis, which can
clearly distinguish the sensitive transition signals in finite-size
systems. Subsequent structural analysis will then enable us to
interpret the physical meaning of these transition signals.

B. Microcanonical analysis and hyperphase diagram

As discussed earlier, microcanonical inflection-point
analysis®?335 can be used to identify and classify transitions
in systems of any size. In the following, we focus on the
transition behavior of polymer models with 7 € [0, 1] at low
temperatures. Plots of the microcanonical entropy S(E) are
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shown in Fig. 3(a). Simulations for > 0.04 reveal least-
sensitive inflection points and a convex region in the entropy
curves, leading to the prominent “backbending behavior” in
the B(E) plots shown in Fig. 3(b). According to the generalized
inflection-point analysis method,?*> minima of B(E) are indica-
tive of a first-order transition. At n = 0.04, the first-order
transition is found at T ~ 0.25. It is stable for > 0.04 and
the transition temperature increases slightly with ». This is the
expected first-order transition from the liquid to a solid phase,
which is known to be the icosahedral phase for the 55-mer
studied here. These results enable us to construct the low-
temperature transition line in the hyperphase diagram shown
in Fig. 4(a).

Below 1 ~ 0.04, the scenario is significantly different. The
negative-valued peak for n = 0.02 at E » —241 corresponds
to a least-sensitive inflection point in B(E), which indicates
a second-order transition at T ~ 0.23. Systematic analysis
reveals that this transition type occurs in the interval 0.01 <
n < 0.04 and replaces the first-order liquid-solid transition in
this temperature region. As the structural analysis in Sec. 111 C
will show, the liquid-solid transition behavior becomes indeed
more complex. This is also due to the occurrence of additional
transition signals of higher order. At 7 ~ 0.012, we find a third-
order transition signal in this transition region, which marks
the crossover point towards a fourth-order transition for
n < 0.0L

Another remarkable feature of the small-; models is the
occurrence of additional precursor lines that “shadow” the
major low-T transition line. Their existence is unmistakably
manifested from the positive-valued minima in the §(E) curves
shown in Fig. 3(d), which indicate third-order transitions.
For n > 0.025, these transition points lie below the liquid-
solid transition line and for 7 < 0.025 above the extension of
this line. This qualitative change is another indication that the
structural behavior of the system significantly changes around
this crossover point. It is worth noting that the shadow transi-
tion keeps accompanying the liquid-solid line even for larger
values. It approaches the strong first-order line asymptotically
and merges with it (in microcanonical analysis, a transition line
is swallowed by a first-order transition, if the former enters
the backbending region of the latter).

Based on the results obtained by microcanonical
inflection-point analysis for 19 n values, we construct the
hyperphase diagram as shown in Fig. 4(a). The major phases
are well-known from previous studies of flexible polymers. At
sufficiently high temperatures, the polymer is in the gas-like
pseudophase in which dissolved or random-coil structures
dominate. Decreasing the temperature causes the polymer to
collapse and to enter the liquid pseudophase, where compact
globular conformations are favorably formed. The corre-
sponding pseudophase transition is the well-known ©-
transition (collapse transition). Because of the negative y(E)
peaks for all 7 values in this region, this transition is classi-
fied as of second order and it is represented by the blue line
in Fig. 4(a). As the temperature decreases further, the polymer
transfers from the globular phase to the more compact “solid”
phase (liquid-solid or freezing transition), which is character-
ized by locally crystalline or amorphous metastable structures.
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FIG. 3. (a) Microcanonical entropy S(E) for an array of 7 values; (b) microcanonical inverse temperature B(E) = dS/dE; (c) y(E) = dB(E)/dE; (d) 6(E) = dy(E)/dE.

