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Polymer chains undergoing a continuous adsorption-desorption transition are studied through exten-
sive computer simulations. A three-dimensional self-avoiding walk lattice model of a polymer chain
grafted onto a surface has been treated for different solvent conditions. We have used an advanced
contact-density chain-growth algorithm, in which the density of contacts can be directly obtained.
From this quantity, the order parameter and its fourth-order Binder cumulant are computed, as well
as the corresponding critical exponents and the adsorption-desorption transition temperature. As the
number of configurations with a given number of surface contacts and monomer-monomer contacts
is independent of the temperature and solvent conditions, it can be easily applied to get results for
different solvent parameter values without the need of any extra simulations. In analogy to continuous
magnetic phase transitions, finite-size-scaling methods have been employed. Quite good results for the
critical properties and phase diagram of very long single polymer chains have been obtained by prop-
erly taking into account the effects of corrections to scaling. The study covers all solvent effects, going
from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion,
to poor solvent conditions that enable the formation of compact polymer structures. Published by AIP
Publishing. https://doi.org/10.1063/1.5027270

I. INTRODUCTION

The study of adsorption of polymer chains from a solution
onto a flat solid surface has been extensively investigated for
more than 60 years,1 not only due to its relevance for poten-
tial technological and biological applications2–6 but also for
its importance on many phenomena such as adhesion, surface
coating, wetting, and adsorption chromatography, among oth-
ers (see, for example, Refs. 6 and 7). In the diluted regime,
the chains can be considered independent of each other, and
it is sufficient to investigate the surface effects on the confor-
mations of a single polymer chain only. Such conformations,
in their turn, can be determined by the temperature of the heat
bath, the corresponding solvent quality, and the strengths of
the monomer-monomer and monomer-surface interactions. In
general, at sufficiently high temperatures and good solvent
conditions, the polymer chain is expected to be extended and
desorbed. However, at low temperatures, even a small attrac-
tive surface interaction is capable of keeping chain segments
adsorbed.6,8 As a result, a continuous adsorption-desorption
(A-D) transition occurs at a critical temperature Ta, with
a desorbed phase for T > Ta and an adsorbed phase for
T < Ta.

An appropriate order parameter for this A-D transition
can be given by the ratio

ns = Ns/N , (1)

where N s is the number of monomers in contact with the sur-
face and N is the total length of the chain. It is clear that in

the desorbed phase (for T > Ta), for very long chains, ns→ 0.
Thus, at the transition temperature Ta, a crossover exponent
φ is defined for the behavior of the mean value of N s as a
function of the chain length by8

〈Ns〉 ∼ Nφ or 〈ns〉 ∼ Nφ−1, (2)

which should be valid for long chains (N � 1).
In three dimensions, the precise value of this crossover

exponent still remains an open question, even after decades
of intensive research. For example, in the seminal work
of Eisenriegler, Kremer, and Binder8 on scaling rela-
tions for the adsorption transition, the estimated value was
φ = 0.58(2). Meirovitch and Livne9 have used a scanning sim-
ulation method to obtain φ = 0.530(7). On the other hand,
Hegger and Grassberger10 suggested that this exponent might
be superuniversal because they found φ = 0.496(5), which is
close to the exact result in two dimensions φ = 0.5. Another
result towards the superuniversal character of this exponent
has been reported by Metzger et al.,11,12 φ = 0.50(2). Accord-
ing to Descas et al.,13 the determination of φ is strongly
dependent on the estimation of the corresponding transi-
tion temperature Ta. In their work, both values φ = 0.5 and
φ = 0.59 were considered acceptable, with the latter one being
preferable. In a high-precision simulation using the pruned-
enriched Rosenbluth method (PERM), Grassberger14 obtained
φ = 0.484(2). In agreement with this result, Klushin et al.15

estimated φ = 0.483(3). Conversely, Luo16 reported a larger
value, φ = 0.54(1), while Taylor and Luettmer-Strathmann,17

by means of Fisher partition function zeros, determined
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φ = 0.515(25). In a previous paper, we have obtained
φ = 0.492(4)18 and, very recently, Bradly et al. settled at
φ = 0.484(4).19

