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In this paper, we investigate the properties of aggregation transitions in the context of generic coarse-grained
homopolymer systems. By means of parallel replica-exchange Monte Carlo methods, we perform extensive
simulations of systems consisting of up to 20 individual oligomer chains with five monomers each. Using
the tools of the versatile microcanonical inflection-point analysis, we show that the aggregation transition is a
first-order process consisting of a sequence of subtransitions between intermediate structural phases. We unravel
the properties of these intermediate phases by collecting and analyzing their individual contributions towards the
density of states of the system. The central theme of this systematic study revolves around translational entropy
and its role in the striking phenomena of missing intermediate phases. We conclude with a brief discussion of the
scaling properties of the transition temperature and the latent heat.
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I. INTRODUCTION

Deeper understanding of aggregation processes in the
context of microscopic molecular systems is relevant for a
number of technological and biomedical applications. For
example, protein aggregation is believed to play a critical
role during the onset of many prominent pathological con-
ditions, such as cystic fibrosis, Alzheimer’s, and Parkinson’s
diseases [1,2]. The staggering complexity of even the simplest
molecular systems precludes the possibility of obtaining the
relevant thermodynamic quantities through direct analytical
calculations [3]. Over the past two decades, the enormous
increase in the availability of computational resources, to-
gether with significant progress in algorithmic developments,
resulted in a vast number of computational studies on the
thermodynamic and structural properties of complex micro-
scopic systems. Among the most efficient simulation meth-
ods are the generalized-ensemble Monte Carlo algorithms,
such as simulated tempering [4,5], replica-exchange parallel
tempering [6–9], the multiple Gaussian modified ensemble
[10], together with multicanonical [11–16] and Wang-Landau
sampling [17–19]. These have been applied successfully in
numerous studies of structural phases and transition properties
[20–31], surface adsorption [32–41], and aggregation [42–47]
of generic off-lattice homopolymers and heteropolymers. The
folding properties of coarse-grained protein models have also
been examined extensively [48–54].

Importantly, despite the many advances in simulational
methodologies, systematic studies of detailed atomistic models
are well beyond current capabilities. However, it is a significant
physical reality that many essential thermodynamic properties
of complex systems are retained on larger than atomistic scales
and can be well represented by coarse-grained models. In fact,
coarse graining is not just a concept to simplify modeling. It
reflects inherent collective and cooperative behavior of con-
stituents of systems on mesoscopic and macroscopic scales.
This is intuitive since it is known that certain characteristic
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properties, such as the propensity towards aggregation, are
often shared among diverse systems and hence cannot depend
sensitively on microscopic details.

In mesoscopic systems, structure formation and phase-
separation processes are fundamentally influenced by finite-
size effects. Systematic statistical analysis approaches beyond
the standard canonical methodology are needed to unravel the
intricate details of the interplay between energy and entropy
in finite systems. Due to the averaging process involved in the
calculation of canonical quantities such as the ensemble energy
or the heat capacity, specific features of structural transitions
and phase properties are often lost [3]. This is remedied in more
general approaches such as the Fisher partition zeros [55–58],
or the microcanonical inflection-point analysis [59,60].

This paper is organized as follows: In Sec. II, we introduce
a coarse-grained model for interacting flexible elastic ho-
mopolymers, describe the employed computational methods,
and briefly outline the methodologies of the microcanonical
inflection-point analysis. In Sec. III, we present the simu-
lational results for systems of up to M = 20 short polymer
chains (oligomers). Based on the outcome of inflection-point
analysis, we argue that the aggregation transition is a first-order
process consisting of a sequence of subtransitions between
intermediate structural phases. Next, we discuss why certain
subphases are entropically more suppressed than others, and
conclude with a brief excursion into the scaling properties
of the aggregation transition temperature and the latent heat.
Summary is provided in Sec. IV.

II. MODEL AND METHODS

In the following, we introduce a generic coarse-grained
model for a system of interacting, flexible homopolymers.
Coarse-grained models, with a suitably chosen set of param-
eters, drastically reduce computational complexity while pre-
serving the essential structural and thermodynamic properties
that are typically found in more complex models [61].