The analysis of the compact subphases is much more
challenging as the magnification of the low-temperature and
small-r region of the hyper-phase diagram in Fig. 4(b) shows.
Multiple transition lines of different order exist. Microcanon-
ical inflection-point analysis identifies the liquid-solid transi-
tion as of first order for > 0.04 and of second order for 0.01
< 17 < 0.04. The extension of this line for < 0.01 is of higher
than second order. The detailed structural analysis in Sec. III
C will shed more light on the reasons for this diverse and com-
plex behavior, which includes additional transition lines. Most
notably, the liquid-solid transition is accompanied by a third-
order transition line. Both lines eventually merge for large
values. Structures in the intermediate phase possess a solid
icosahedral core, whereas the overlayers are still disorganized
and incomplete, forming a two-dimensional liquid interface.
Only for temperatures below this companion line and suffi-
ciently large n values, the phase is dominated by structures
with icosahedral geometry as it is expected for a flexible poly-
mer with a “magic” number of monomers and matching length
scales of bonded and nonbonded interactions.

For n < 0.03, different geometric subphases exist and
are characterized by the competition between structures with
icosahedral and bihexagonal cores (see Fig. 5). Only for small-
est n7 values and lowest temperatures, the bihexagonal phase
dominates. This is an interesting result as it shows that the
solid phase of polymers with symmetric and wider bond
potentials is indeed different, but stable only for small varia-
tions of parameters. However, if the threshold value  ~ 0.02 is
exceeded icosahedral structures mix in and eventually domi-
nate for larger parameter values.

C. Structural analysis

The tools of microcanonical inflection-point analysis, as
introduced in Sec. Il C, provide us with a systematic way
of identifying and classifying all structural transitions in a
given physical system. Another step towards a more advanced
understanding of thermodynamic properties of a system is the
identification of dominant conformations and their abundance
in a relevant energy range. This can be done directly either by
visual inspection of sample structures, or more systematically,
by introducing a suitable set of structural order parameters.

For the purpose of identification of low-energy solid-like
structures which possess well-defined symmetries, a set of
effective order parameters can be defined in terms of the real
spherical harmonics.>® We define the polymer core as con-
sisting of K monomers with the coordinates X© = (r{,...,1$)
within 1250 of the center of mass of the polymer. We
introduce a set of rotationally invariant order parameters by

. | 1/2
I 2
Q= [2“17;[ lom %] (15)
where
1 &
o = D, Yin(y) (16)
k=1
is the average of the real spherical harmonics
H Y@ - ymy )], m<o,
Yim(r) = { Y"(r), m=0, 17

Fm@+)mYre)], m>o0
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FIG. 4. (a) Microcanonical hyperphase diagram, parameterized by temperature T
and model parameter 7. The major phases are labeled G (gas), L (liquid), and
S (solid). (b) Detail view of the low-temperature and small-7; region, emphasiz-
ing the different solid phases. In Si_core, Structures with bihexagonal cores and
liquid-like shells are dominant. Si;_core represents conformations with well-formed
icosahedral cores, butincomplete surface layers. In the Si; and Sy; pseudophases,
icosahedral and bihexagonal core structures have complete overlayers. In Spx,
icosahedral and bihexagonal core structures coexist. The “solid” subphases are
separated by gray empirical transition bands. Dashed lines represent lines of
transitions higher than second order.

calculated at the positions of the core monomers.

As expected, preliminary inspection of structures
obtained from simulations of the flexible 55-mer with
n ~ 1 shows that below the freezing transition, virtually all

FIG. 5. Core structures in solid phases of the 55-mer: (a) icosahedral (ic-core); (b)
bihexagonal (bi-core).
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conformations contain an icosahedral core. However, with
basically symmetric bonded interactions ( < 0.03), two dis-
tinct core geometries are found. In addition to the standard
icosahedral core, which is present in the global minimum
structures of most short chains, we have also identified a
bihexagonal core consisting of 15 monomers (Fig. 5). The six-
fold dihedral symmetry of the bihexagon and the icosahedral
symmetry are best distinguished using the Qg order param-
eter. For a perfect icosahedral core, Qg ~ 0.65, whereas a
bihexagonal core corresponds to Qg ~ 0.41.