From what has been discussed above, one can clearly
notice that the estimates of the crossover exponent cover a
broad range and they are strongly dependent on the precise
value of the critical temperature Ta. Additionally, the previous
studies mostly consider good solvent conditions only, in which
the monomer-monomer interaction has been neglected. It is,
therefore, interesting to see whether the exponents (besides
the crossover exponent φ, there are critical exponents for other
thermodynamic quantities, which will be defined below) vary
or are universal as a function of the different solvent conditions,
together with the construction of the corresponding phase dia-
gram. Put in this way, a major contribution of the present work
is the discussion of the dependence of the critical behavior
and the critical exponents under all possible solvent condi-
tions, which effectively extends the study to an entire class of
hybrid polymer-adsorbent-solvent systems instead of a single-
case scenario of good solvent conditions as has been done in
the past.

In the present work, which is an extension of the recent
results reported in Ref. 18, we treat the critical properties of the
A-D transition of long chain polymers described by a coarse-
grained model of self-avoiding random walk in three dimen-
sions (i.e., chains with excluded volume interactions) with
different solvent conditions by including an extra monomer-
monomer interaction. In addition, we take advantage of the
similarity of this geometrical transition with those in magnetic
systems and perform a finite-size scaling (FSS) analysis.16,20

However, corrections-to-scaling effects will be considered in
order to take into account the finiteness of the polymers length.
It will be shown that the critical values are in fact in accord to
some already discussed in the literature for good solvents, not
only for the estimates of the transition temperature Ta but also
for the corresponding crossover exponent as well. For different
values of the solvent conditions, it is noted that the exponents
vary and the presence of a multicritical point is expected along
the phase transition line separating the adsorbed and desorbed
phases.

The paper is organized as follows. In Sec. II, the model
is defined, while the computer simulational background is
briefly described in Sec. III. In Sec. IV, we present details
of the finite-size-scaling analysis and the results are dis-
cussed in Sec. V. Section VI contains additional comments
and concluding remarks.

II. SELF-AVOIDING RANDOM WALK MODEL
ON THE SIMPLE CUBIC LATTICE

A simple and useful coarse-grained lattice polymer model
for adsorption can be represented by an interacting self-
avoiding random walk with additional monomer-substrate
interaction. A polymer chain of length N is formed by N
identical monomers occupying sites on a simple cubic lattice.
Adjacent monomers in the polymer sequence have a fixed uni-
tary bond length of one lattice unit. We consider a grafted
polymer with one end covalently, and permanently, bound to
the surface (i.e., it cannot desorb).

Each pair of nearest-neighbor non-bonded monomers pos-
sesses an energy−εm. Thus, the key parameter for the energetic
state of the polymer itself is the number of monomer-monomer
contacts, Nm. The flat homogeneous and impenetrable sub-
strate is located in the z = 0 plane, and the polymer is restricted
to z > 0. All monomers lying in the z = 1 plane are consid-
ered to be in contact with the substrate, and an energy −ε s

is attributed to each one of these surface contacts. Hence, the
energetic contribution due to the interaction with the substrate
is given by the number of surface contacts of the polymer,
N s.

The total energy of the model can then be written
as6,21

Es(Ns, Nm) = −ε sNs − εmNm = −ε s(Ns + sNm), (3)

where s = εm/ε s is the ratio of the respective monomer-
monomer and monomer-substrate energy scales. Actually, s
controls the solvent quality in such a way that larger s val-
ues favor the formation of monomer-monomer contacts (poor
solvent), whereas smaller values lead to a stronger binding to
the substrate. For convenience, we set ε s = 1 meaning that
all energies are measured in units of the monomer-substrate
interaction energy scale.

III. SIMULATIONAL BACKGROUND

We used the contact-density chain-growth algorithm,6,22,23

where the density of contacts g(N s, Nm) is directly obtained
from the simulation. This quantity represents the number
of states for a given pair N s (number of contacts) and Nm

(monomer-monomer contacts). It does not depend on the tem-
perature and the solvent parameter s. Thus, the temperature T
and the solubility parameter s are external parameters that can
be set after the simulation has finished.

We have simulated chains with lengths N = 16, 32, 64,
128, 256, 400, and 503 monomers. The total number of gener-
ated chains varied from 3.0 × 108 for N = 16 to 1.8 × 109 for
N = 503. Statistical errors have been estimated by using the
standard jackknife method.24 The s values we considered here
varied from s = −10 to s = 4. It is noteworthy that other values
of s could be chosen without performing any extra simula-
tions. However, since we already covered a significant region
of the phase diagram, other values of solvent conditions would
not provide any new qualitative insights into the transition
behavior.