A. Standard model of interacting elastic chains

In this paper, we investigate the aggregation of M interact-
ing flexible oligomers, each composed of N = 5 monomers.
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During the simulations, the system is constrained inside of a
steric sphere at a constant density of 10−3 monomers per unit
volume. At this density the radius of the constraining sphere
is larger than the length of the fully extended chains under
investigation. The total energy of the system can be separated
into intrachain and interchain pairwise interactions:

Etotal = Eintra + Einter. (1)

The intrachain contribution

Eintra =
M∑

k=1

N−1∑
i=1

UFENE
(
r

(k)
ii+1

) +
M∑

k=1

N∑
i<j

U trunc
LJ

(
r

(k)
ij

)
(2)

consists of both bonded and nonbonded interactions, where
r

(k)
ij is the distance between the pair of monomers (i,j ) of

the kth chain. The first term contains the anharmonic finitely
extensible nonlinear elastic (FENE) potential [62–64]

UFENE(rii+1) = −K

2
R2ln

[
1 −

(
rii+1 − r0

R

)2
]
, (3)

with parameter values K = 40 and R = 0.3 as used in [65].
The second term represents the truncated and shifted Lennard-
Jones (LJ) potential

U trunc
LJ (rij ) =

{
ULJ(rij ) − ULJ(rc), if rij � rc,

0, if rij > rc,
(4)

where

ULJ(rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]
. (5)

We set the energy scale ε to unity and the length scale to
σ = r0/21/6, where r0 = 0.7 is the location of the LJ potential
minimum. The cutoff radius is set to rc = 2.5 σ . The interchain
contribution

Einter =
M∑
k<l

N∑
i,j

U trunc
LJ

(∣∣r(k)
i − r(l)

j

∣∣) (6)

consists solely of nonbonded LJ interactions. For the purpose
of this paper, all LJ interactions (intra- and interchain) have
their parameters set to identical values.

B. Simulation methods

Relatively small polymer systems, consisting of NM <

100 monomers, can be conveniently simulated using parallel
tempering, which is a generalized-ensemble replica-exchange
Monte Carlo method [6–9] that can be easily implemented on
parallel computer architectures. In larger systems, the density
of states typically spans several thousand orders of magnitude,
in which case the application of more sophisticated methods
such as multicanonical sampling [11–16] or Wang-Landau
[17–19] is more efficient. In this paper we restrict our attention
to systems consisting of up to 20 individual chains with five
monomers each. The number of monomers per chain has been
intentionally kept very low in order to enhance translational
entropic effects which become more obscured by the impact of
inherent conformational entropies as chain length is increased.

In a typical simulation, R ≈ 80 replicas of the system
were simulated in parallel at different temperatures in the

range T ∈ [0.1,2.0]. Single-monomer random displacement
moves, restricted to a box of size l, were used to perform
conformational updates for individual replicas. The proposed
update was then accepted with the Metropolis probability

AM(Xold → Xnew) = min(1,e−β[E(Xnew)−E(Xold)]), (7)

where β = 1/kBT and kB ≡ 1 in the simulation. The max-
imum magnitude of the displacement update l was adjusted
individually for each temperature thread to achieve an average
acceptance rate of 40–60%. Approximately every 100 Monte
Carlo sweeps, an exchange of conformations between adjacent
replicas i and j was proposed with the acceptance probability

APT(Xi ↔ Xj ; βi,βj ) = min(1,e[βj −βi ][E(Xj )−E(Xi )]). (8)

The temperature spacing between adjacent replicas was chosen
to achieve an exchange probability exceeding 20%. This results
in a higher density of replicas in the low-temperature region
as well as near the locations of phase transitions. On average,
107 replica exchanges were performed, allowing for a total of
109 Monte Carlo sweeps per simulation.

