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Solvent-dependent critical properties of polymer adsorption

João A. Plascak,1,2,3,* Paulo H. L. Martins,3,4,† and Michael Bachmann2,3,4,‡
1Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil

2Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
3Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA

4Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso, Brazil
(Received 10 January 2017; published 4 May 2017)

Advanced chain-growth computer simulation methodologies have been employed for a systematic statistical
analysis of the critical behavior of a polymer adsorbing at a substrate. We use finite-size scaling techniques to
investigate the solvent-quality dependence of critical exponents, critical temperature, and the structure of the
phase diagram. Our study covers all solvent effects from the limit of super-self-avoiding walks, characterized by
effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer
structures. The results significantly benefit from taking into account corrections to scaling.
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The study of polymer adsorption on a flat solid surface
has been extensively investigated for more than 60 years [1].
Understanding the generic properties of this process is not only
relevant for potential technological and biological applications
[2–6], but also for more basic insights into phenomena such as
adhesion, surface coating, wetting, and adsorption chromatog-
raphy [7]. In dilute solutions, polymers are independent of each
other and surface effects affect the structure formation process
individually. Conformational properties are thus basically
influenced by the heat-bath temperature, solvent quality, and
the strengths of the monomer-monomer and monomer-surface
interactions. In general, at sufficiently high temperatures and
good solvent conditions, the polymer chain favors a disordered
random (typically expanded) geometric structure and it is, for
the gain of translational entropy, desorbed. However, below a
certain threshold temperature, an attractive interaction with
the surface can energetically overcompensate the entropic
freedom of the chain and chain segments get adsorbed at the
surface. In consequence, a continuous adsorption-desorption
(A-D) transition [8] occurs at a critical temperature Ta ,
separating the desorbed phase, which is dominant for T > Ta ,
from the phase governed by adsorbed polymer conformations
for T < Ta .

An appropriate order parameter for this A-D transition
is ns = Ns/N , where Ns is the number of monomers in
contact with the surface and N is the total length of
the chain. In discrete representation, a monomer is in
contact with the substrate if a monomer and a substrate
bead are nearest neighbors on the lattice. In the desorbed
phase (T > Ta), ns → 0 for very long chains (N → ∞).
The power laws 〈Ns〉 ∼ Nφ or 〈ns〉 ∼ Nφ−1, where φ is a
crossover exponent [8], are expected to hold at the transition
temperature Ta .

In three dimensions, the consistent estimation of a precise
value of the crossover exponent is a longstanding and still an
open problem. Various values around φ ≈ 0.5 have been pro-
posed [8–17] (including the long-term conjecture of φ = 0.5
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being superuniversal and independent of dimension [10]), but
the posted uncertainties are much smaller than the deviations
among the estimates. This indicates that there might be a
systematic issue which has not yet been properly addressed.
The numerical value of φ depends strongly on the precise
estimate of the critical temperature Ta .

In most previous studies only good solvent conditions were
considered, i.e., the intrinsic interaction between nonbonded
monomers has been widely neglected. However, it is also
important to understand how the scaling behavior depends
on the solvent conditions and their influence on the transition
properties as represented in the phase diagram, parametrized
by temperature and solvent quality.

In this Rapid Communication, we systematically study the
solvent dependence of critical properties of the A-D transition
of linear, flexible polymer chains grafted to a substrate. Our
results aim at providing the quantitative foundation for the
understanding of the critical adsorption behavior of entire
classes of hybrid polymer-substrate systems. For this purpose,
we utilize the similarity of the A-D transition with phase
transitions in magnetic systems [16,18], and employ finite-size
scaling theory for the characterization of the critical properties.
Corrections-to-scaling effects are considered as well to take
into account the finite length of the simulated polymers chains.

The polymer model consists of N identical beads occupy-
ing sites on a three-dimensional (simple-cubic) lattice. The
polymer chain represents an interacting self-avoiding walk
with short-range interactions between pairs of nonbonded
monomers and monomers and substrate sites. Solvent con-
ditions are changed by varying the energy scales of these
competing interactions.

Adjacent monomers in the polymer chain have unity bond
length. We consider a grafted polymer with one end covalently,
and permanently, bound to the surface. Each pair of nearest-
neighbor nonbonded monomers possesses an energy −εm.
Thus, the key parameter for the energetic state of the polymer
itself is the number of monomer-monomer contacts, Nm. The
flat homogeneous and impenetrable substrate is located in the
z = 0 plane, and monomer locations are restricted to z > 0.
All monomers lying in the z = 1 plane are considered to be
in contact with the substrate, and an energy −εs is attributed
to each one of these surface contacts. Hence, the energetic
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contribution due to the interaction with the substrate is given
by the number of surface contacts of the polymer, Ns .