It is interesting to note that all relevant energetic thermo-
dynamic observables can be obtained from the contact density
g(N s, Nm). For instance, for a given pair N s and Nm, one can
define the restricted partition function Zr

T ,s(Ns, Nm) as

Zr
T ,s(Ns, Nm) = g(Ns, Nm) exp[(Ns + sNm)/kBT ], (4)

from which the canonical partition function is obtained as

ZT ,s =
∑

Ns,Nm

Zr
T ,s(Ns, Nm). (5)

Similarly, the mean value of any quantity Q(N s, Nm) can be
computed from
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〈Q〉 =
1

ZT ,s

∑
Ns,Nm

Q(Ns, Nm)g(Ns, Nm) exp

[
Ns + sNm

kBT

]
. (6)

In the simulations, we set kB = 1.
It is then clear that entropy, free energy, the average num-

ber of surface contacts N s, the average number of monomer-
monomer contacts Nm, heat capacity, cumulants, etc., are
examples of functions that are easily calculable for any values
of T and s, as soon as g(N s, Nm) has been obtained from the
simulations.

Now, in order to get the critical properties of the present
model, instead of working with energetic quantities, such as
the specific heat maximum,25 which has been proven to have
some pitfalls,26 or considering the scaling properties of the par-
tition function,14,15 we will resort here to the scaling properties
of the order parameter and its derivatives, along the same lines
as done in Ref. 16. However, we will take into account correc-
tions to scaling and use convenient temperature derivatives of
the order parameter 〈ns〉, as well as scaling properties of the
A-D transition temperature and the fourth-order cumulant of
the order parameter.

So, from the simulations for each polymer length N, we
can compute the mean value of the fraction of the number
of monomer-substrate contacts, given by Eq. (1), and related
quantities like the fourth-order cumulant

U4(T ) = 1 −

〈
n4

s

〉
3
〈
n2

s

〉2
(7)

and the temperature derivative

Γ = −
d ln〈ns〉

dT
. (8)

IV. FINITE-SIZE SCALING (FSS)
OF THE THERMODYNAMIC FUNCTIONS
A. Magnetic systems

According to the finite-size scaling (FSS) theory for
second-order phase transitions, it is well known that the sin-
gular part of the magnetic Gibbs free energy G(t, h, L) of a
finite magnetic system, close to its critical temperature, can be
written as

G(t, h, L) = L−dG(Lyt t, Lyh h), (9)

where t = |T − T c|/T c, T c with being the infinite lattice critical
temperature, h is the external field, L is the linear system size,
and d is the dimension of the lattice. The exponents in Eq. (9)
are yt = 1/ν and yh = d − β/ν, where ν is the correlation
length critical exponent and β is the magnetization critical
exponent. From the above relation, the scaling behavior of the
magnetization, the specific heat, and the susceptibility can be
obtained in a straightforward way.

From the free energy (9) and, for simplicity, consider-
ing zero external field h = 0, it can be shown that any of the
above specified quantities, generally designated by P(t, L),
scales as

P(t, L) = Lσ/νfP(x), (10)

where σ is the critical exponent of P, namely, P(t,
L → ∞) = P0t−σ (with P0 a non-universal constant), and

f P(x) is a FSS function of x = L1/νt. For instance, if P is
the magnetization one would have σ = −β. Similarly, one
has σ = α and σ = γ for the specific heat and susceptibility,
respectively.

The FSS ansatz given by Eqs. (9) and (10) is valid only
for sufficiently large systems and temperatures sufficiently
close to the critical one. Corrections to scaling and finite-size
scaling terms should appear for smaller systems and tempera-
tures away from T c, mainly due to irrelevant scaling fields and
non-linear scaling fields. In general, such corrections can be
implemented by generalizing (10) as

P(t, L) = Lσ/νfP(x)
[
1 + AP(x)L−ω

]
, (11)

where AP(x) is another FSS function of x = L1/νt and
ω is the corresponding leading order correction-to-scaling
exponent.