We present the results in the form of intensity plots
in Fig. 6. Shades correspond to the probability of find-
ing a structure with a particular value of Qg at a given
microcanonical temperature T(E). Black represents zero
probability and red unity. An interesting feature, found only
in systems with n < 0.027, is marked by the green hori-
zontal lines at T ~ 0.29. It is associated with the apparent
shift of the peak of the Qg distribution at this temperature
towards lower values. This indicates the onset of the forma-
tion of bihexagonal cores in the liquid phase and corresponds
to the third-order transition line in the microcanonical phase
diagram [Fig. 4(b)]. Below this transition, amorphous struc-
tures with loose bihexagonal cores and liquid-like surfaces are
identified in the Sp;_core pseudophase. Typical conformations
containing icosahedral or bi-hexagonal cores are shown in
Fig. 7.

At low temperatures and n = 0.005, we observe a
single dominant funnel centered at Qg ~ 0.41, containing
structures with a bihexagonal core [Iig. 6(a)]. The adjacent
secondary funnels all contain bihexagonal cores with slightly
modified inter-monomer distances. Structures with an icosa-
hedral core are found in the weakly populated funnel at
Qs ~ 0.65. The low-temperature transition signal is associated
with the increase in the population of structures with bihexag-
onal cores and is classified as of fourth order. This transition
signal is marked by violet transition lines in Fig. 6(a) and in
the hyper-phase diagram shown in FIig. 4(b). A small increase
in the strength of the bonded LJ potential leads to a sharp
increase in the population of icosahedral cores. For n = 0.01,
the ground state of the polymer is still found in the bihexag-
onal funnel; however, the onset of a significant population of
icosahedral cores produces an additional fourth-order transi-
tion signal at T = 0.17; see Figs. 4(b) and 6(b). Further increase
leads to a sharp decline in the population of the bihexagonal
funnel.

This can be seen clearly for > 0.02 [Figs. 6(c) and 6(d)]
where the energetic penalty for non-optimal bond lengths
becomes too large to accommodate structures with bihexago-
nal cores. Indeed, their formation requires significant variance
in bond lengths, whereas icosahedral cores can be formed with
near-optimal values. For n = 0, the pure FENE potential per-
mits large bond fluctuations. However, with the introduction
of the bonded LJ potential, these fluctuations cause an ener-
getic penalty. This explains why the bihexagonal funnel exists
only if the bonded LJ potential is sufficiently weak. In Fig. 8,
we show the bond-length variance as a function of energy for
different values of the model parameter 5. With increasing
values of n, the variance decreases, most significantly in the
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FIG. 6. Intensity plots of the Qg
order parameter at (a) n = 0.005, (b)

n = 0.010, (c) » = 0.020, and (d) 7
= 0.050, respectively. The probability of
finding polymer structures with a particu-
lar value of Qg is represented by colored
shading, with black being zero probability
and red corresponding to the maximum
probability of 1.

Phase Conformations

Sicfcore

Sic

Sbifcoro

Shi

FIG. 7. Different views of typical structures in the solid subphases: view along the
core axis (left), perspective view (center), and core representation (right). Icosahe-
dral and bihexagonal cores are plotted in blue and red, respectively. Gray beads
represent surface monomers.

low-energy region. Most striking is the difference between the
low-energy curves for = 0.01 and r = 0.02, where the former
has a bihexagonal ground-state and the latter is icosahedral.

At  ~ 0.04, the signal associated with the onset of the
icosahedral funnel becomes first order and can be unambigu-
ously identified as the freezing transition. Beyond n =~ 0.1,
the structural and energetic properties of the 55-mer do not
change significantly anymore.

2
OBL

-260 -240 -220 -200 -180 -160 -140 -120 -100
E

FIG. 8. Variance o‘éL of bond-length fluctuations for the 55-mer plotted as a
function of energy and different values of the model parameter 7;.
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From the structural analysis, we conclude that the low-
temperature behavior of this flexible polymer model can be
classified into three pseudophases. For sufficiently small 7
values, bihexagonal core structures with compact hexagonal-
like surface layers, shown in Fig. 7, dominate the solid phase.
As n is increased, the population of icosahedral structures
gradually increases due to the additional energy penalty of
the non-optimal bond lengths in bihexagonal cores, but both
structure types still coexist in a mixed phase [Spix in Fig. 4(b)].
Once the width of the bonded potential is sufficiently narrow,
the bihexagonal core structures completely vanish and only
the icosahedral structures persist. The corresponding pseu-
dophase is labeled Sc in Fig. 4 and representative structures
are shown in Fig. 7.