The total energy of the model can be written as

Es(Ns,Nm) = −εsNs − εmNm = −εs(Ns + sNm), (1)

where s = εm/εs is the ratio of the respective monomer-
monomer and monomer-substrate energies. Actually, s con-
trols the solvent quality in such a way that larger s values
favor the formation of monomer-monomer contacts (poor
solvent), whereas smaller values lead to a stronger binding
to the substrate.

For the simulation of the model, we used the contact-
density chain-growth algorithm [6], which extends earlier
chain-growth methods [19–23]. Consequently, the contact
density (or number of states) g(Ns,Nm) is directly obtained
in the simulation for any possible pair Ns and Nm. It
is independent of temperature and the ratio of the in-
teractions s. Thus, the temperature T and the solubility
parameter s are external parameters that can be set after
the simulation is finished. We generated 108–109 chains
with lengths N = 16, 32, 64, 128, 256, 400, and 503
monomers.

The contact density g(Ns,Nm) is a versatile quantity in
that all relevant energetic thermodynamic observables can
be obtained by simple reweighting. For instance, for a given
pair Ns and Nm, the restricted partition function Zr

T,s(Ns,Nm)
can be defined as Zr

T,s(Ns,Nm) = g(Ns,Nm) exp[εs(Ns +
sNm)/kBT ], from which the canonical partition function is
obtained as ZT,s = ∑

Ns,Nm
Zr

T ,s(Ns,Nm). Similarly, the mean
value of any quantity Q(Ns,Nm) can also be computed by
reweighting,

〈Q〉 = 1

ZT,s

∑

Ns,Nm

Q(Ns,Nm)g(Ns,Nm)eεs (Ns+sNm)/kBT . (2)

In the following, we set εs = 1 and kB = 1. Apparently,
contact entropy, free energy, the average number of surface
contacts Ns , the average number of monomer-monomer
contacts Nm, heat capacity, cumulants, etc., are examples of
functions that are easily calculable for any values of T and s

once g(Ns,Nm) is known.
The scaling properties of generic energetic quantities, such

as maxima of specific-heat curves [24,25], have proven to
be rather unsuitable for a systematic scaling analysis [26],
whereas the scaling behavior of the partition function turned
out to be more insightful [14,15]. We investigate the scaling
properties of the order parameter and its derivatives similarly
to Ref. [16]. However, going beyond the standard approach,
we take into account corrections to scaling and use for
our analysis convenient temperature derivatives of the order
parameter, as well as scaling properties of the A-D transition
temperature and the fourth-order cumulant of the order
parameter.

From the simulation results we estimate 〈ns〉, the fourth-
order Binder cumulant

U4(T ) = 1 −
〈
n4

s

〉

3
〈
n2

s

〉2 , (3)

and the logarithmic temperature derivative

�ns
= d ln〈ns〉

dT
, (4)

for each polymer length N . It is well known that, according
to finite-size scaling (FSS) theory for second-order phase
transitions, the order parameter 〈ns〉 should scale close to the
critical temperature as

〈ns〉 = Nφ−1fns
(x)

[
1 + Ans

(x)N−ω
]
, (5)

where corrections to scaling due to the finite polymer length
have been taken into account. The corresponding fourth-order
cumulant of the order parameter U4 given by Eq. (3) should be
independent of the chain length N for very long chains [27],
and the maximum value of �ns

, given by Eq. (4), supposedly
scales as

�max
ns

= N1/δfd (x)[1 + Ad (x)N−ω]. (6)

In these equations, φ is the crossover exponent as defined in
Ref. [15], δ is the equivalent of the critical exponent of the
correlation length ν in ordinary magnetic continuous phase
transitions, and fns

(x) and fd (x) are FSS functions with x =
|T − Ta|N1/δ being the scaling variable. The second term in
the brackets in Eqs. (5) and (6) approximates all corrections
to scaling by a single term, where ω is the leading correction-
to-scaling exponent and Ans

(x) and Ad (x) are nonuniversal
functions (see, for instance, Ref. [28]).