B. Adsorbed polymer chain

For the present coarse-grained lattice polymer model for
adsorption the natural size of the self-avoiding random walk
chain is its length N. In analogy with magnetic systems, as
given by Eq. (9), the polymer free energy should scale with
temperature as

G(t, N) = N−1G(N1/δ t), (12)

where we have now yt = 1/δ instead of yt = 1/ν in order to avoid
confusion with Flory’s ν exponent widely used in polymer
science.

The general scaling relation for the order parameter (2)
reads

〈ns〉 = Nφ−1fns (x)
[
1 + Ans (x)N−ω

]
, (13)

where the above equation is a generalization of Eq. (2) by
taking into account effects of corrections to scaling due to the
finiteness of the polymer length and now x = N1/δ(T − Ta), Ta

with being the adsorption critical temperature.
The corresponding fourth-order cumulant of the order

parameter U4 given by Eq. (7) (also known as Binder cumu-
lant) should be independent of the chain length N (for very
long chains),27 and the maximum value of the quantity given
by Eq. (8) is supposed to scale as

Γmax = −

[
d ln〈ns〉

dT

]

max
= N1/δ fd(x)

[
1 + Ad(x)N−ω

]
. (14)

Accordingly, for the critical temperature, one has the fol-
lowing scaling law, also based on continuous transitions in
magnetic models,

TN = Ta + N−1/δ fT (x)
[
1 + AT (x)N−ω

]
. (15)

The exponent δ defined above is in fact the equivalent
of the thermal critical exponent of the correlation length ν in
ordinary magnetic continuous phase transitions. The functions
f i(x), with i = ns, d, T, are FSS functions and Ai(x) are non-
universal functions (see, for instance, Ref. 28).

Thus, the procedure we have to follow now is quite sim-
ple. From the simulations of each polymer size, we determine
the exponent 1/δ by using Eq. (14), which depends only on the
maximum value of the derivative given by Eq. (8). In this case,
we consider f d(x) and Ad(x) as normal constants [we expect
them not to vary much since the maximum positions should
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occur at temperatures close to the critical one so that one has
f d(x = 0) and Ad(x = 0)]. With this exponent in hand, the crit-
ical temperature Ta is obtained from Eq. (15) and, having the
critical temperature, we are able to get the crossover exponent
φ by using Eq. (13), where in this case we can also consider
x = 0.

V. RESULTS

As a matter of comparison and a test for the per-
formance of the present approach, let us first discuss the
corresponding results for the good solvent condition case
s = 0, where we have previous results originating from different
methods.

A. Good solvent condition s = 0

Figure 1 shows results obtained by using Eqs. (8) and (14).
In Fig. 1(a), we have plotted Γ as a function of temperature for
several polymer lengths. The corresponding logarithm of its
maximum value as a function of the logarithm of the polymer
length N for different chain sizes is shown in Fig. 1(b). From

FIG. 1. Results for s = 0. (a) Γ, as defined in Eq. (8), as a function of temper-
ature, for different polymer sizes. Smaller sizes have been omitted for clarity.
(b) Logarithm of the maximum value of Γ obtained in (a) as a function of
the logarithm of the polymer length N for different chain sizes. The dots cor-
respond to the simulation results and the lines are the best fit according to
Eq. (14), without corrections to scaling [linear, taking Ad (x = 0) = 0] and with
corrections to scaling [Ad (x = 0) , 0]. The error bars are smaller than the
symbol sizes.

FIG. 2. Fourth-order Binder cumulant U4 as a function of the temperature T
for different chain sizes for s = 0.

the linear fit one gets 1/δ = 0.448(3), while taking into account
corrections to scaling one gets 1/δ = 0.478(2). Although the
corresponding data are rather close, as can be seen in Fig. 1(b),
the value of the 1/δ exponent is sensitive when one considers
correction to scaling. This value should be compared to the
estimate 1/δ = 0.56 from Ref. 16 and 1/δ = 0.485(6) from
Ref. 19, where the latter ones have been obtained from different
procedures.