C. Density of states and microcanonical analysis

As a result of parallel tempering simulations, each replica
generates a canonical energy histogram h(E; βi), which is then
used to calculate an estimate for the microcanonical density of
states gi(E) ≈ h(E; βi) exp (βiE). Individual estimates gi(E)
are only reliable for energies in the neighborhood of the
peak of the canonical distribution obtained at the temperature
βi . Therefore a sufficient overlap between the histograms of
neighboring replicas is necessary to ensure that an accurate
estimate of the density of states can be obtained for the entire
energetic range. To combine the histograms obtained from the
individual temperature threads, we have used the weighted
multiple-histogram method [66,67], where the system of
equations

ĝ(E) =
∑R

i=1 h(E; βi)∑R
i=1 MiẐ

−1
i e−βiE

, (9)

Ẑi =
∑
E

ĝ(E)e−βiE (10)

must be solved iteratively until ĝ(E) has converged.
The standard approach towards obtaining the thermo-

dynamic properties of a polymer system is to perform a
conventional analysis of energetic and structural fluctuating
quantities in the canonical ensemble. Generally, peaks in the
temperature derivative of a canonical expectation value

d

dT
〈O(X)〉(T ) = 1

kBT 2
[〈O(X)E(X)〉(T )

−〈O(X)〉〈E(X)〉(T )] (11)

indicate extremal thermal activity in the system. However,
the precise location of the transition points for finite systems
depends on the choice of the thermodynamic observables
and cannot be determined uniquely. If finite-size effects are
significant, the identification of a structural transition can be
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FIG. 1. Schematic illustration of microcanonical inflection-point
analysis for the inverse microcanonical temperature β(E). The promi-
nent back-bending region in β(E), together with the positive-valued
peak in its energy derivative γ (E) at E ≈ −15, indicates a first-order
transition. The negative-valued peak at E ≈ −24 corresponds to a
second-order transition.

difficult and underlying cooperative effects may entirely be
smeared out in the averaging process.

It is therefore imperative to employ a more systematic
approach towards the analysis of thermodynamic properties
of finite systems, which is capable of uniquely identifying
and classifying structural transitions of all orders. This is
accomplished utilizing the inflection-point analysis in the mi-
crocanonical ensemble [3,59]. The central quantity, containing
virtually all information about the intricate interplay between
entropy and energy, is the microcanonical inverse temperature
defined as

β(E) = dS(E)

dE
, (12)

where

S(E) = kB ln g(E) (13)

is the microcanonical entropy and g(E) is the density of
states. In analogy to the principle of minimal sensitivity [68],
structural transitions occur if β(E), or one of its energy
derivatives, responds least sensitively to variations in energy. In
particular, first-order transitions are associated with inflection
points in β(E) that have a positive slope. Therefore, it can
easily be identified by a positive-valued peak in the energy
derivative γ (E) = dβ(E)/dE. Similarly, a second-order tran-
sition occurs if γ (E) attains a negative-valued peak. Examples
of microcanonical first- and second-order transition signals
are shown in Fig. 1. The extension of this method towards the
identification of higher-order transitions is possible and will
be described elsewhere [60].

It should be noted that different definitions of the micro-
canonical entropy S(E) exist, but the differences have virtually
no impact on the quantitative analysis of the cooperative
behavior in transition regions because of the abrupt change

of the density of states in the corresponding energetic ranges
(for reviews see, e.g., [3,43,69,70]).

III. RESULTS

Single flexible elastic homopolymers generally exhibit
three distinct structural phases. In the high-temperature gaslike
regime, typical conformations resemble extended, random
coils. With decreasing temperature, the system first undergoes
the � collapse transition into the liquidlike compact globular
phase, and finally freezes into the solid “crystalline” phase.
From our simulations of the multichain model employed in
this paper, we find that the prominent aggregation transition
is accompanied by the collapse of the individual chains, and
the two transitions are not separate processes. This has also
been observed in the case of semiflexible homopolymers
[44]. However, in contrast to heteropolymer systems [45],
the freezing transition occurs at temperatures well below
the aggregation transition. In fact, at low temperatures, the
thermodynamic properties of a multichain system are very
similar to those of a single polymer chain with identical (total)
number of monomers MN .

A. Microcanonical analysis of aggregation transitions

In this section, we discuss the properties of aggregation
transitions from the perspective of microcanonical analysis.
We systematically examine systems consisting of up to M =
20 individual chains with fixed length of N = 5 monomers.
Brief inspection of the microcanonical quantities for four
system sizes in Fig. 2 suggests that for finite systems the
aggregation transition is a first-order process, as expected.
The microcanonical inverse temperature curves β(E) show
a prominent back-bending region accompanied by positive-
valued peaks in γ (E). The low-energy aggregate phase is en-
ergetically separated from the disordered fragmented phase by
an amount corresponding to the latent heat �q = efrag − eagg,
represented in Fig. 2 by the separation between the two dashed
vertical lines. Finally, the combined canonical histograms
h(E; βagg), also shown in Fig. 2, exhibit bimodality which
is characteristic of first-order transitions in finite systems.