Accordingly, for the critical temperature the following
scaling law holds, which is also used in analogy to continuous
transitions in magnetic models,

TN = Ta + N1/δfT (x)[1 + AT (x)N−ω]. (7)

Thus, the procedure we can follow is quite standard. From
the simulations, we determine the exponent 1/δ by using
Eq. (6), which depends only on �max

ns
. In this case, we consider

fd (x) and Ad (x) as constants (we do not expect them to vary
appreciably since the maximum positions should occur at
temperatures close to the critical one). With this exponent at
hand, the critical temperature Ta is obtained from Eq. (7) and
with it we estimate the crossover exponent φ by using Eq. (5),
in which case we can choose x = 0.

As a test for the performance of the scaling approach
for the data obtained in our simulations, let us first discuss
results for good solvent conditions, s = 0. In this case,
we can compare with previously published results obtained
with different methods. Figure 1 shows the logarithm of
the maximum value of the derivative given in Eq. (4) as
a function of the logarithm of the polymer length N for
different solvent conditions, including the s = 0 case for
which the linear fit yields 1/δ = 0.448(3). Taking into account
corrections to scaling, we find 1/δ = 0.478(2), which indicates
that corrections to scaling are relevant. Both estimates are,
however, significantly smaller than the value reported in
Ref. [16], 1/δ = 0.56, which was obtained by a different
approach.

The fourth-order Binder cumulant, as a function of the
temperature, is shown in Fig. 2. One can clearly see that there
is a systematic crossing of the curves for the longer chains with
N � 32 with the curve of the shortest, N = 16. Considering
these crossings as finite-length estimates TN of the adsorption
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FIG. 1. Logarithm of the maximum value of the order parameter
derivative �ns

, defined in Eq. (4), and logarithm of the order
parameter 〈ns〉 as functions of the logarithm of the polymer length
N for different s values. The symbols correspond to the simulation
results and the lines are the best fits according to Eqs. (5) and (6),
without corrections to scaling [linear fit, assuming Ad (x) = 0] and
with scaling corrections [Ad (x) �= 0]. The given numerical estimates
include the corrections to scaling.

transition temperature, we plot the crossing points for N � 32
in Fig. 3. For the N dependence we make use of the ansatz (7)
with our previous estimate of the exponent 1/δ ≈ 0.478.

It is obvious that the inclusion of corrections to scaling
is necessary in this case and our estimate Ta = 3.494(2) is
very close to the most recently reported value Ta = 3.500(1)
by Klushin et al. [15], who employed a different estimation
method.

After the critical temperature has been evaluated, we can
utilize the scaling relation (5) to determine the crossover
exponent φ. The results are included in Fig. 1. Although
not visible in the scale used in the figure, the corrections
to scaling are important in this case, too. The thus computed
value φ = 0.492(4) is also comparable with the estimate given
in Ref. [15], φ = 0.483(2).

From the above results, we can conclude that the present
approach and the data obtained from our simulations reproduce
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FIG. 2. Fourth-order Binder cumulant U4 as a function of the
temperature T for different chain sizes for s = 0.
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FIG. 3. Transition temperature estimates TN as a function of
N−1/δ for s = 0. The dots correspond to the crossings of the
fourth-order Binder cumulant for chain lengths N � 32 with the
result for N = 16, as shown in Fig. 2. The lines are the best fits
according to Eq. (7), without corrections to scaling [linear fit, i.e.,
AT (x) = 0] and with scaling corrections [AT (x) �= 0].

the scaling behavior for the special case of a noninteracting
self-avoiding walk (s = 0) very well. Results for the critical
temperature of adsorption and the crossover exponent are in
good agreement compared to the values previously obtained
by means of other procedures.

Our method has the advantage that we can also ana-
lyze the structural behavior under other solvent conditions
for the polymer by varying the solvent parameter s without
the need to perform any additional simulation. The scaling
behavior of the thermodynamic quantities for other s values is
qualitatively similar to the s = 0 case presented in Figs. 1–3,
but the character of the adsorption transition changes. For
a poor solvent, i.e., s > 0, desorbed and adsorbed polymer
conformations are much more compact. The self-interacting
polymer undergoes a collapse and an additional freezing
transition and both transitions compete with the adsorption
transition, depending on the solvent conditions. From the
estimates for transition temperatures and critical exponents,
we find that the specific parametrization of the critical behavior
depends on the solvent quality. As Fig. 1 shows, the values of
the exponents obtained for s = −1, 0, and 1 are significantly
different. Obviously, the solvent quality has a noticeable
quantitative influence on the adsorption behavior.