The fourth-order Binder cumulant, as a function of the
temperature, is shown in Fig. 2. One can clearly see that
there is a systematic crossing of the larger chains with rela-
tion to the smallest one (N = 16). Taking these crossings as
TN , for N ≥ 32, we can plot them as a function of N−1/δ ,
where 1/δ has been computed from the data of Fig. 1. The
corresponding results are depicted in Fig. 3. We note that cor-
rections to scaling are more important in this case and the value
Ta = 3.494(2), so calculated, is comparable to the values
Ta = 3.500(1) obtained by Klushin et al.,15 Ta = 3.44(2)
obtained by Luo,16 and the most recent estimate Ta = 3.520(6)
obtained by Bradly et al.19 All these estimates were obtained
by different approaches.

FIG. 3. Transition temperature TN as a function of N−1/δ for s = 0. The dots
correspond to the crossings of the fourth-order Binder cumulant for chain
lengths N ≥ 32 with the result for N = 16, as shown in Fig. 2. The lines are
the best fit according to Eq. (15), without corrections to scaling [linear, taking
AT (x = 0) = 0] and with corrections to scaling [AT (x = 0) , 0].
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FIG. 4. Logarithm of the order parameter 〈ns〉 as a function of the logarithm
of the polymer length N for different chain sizes, for s = 0, at the transition
temperature Ta. The dots correspond to the simulation results and the lines
are the best fit according to Eq. (13), without corrections to scaling [linear,
taking Ans (x = 0) = 0] and with corrections to scaling [Ans (x = 0) , 0].

Once the critical temperature has been calculated, one can
now utilize the scaling relation (13) to get the crossover expo-
nent. The results are shown in Fig. 4. Although not visible in
the scale of the figure, the corrections to scaling are important
in this case as well, and the computed value φ = 0.492(4) is also
in agreement with the result quoted in Ref. 19, φ = 0.485(6),
and quite close to the value φ = 0.483(2) given in Ref. 15
(these results are smaller than the estimate 0.56 obtained by
Luo16).

From the above results, we can see that the present
approach can furnish quite good results for the special case
s = 0, when compared to the values previously obtained from
other procedures. The corresponding values of the critical
behavior are displayed in Table I, together with those from
Refs. 15, 16, and 19 for comparison. However, our approach
has the advantage of being easily extended to get the critical
behavior for other values of the solvent condition parameter s
without any extra simulation.

TABLE I. Adsorption critical temperature Ta and crossover exponentsφ and
1/δ for some selected values of the solvent conditions s. For comparison, some
values for s = 0 coming from different methods are also shown. The last row
gives the estimate of the correction-to-scaling exponent.

s Ta φ 1/δ

�10 3.31(1) 0.469(5) 0.44(1)
�5 3.303(4) 0.473(3) 0.448(1)
�2 3.358(4) 0.478(3) 0.450(8)
�1 3.407(3) 0.482(3) 0.453(8)

0 3.494(2) 0.492(4) 0.478(2)
015 3.500(1) 0.483(2) . . .

016 3.44(2) 0.54(1) 0.56
019 3.520(6) 0.484(4) =φ

1 3.788(9) 0.524(4) 0.59(3)
1.5 4.60(2) 0.353(4) 0.52(1)
2 5.74(2) 0.228(2) 0.39(1)
2.5 6.87(7) 0.20(3) 0.29(1)
3 7.9(1) 0.205(2) 0.232(7)

ω = 0.5(1)

B. Different solvent conditions s , 0

The behavior of the thermodynamic quantities for other
values of the solvent conditions is qualitatively similar to
those presented in Figs. 1–4. For example, the behavior of
Γ as a function of temperature is shown for different poly-
mer chains for s = −2 in Fig. 5(a) and for s = 2 in Fig. 5(b).
The logarithm of the maximum value of Γ, as a function of
the logarithm of the polymer length N, for the different chain
sizes, is shown in Fig. 6 for both values of solvent conditions,
together with the previous data of good solvent for compar-
ison. The values of the exponent 1/δ include corrections to
scaling.

Figure 7 depicts the behavior of the fourth-order Binder
cumulant for s = −2 [Fig. 7(a)] and s = 2 [Fig. 7(b)]. From
these curves, the crossings of the cumulants with the smaller
chain (N = 16) can be determined in order to compute TN

for N ≥ 32 under each solvent condition. The corresponding
results are presented in Fig. 8 together with the respective fits
and extrapolated adsorbed critical temperature Ta. The pre-
viously obtained value of the adsorbed transition temperature
for s = 0 is also included in Fig. 8 for comparison. We note
that the scale of the curves for s = −2 and s = 0 is the same,
showing that there is not a sensitive variation in Ta as for
s = 2.