The third-order transition accompanying the freezing
transition in Fig. 4(b) is associated with the completion of
the icosahedral shell. Upon decreasing the temperature, liquid
structures begin to nucleate and first form the stable icosa-
hedral cores if > 0.03. Surfaces of the polymer structures
still undergo large fluctuations in order to arrange the surface
monomers in optimal locations. The mobility of the monomers
is confined to effectively two dimensions on the surface. These
semi-liquid structures are dominant in the solid Sjc_core pseu-
dophase. If the temperature is decreased further, the surface
formation finishes and complete icosahedral shell structures
appear in the solid S;. pseudophase.

For sufficiently large n values, the freezing transition of
a polymer can generally be characterized by two hierarchical
processes. One is associated with the nucleation process of
the core identified as first- or second-order transitions, and
the other is due to surface layer formation which is a third-
order transition.

IV. CONCLUDING REMARKS

We employed parallel tempering simulations, supported
by a parallelized version of multicanonical sampling, to inves-
tigate the effects of the shape of the potential of bonded
monomers on the structure formation properties of elastic
flexible polymers. For this purpose, we introduced the model
parameter 77, which controls the width and asymmetry of the
bond potential. In this study, we focused on a single flexible
polymer with 55 monomers, which is an interesting example
as it can form a perfectly icosahedral structure under cer-
tain conditions. In order to identify and distinguish the vari-
ous structural phases in this system, we systematically applied
the microcanonical inflection-point analysis method and per-
formed a thorough structural analysis of the compact phases
to construct the hyperphase diagram.

Besides the commonly expected random-coil (gas-like)
and globular (liquid-like) phases, we find a diversity of solid
subphases whose properties depend on the value of the 7
model parameter.

Perturbing the symmetric FENE potential allows for larger
fluctuations of bond lengths. Structures with bihexagonal
cores commonly dominate the solid phase as long as the
bond potential is virtually symmetric. Increasing the value
of the model parameter 1 narrows the bond potential width

ARTICLE scitation.org/journalljcp

and induces asymmetry. The energetic penalty for non-
optimal bond lengths becomes too large to accommodate
structures with bihexagonal cores. Thus, bihexagonal core
structures become less favorable for large ;; values and icosa-
hedral cores begin to dominate, leading to a mixed phase, in
which both structure types coexist. The mixed phase eventu-
ally turns into the icosahedral phase if n is sufficiently large,
and the bond potential is dominated by the Lennard-Jones
potential.

Our results also indicate that for sufficiently large » val-
ues, the freezing transition is a well-organized hierarchical
process: Whereas nucleation or core formation is a first-
order transition, the subsequent shell formation process was
identified as a separate third-order transition. During core
formation, the surface layer remains liquid. This flexibility
enables an optimal arrangement of the core monomers. Once
the solid core is formed, the monomers of the surface layer
pack optimally in the void spaces left on the surface of the
core, thereby forming the second shell of the icosahedral
conformation.

The results we obtained also demonstrate the power of
microcanonical inflection-point analysis, which does not only
help identify the major transitions but can also distinguish the
details of the transition processes by signaling higher-order
transitions.

Our case study of a 55-mer provides robust insights into
the nature of transition processes in flexible polymers. The
general structure of the hyperphase diagram discussed in this
paper is not expected to change significantly for larger sys-
tems. However, it is well known that details of the liquid-
solid and solid-solid transitions, typically associated with
Mackay and anti-Mackay overlayer formation,?> depend on
the system size. Therefore, future work on the deeper anal-
ysis of these processes for other chain lengths, using the
model and methodologies introduced in this paper, would be

intriguing.
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