Closer inspection of the back-bending region of β(E)
reveals additional oscillations. It is evident that their number is
proportional to the number of individual chains in the system.
This observation motivates the description of the aggregation
transition as a series of subtransitions between intermediate
structural phases. Here we define the term “subphase” to
represent a distinct grouping of partially formed aggregates.
As shown in Fig. 3, a system of M = 4 chains can form
three intermediate subphases {{3,1},{2,2},{2,1,1}}, where the
number of elements in each set corresponds to the number
of noninteracting partial clusters, and the numerical values
represent the number of chains in each cluster. Previous studies
suggest that subtransitions occur between these partially
fragmented subphases [42–45]. However, this analysis was
performed mostly on the level of visual inspection of individual
system configurations. For a more quantitative approach, we
have implemented a structure-detection algorithm capable of
classifying configurations based on the number and size of
partially formed aggregates. This allows us to collect separate
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FIG. 2. Microcanonical temperature β(E) and its energy derivative γ (E) for systems with M = 2,3,5,11 oligomers with N = 5 monomers
each. The dashed vertical lines eagg and efrag outline the aggregation transition region. The upper horizontal dashed line provides an estimate
for the inverse aggregation temperature βagg. The oscillations in β(E) reveal the sequential nature of the transition and correspond to individual
subtransitions. The unimodal canonical energy histograms of the subphases hi(E; βagg) are also shown. The envelope of the subphase histograms
represents the thermodynamically relevant canonical distribution of energetic states at the transition temperature, h(E; βagg). The absolute scale
of these distributions is arbitrary.

FIG. 3. Sample configurations of intermediate subphases found at
the aggregation temperature in a system consisting of four chains with
five monomers each. Due to entropic suppression, the {2,2} subphase
has an unexpectedly small canonical probability p{2,2}(βagg) < 0.007,
and is the first example of a missing (or entropically strongly
suppressed) subphase in the aggregation process of the multichain
system.

statistical data for each subphase and to determine their relative
frequency.

The total density of states of a system in the transition region
can be expressed as the sum of contributions from individual
subphases:

g(E) =
∑

i

gi(E). (14)

The probability of finding a system in the ith subphase at a
fixed energy E can then be written as

pi(E) = gi(E)

g(E)
. (15)

The logarithm of the density of states, the microcanonical
entropy S(E), cannot be expressed as a sum of individual
subphase entropies. Instead

S(E) = kBln
∑

i

eSi (E)/kB, (16)

where Si(E) = kBln gi(E). In Fig. 4, the microcanonical
entropy S(E) (solid) and the individual subphase entropy
curves (dashed) are shown for systems of M = 2 and 3
chains. For M = 2, aggregation is a single-step transition
between the fragmented and the aggregate phase. When the
aggregate is dissociated into two weakly interacting chains,
the system gains an amount of entropy approximately equal to
the translational entropy of a single chain Strans ∼ ln V , where
V is the volume of the simulation sphere. This increase in
entropy is apparent from the vertical separation between Sagg

and Sfrag. The changes in conformational entropy are negligible
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FIG. 4. Microcanonical entropy per monomer S(E) (solid) and
the individual subphase entropies (dotted) for systems with M = 2,3
chains. The double-tangent �(E) represents the Gibbs hull, the slope
of which provides an estimate for the inverse transition temperature
βagg.

in comparison to the translational entropy and will not be
discussed here. When M = 3, in addition to the aggregate and
fragmented phases, a single subphase {2,1} can be formed.
As a result, aggregation becomes a two-step process, each
decreasing the entropy by an amount ∼Strans. We note that the
entropy curves of the individual subphases are strictly concave.
It is the vertical displacement between the curves, due to
changes in translational entropy, that is ultimately responsible
for the origin of the convex intruder in the microcanonical
entropy S(E) and consequently for the back-bending feature
in β(E), signaling the first-order character of the aggregation
transition.