FIG. 5. Γ, as defined in Eq. (8), as a function of temperature, for different
polymer sizes. In (a) we have s = −2 and in (b) s = 2. In both cases, smaller
sizes have been omitted for clarity.
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FIG. 6. Logarithm of the maximum value of Γ obtained from the data of
Fig. 5, as a function of the logarithm of the polymer length N, for different
chain sizes. The dots correspond to the simulation results and the lines are
the best fit according to Eq. (14). Dashed lines without corrections to scaling
[linear, taking Ad (x = 0) = 0] and full lines with corrections to scaling [Ad (x
= 0) , 0]. Only the values coming from correction to scaling are listed in the
figure. The error bars from the simulations are smaller than the symbol sizes.

With the values of Ta we can proceed and compute the
crossover exponent φ. The results are shown in Fig. 9. In all
the fits one can notice that corrections to scaling are indeed
important in obtaining the critical behavior of the polymer. For
easier comparison, all results are compiled in Table I, together

FIG. 7. Fourth-order Binder cumulant U4 as a function of the temperature T
for different chain sizes for (a) s = −2 and (b) s = 2.

FIG. 8. Transition temperature TN as a function of N−1/δ for s = −2 (a), s = 0
(b), and s = 2 (c). The values of the exponents 1/δ, for each solvent condition,
come from the data of Fig. 6. The dots correspond to the crossings of the
fourth-order Binder cumulant for chain lengths N ≥ 32 with the result for
N = 16, as shown in Figs. 2 and 7. The lines are the best fit according to
Eq. (15). Dashed lines without corrections to scaling [linear, taking AT (x = 0)
= 0] and full lines with corrections to scaling [AT (x = 0) , 0].

with some additional selected values for different solvent
conditions s.

C. Discussion of the phase diagram
and critical behavior

Although the scaling behavior of the thermodynamic
quantities for general solvent conditions (s , 0) is qualita-
tively similar to that for good solvent (s = 0), the character of
the adsorption transition changes considerably. This is clearly
seen in the phase diagram shown in Fig. 10. Results for s = 0
from Refs. 15, 16, and 19, also included in this figure, fit very
well into the extended picture of polymer adsorption presented
here. For poor solvent (s > 0), desorbed and adsorbed polymer
conformations are much more compact. The self-interacting
polymer undergoes a collapse and an additional freezing

FIG. 9. Logarithm of the order parameter 〈ns〉 as a function of the logarithm
of the polymer length N, for different chain sizes, at the transition temperature
Ta, obtained from Fig. 8. The dots correspond to the simulation results and the
lines are the best fit according to Eq. (15). Dashed lines without corrections to
scaling [linear, taking Ad (x = 0) = 0] and full lines with corrections to scaling
[Ad (x = 0) , 0]. Only the values coming from correction to scaling are listed
in the figure. The error bars from the simulations are smaller than the symbol
sizes.
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FIG. 10. Critical temperature Ta as a function of s for the adsorbed-desorbed
transition. Results for s = 0 from Refs. 15, 16, and 19 are also shown for
comparison. The line is just a guide to the eyes.

transition, and both transitions compete with the adsorption
transition, depending on the solvent conditions. From the esti-
mates for transition temperatures and critical exponents, we
find that the specific parametrization of the critical behav-
ior depends in fact on the solvent quality. As Table I shows,
the values of the exponents obtained for s , 0 are signifi-
cantly different. Obviously, the solvent quality has a noticeable
quantitative influence on the adsorption behavior.

On the other hand, if s is negative, the monomer-monomer
interaction is repulsive, and the polymer avoids forming
nearest-neighbor contacts. This mimics the effect of a good sol-
vent. In the limit s→−∞, the system is represented by what we
may call a “super-self-avoiding walk” (SSAW) model, where
the contacts between nearest neighbors are forbidden. This
effectively increases the excluded volume and the correspond-
ing adsorption temperature of the system is expected to be
smaller than for s = 0. To our knowledge, this case has not yet
been studied and there are no values to compare with. However,
as our results suggest, the corresponding critical adsorption
temperature of this intrinsically non-energetic SSAW should
be Ta . 3.31.