If s is negative, the monomer-monomer interaction is
repulsive, and the polymer avoids forming nearest-neighbor
contacts. This mimics the effect of a good solvent. In the limit
s → −∞, the system is represented by what we may call a
“super-self-avoiding walk” (SSAW) model, where the contacts
between nearest neighbors are forbidden. This effectively
increases the excluded volume. The adsorption temperature
of this system is expected to be smaller than for s = 0.
To our knowledge, this case has not yet been studied and
there are no results to compare with. However, as our results
suggest, the corresponding critical adsorption temperature of
this intrinsically nonenergetic SSAW should be Ta � 3.31.
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FIG. 4. Critical temperature Ta as a function of s for the
adsorption-desorption transition. Results for s = 0 from Refs. [15,16]
are also shown for comparison. Note that for most data points, the
error is smaller than the symbol size. Inset conformations of the
503-mer are representative for the respective regions of parameter
space. The qualitative differences indicate additional transitions
inside the adsorbed and desorbed polymer phases. For s < 0, super-
self-avoiding conformations are dominant.

Relaxing this constraint by increasing the value of s effec-
tively increases the conformational entropy at a given energy in
the phase of adsorbed conformations more than in the desorbed
phase. In consequence, the slope of the microcanonical entropy
(or the density of states) becomes smaller near the transition
point, which, in turn, results in a larger adsorption temperature.
The phase diagram plotted in Fig. 4 shows exactly this behavior
for the adsorption temperature. Results for s = 0 from Refs.
[15,16], also included in this figure, fit very well into the
extended picture of polymer adsorption we present here.

For all s values, the adsorption transition is a second-order
phase transition. Therefore, we are going to discuss in the
following the s dependence of the critical exponents in
the entire range of the solvent parameter. Figure 5 depicts
the behavior of the exponents φ and 1/δ if s is changed. We
find that their values vary along the second-order transition
line, meaning that this transition seems to be nonuniversal.
Moreover, both exponents exhibit a peak near s ∼ 1.5. This
can be an indication of the presence of a multicritical point
in this region [29–32]. In fact, various additional crossovers
between different adsorbed phases in the high-s regime are
expected. Analyses for a finite system [33] show a complex
structure of adsorbed compact phases in this regime, but
simulations of sufficiently large systems which would allow
for a thorough finite-size scaling analysis are extremely
challenging. Therefore, the discussion of the nature of separate
tricritical points or a single tetracritical point with coil-globule
transition lines extending into the desorbed and the adsorbed
phases and the crystallization behavior near the adsorption line
is future work.

In all fits of the correction-to-scaling exponent ω, we have
not noted any significant dependence on the parameter s, in
contrast to φ and 1/δ. Furthermore, the fits are not sensitive
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FIG. 5. Critical exponents φ and 1/δ as a function of the solvent
parameter s. Results for s = 0 from Refs. [15,16] are also shown for
comparison.

to variations of ω. Thus, the fits of all other quantities were
performed with the value ω = 0.5(1).

In this Rapid Communication, we have systematically
studied the critical properties of the adsorption transition
of polymers under all solvent conditions, which was made
possible by generalized-ensemble chain-growth simulations
of a coarse-grained lattice model. By using finite-size scaling
theory and properly taking into account the corrections to
scaling, we have determined the critical exponents and critical
temperature under various solvent conditions. A major result is
the construction of the phase diagram in the continuous space
of temperature and the parameter s that quantifies the solvent
quality. A comparison with previous results for the singular
case of s = 0 shows good agreement, but also the necessity
of introducing an additional scaling relation and including
corrections to scaling.

The structure of the phase diagram and the dependence
of the critical exponents on the solvent parameter suggest
that the critical line does not seem to be universal under
general solvent conditions. Moreover, the exponents exhibit
a peak near s values, where the compactness of the polymer
conformations changes, indicating the existence of possible
multicritical points of coil-globule and freezing transitions in
the desorbed and adsorbed regimes intersecting the adsorption
transition line. The rather strong variation of the critical
exponents, as well as the corresponding critical temperature
near this region, can be the cause for the difficulty encountered
in quantifying the criticality of the model, even for s = 0.
Naturally, additional simulations in the ordered adsorbed
region might be helpful for precisely determining the behavior
of the transition lines close to the multicritical point, which is
a separate study worthy in its own right.
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