Differentiating Eq. (16) with respect to energy gives a
simple expression for the microcanonical inverse temperature
β(E) in terms of the inverse temperatures of the individual
subphases:

β(E) =
∑

i βie
Si (E)/kB∑

i e
Si (E)/kB

=
∑

i

pi(E)βi(E). (17)

Hence in the transition region, β(E) can be interpreted as
the weighted sum of the inverse subphase temperatures with
respect to the multicanonical probabilities from Eq. (15). At a

TABLE I. Inverse aggregation temperature (βagg), energy per
monomer in the aggregate phase (eagg), energy per monomer in the
fragmented phase (efrag), and the latent heat per monomer (�q). The
uncertainty for all listed quantities is ±0.5 in the last decimal.

System (M × N ) βagg eagg efrag �q

2 × 5 1.99 −1.77 −1.11 0.67
3 × 5 1.81 −2.04 −1.04 1.00
4 × 5 1.70 −2.22 −1.01 1.22
5 × 5 1.62 −2.35 −0.98 1.37
8 × 5 1.51 −2.56 −0.93 1.63
11 × 5 1.43 −2.62 −0.89 1.73
20 × 5 1.35 −2.80 −0.85 1.95

fixed energy E, the system can be found in one of the distinct
subphases with a respective inverse temperature βi(E). In
general, βi(E) 
= β(E). However setting the energy derivative
of Eq. (15) to zero, we find that βi(E) = β(E) precisely when
the probability of a given subphase pi(E) attains its maximum
value. The oscillations in β(E) arise from the changes in the
relative weights pi(E) in the back-bending region.

In Fig. 4, we also show the double-tangent (Gibbs hull)
�(E). Its slope is the appropriate quantity for the estimation
of the aggregation transition temperature βagg. In Table I, βagg

is listed for system sizes of up to M = 20 chains. In single-
step first-order transitions, the slope of �(E) coincides with
the inverse temperature obtained by Maxwell construction.
However, in composite multistep transitions, the location of
the Maxwell construction becomes ambiguous due to multiple
oscillations of β(E).

B. Entropically suppressed subphases

In the following, we discuss the results of the analysis of
canonical energy histograms h(E; βagg), shown alongside the
microcanonical quantities in Fig. 2. The histogram h(E; βagg),
collected at the inverse aggregation temperature βagg, can be
expressed as a sum of contributions from individual subphases

h(E; βagg) =
∑

i

hi(E; βagg), (18)

where the canonical histograms of the subphases are related to
their contributions towards the density of states via

hi(E; βagg) ∝ gi(E)e−βaggE. (19)

At all system sizes, the aggregate and fragmented phases
have the largest canonical probability and are energetically
well separated. The intermediate subphases have overlapping
energy distributions and occur with smaller probabilities. The
energetic separation of the aggregate and fragment phases in
combination with the loss of translational and conformational
entropy, as well as the suppression of certain classes of
intermediate-size clusters for larger systems, lead to the
formation of an entropic depletion zone characteristic for
first-order-like transitions in finite systems.

A striking feature emerges for systems with M > 3 chains.
Already for M = 4 (see Fig. 5), we notice that the subphase
consisting of two clusters {2,2} appears with unexpectedly
small canonical probability p{2,2}(βagg) < 0.007. That only
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FIG. 5. Subphase entropy curves (patterned) in the aggregation
transition region for a system of M = 4 oligomers. The entropically
suppressed missing subphase {2,2} is highlighted in red (solid).