Increasing the value of s effectively increases the confor-
mational entropy at a given energy in the phase of adsorbed
conformations more than in the desorbed phase. As a conse-
quence, the slope of the microcanonical entropy (or the density
of states) becomes smaller near the transition point, which, in
turn, results in a larger adsorption temperature. The phase dia-
gram plotted in Fig. 10 shows exactly this behavior for the
adsorption temperature.

For all s values, the adsorption transition is of second-
order. Figure 11 depicts the behavior of the exponents φ and
1/δ if the solvent quality s is changed. We find that their
values vary along the second-order transition line, meaning
that this transition seems to be non-universal. Moreover, they
cross each other close to s = 0 and both exponents exhibit
a peak near s ∼ 1.5. These peaks can be an indication of
the presence of a multicritical point in this region.29–32 In
fact, various additional crossovers between different adsorbed
phases in the high-s regime are expected. Analyses for a finite
system33 show a complex structure of adsorbed compact

FIG. 11. Critical exponents φ and 1/δ as a function of the solvent parameter
s. Results for s = 0 from Refs. 15, 16, and 19 are also shown for comparison.
The lines are guides to the eyes only. The inset shows the difference between
the exponents ∆ = φ − 1/δ as a function of s.

phases in this regime, but simulations of sufficiently large
systems which would allow for a thorough finite-size scaling
analysis are extremely challenging. Therefore, the discussion
of the nature of separate tricritical points or a single tetra-
critical point with coil-globule transition lines extending into
the desorbed and the adsorbed phases and the crystalliza-
tion behavior near the adsorption line should be left as future
work.

Finally, something should be said about the correction-
to-scaling exponent ω. In all of the fits, we have noted that it
did not change significantly as we changed the parameter s,
in contrast to φ and 1/δ. In addition, the fits are not sensitive
upon variation ofω. Thus, all of our results have been obtained
using an exponent ω = 0.5(1).

VI. ADDITIONAL COMMENTS
AND CONCLUDING REMARKS

The adsorption/desorption transition of long polymers
grafted on a surface has been studied in simulations employing
the contact-density chain-growth algorithm, where the density
of contacts is directly obtained. This quantity can be used to
analyze the thermodynamic behavior for any value of tem-
perature and solvent conditions. By using finite-size scaling
theory, taking into account properly the corrections to scaling,
we constructed the phase diagram in the temperature versus
solvent parameter space and estimated the critical exponents.
Our results are comparable to estimates found in the literature
for good solvent condition (s = 0). In particular, they agree
very well with those reported by Klushin et al.,15 obtained by
a different approach. On the other hand, the agreement with the
results from the work of Luo16 is less satisfactory. Although
Luo has used a similar FSS for some quantities, the present
work has considered an additional scaling relation [given by
Eq. (14)] and resorted to corrections to scaling. The present val-
ues are also quite comparable to the more recent ones obtained
by Bradly et al.,19 who have likewise included corrections to
scaling in their fits.

The phase diagram and the critical exponents suggest
that the critical line is not universal. Moreover, the exponents
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present a peak near the region s ∼ 1.5, indicating the existence
of a possible multicritical point. The presence of this multi-
critical point can be associated with the existence of different
conformational phases of the polymer in the adsorbed phase,
with first-order transitions between them. At least one of these
first-order transition lines will end up at the multicritical point.
However, whether or not there is only one first-order line or
several lines is not clear at the moment. In addition, the rather
strong variation of the critical exponents, as well as the cor-
responding critical temperature near this region, can be the
cause of the difficulty encountered in getting the criticality
of the model, even for s = 0. Naturally, more simulations in
the ordered adsorbed region should be very welcome to pre-
cisely determine the behavior of the transition lines close to
the multicritical point.

We have also estimated the adsorbed transition temper-
ature Ta from the position of the maximum values of Γ, as
depicted in Figs. 1(a) and 5. However, this quantity turned out
to be less robust than the fourth-order Binder cumulant U4

and seems to have similar pitfalls like the specific heat based
measurement.25

Regarding the critical exponents φ and 1/δ, it is apparent
from the scaling theory that they are independent exponents,
as has been reported by Klushin et al.15 However, in the recent
work by Bradly et al.,19 it has been shown that, although inde-
pendent, φ and 1/δ have the same value, at least for s = 0.
Indeed, with an argument similar to that used in Ref. 19, one
can show that they are identical for s = 0. For instance, close
to the adsorbing transition temperature the free energy of the
polymer chain can be given by Eq. (12). On the other hand,
the energy, U, is given by

U =
∂(βG)
∂ β

= −
1

kBT2

∂(βG)
∂T

, (16)

where β = 1/kBT. Close to the transition temperature Ta, βG
= βaG, where βa = 1/kBTa, leading to

U = −kB βa
3N1/δ−1G′(x), (17)

where G′(x) is the derivative of G(x) with respect to x.
Nonetheless, for s = 0, one also has from Eq. (3)

U =
〈Es〉

N
= −ε〈ns〉 = −ε sN

φ−1fns(x). (18)

From the above equations, one concludes that φ = 1/δ.
We can see from Table I that the values of φ and 1/δ are

not equal, but close taking into account the numerical error.
We would also like to emphasize that it is far more efficient
to directly simulate self-avoiding walks instead of interacting
self-avoiding walks, as has been done here with sophisti-
cated algorithmic efforts. In particular, simpler methodologies
would enable simulations of much longer chains for the case
s = 0, and in this case a better test for the equality of φ and
1/δ would be achieved. However, we believe that the poly-
mer lengths we have considered in this paper are sufficiently
long to allow for the quantitative discussion of the adsorption
transition for all solvent conditions.

The above argument, however, holds only for s = 0, where
the internal energy and the order parameter are related. Such
relation does not hold as soon as s , 0. The behavior of the
critical exponents φ and 1/δ, as a function of s, depicted in

Fig. 11 clearly shows that despite being different for general
solvent conditions, they do meet at s = 0. The inset in Fig. 11
shows the difference of the critical exponents ∆ = φ − 1/δ as
a function of the solvent conditions. Assuming their equal-
ity at s = 0, from the data of Table I, we estimate φ = 1/δ
= 0.485(7), in quite good agreement with φ = 1/δ = 0.484(4)
from Ref. 19.

Another important issue raised in Ref. 19 concerns the
universality of this system. The present results indicate a non-
universal behavior as a function of s, while Bradly et al. claim
that the critical exponents should be universal. They reached
this conclusion by studying the self-avoiding trail in the cubic
lattice, which presented the same critical exponents as the
self-avoiding walk. However, the self-avoiding trail does not
seem to correspond to any value of s in our simulations. It
would be, however, desirable to simulate the self-avoiding trail
with monomer-monomer interactions in order to see whether
the corresponding exponents will differ or not from the good
solvent condition.

We believe that it is still premature to decisively claim
non-universal behavior with different values for both expo-
nents. In order to seek for a universal behavior, we could,
in addition of present analysis, consider the same exponent
1/δ along the s line and determine the corresponding transi-
tion temperature Ta with this exponent, as shown in Figs. 3
and 8. However, in doing so, a different Ta is obtained with
the corresponding critical exponent φ not only different from
1/δ but also s dependent.

Still within the scope of universality, since the exponents
should be equal for s = 0, such behavior seems to violate
both universality and weak universality hypotheses (as is well
known, in the weak universality, the exponents vary but their
ratio is constant). This kind of violation of both hypothesis
has been recently reported for the ferromagnetic phase tran-
sition of (Sm1−yNdy)0.52Sr0.48MnO3 single crystals with (0.5
≤ y ≤ 1), where the magnetic exponents vary with Nd con-
centration y.34 Our polymer adsorption model can be seen as
a similar example of such new scaling behavior, providing
also a generic route leading to continuous variation of crit-
ical exponents and multi-criticality. In fact, one of the open
major problems is the precise identification of multicritical
points and their physical understanding. This study requires
an in-depth treatment of the different structural phases of the
polymer and the corresponding transition lines between them
in the adsorbed and desorbed phases, which is far from being
easy. Whereas there has been a history of progress, none of the
existing results can be considered conclusive. The most recent
approach to use a generalized microcanonical statistical anal-
ysis method reveals a multitude of features whose explanation
requires additional careful analyses. This discussion, however,
is beyond the scope of this manuscript and will be pub-
lished once the analysis of the structural transitions has been
completed.
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