certain subphases contribute significantly towards the canoni-
cal energy histograms becomes even more apparent for larger
systems. In Table II, we list the theoretical values for the
number of possible subphases (Nsub) alongside the number of
subphases that were detected with non-negligible probability
(N̂sub). The total contribution of the missing subphases towards
the canonical energy histograms h(E; βagg) is less than ≈3%
despite the fact that the number of the subphases grows rapidly
with system size. The observed results suggest that a system
of M chains is most often found in a small subset of (M − 2)
subphases, each consisting of K individual chains and a cluster
of (M − K) chains. In fact, for M < 8 we observe (M − 1)
oscillations in the inverse microcanonical temperature β(E),
showing that the aggregation transition consists of a sequence
of (M − 1) distinct subtransitions, each corresponding to a
single chain breaking off the main aggregate. However, in
larger systems, some of the subtransitions overlap in energy
and cannot be associated with individual oscillations of β(E).
In order to better understand the reason behind the missing sub-
phases, we first consider the effects of energy and translational
entropy on the relative positions of subphase entropy curves
Si(E). A reduction in the number of intrachain interactions
leads to the increase in energy, and as a result subphases
with a higher degree of fragmentation have their entropy
curves shifted to higher energies. The number of independent

TABLE II. Theoretical number of subphases (Nsub); not including
the fully aggregated and fragmented phases, the number of signifi-
cantly represented subphases (N̂sub); and the total contribution of the
“missing” subphases towards the canonical distribution h(E; βagg) at
the inverse transition temperature βagg.

System (M × N ) Nsub N̂sub
∑

pmiss

3 × 5 1 1 N/A
4 × 5 3 2 <0.007
5 × 5 5 3 <0.014
11 × 5 54 9 <0.026
20 × 5 625 18 <0.028

fragments in a subphase determines its translational entropy
and largely the vertical position of its entropy curve.

A closer look at Eq. (16) reveals that only those subphases
the entropy curves of which are closest to the total entropy
S(E) contribute significantly. Therefore an increase in energy
of a subphase must be compensated by a sufficient increase in
its translational entropy. Not surprisingly, the (M − 2) most
frequent subphases consist of K individual chains and a single
cluster of (M − K) chains, maximizing translational entropy
while maintaining a relatively high number of interchain
interactions. In Fig. 5, we provide an example of the first
missing subphase in a system of M = 4 chains. It is clear that
except for a very narrow energy interval the {2,2} subphase
is depleted by the lower-energy {3,1} and the higher-entropy
{2,1,1} subphases (see Fig. 3). As the system size increases,
the number of missing subphases increases rapidly, while the
number of subphases with substantial canonical probabilities
remains linearly proportional to M .

C. Scaling properties

It is also interesting to discuss the dependence of the
aggregation temperature Tagg = β−1

agg, and the associated latent
heat per monomer �q = efrag − eagg, on the system size M .
Previous studies have addressed in detail the effects of system
size and the particle density ρ on the transition temperature
[46,47]. Here we keep the monomer density constant at
ρ = 10−3 and consider the scaling properties of Tagg and �q

only to obtain further evidence that the aggregation transition
remains first-order-like with increasing system size. In Table I,
we have listed the values of βagg and �q for system sizes of
up to M = 20 chains.

It has been argued (see, e.g., [71,72]) that for transitions
with entropic barrier, finite-size corrections scale like f (ξ−1),
where ξ is a characteristic thermodynamic length scale or
structural order parameter. In our case, it is appropriate to
choose the dimensionless variable ξ = Rgyr/r0, where Rgyr

is the radius of gyration of the entire system and r0 = const
is the intrinsic system length scale in our model. Near the
transition point, most monomers assemble in a spherical
shape and it is reasonable to assume that Rgyr ∝ M1/3

[actually (NM)1/3, but N is constant throughout this paper].
Therefore, at constant density, we assume that the transition
temperature for a finite number of chains M behaves like
Tagg(M) = T M→∞

agg f (M−1/3), where T M→∞
agg is the aggregation

temperature in the limit of M → ∞ chains at constant density.
Assuming that the finite-size corrections to the aggregation
transition temperature are mainly due to volume effects, we
use the ansatz

Tagg(M) ∝ α0 + α1M
−1/3 + O(M−2/3). (20)

This behavior has been confirmed in a previous study on
polymer aggregation in spherical confinement [46].

Due to the difference in the number of nearest-neighbor
interactions between surface and bulk monomers, we expect
the latent heat �q to depend not only on the bulk volume
occupied by the system but also on its surface. Hence,

�q(M) ∝ δ0 + δ1M
−1/3 + δ2M

−2/3 + O(M−1). (21)
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FIG. 6. Scaling behavior of the aggregation transition temper-
ature Tagg and the latent heat per monomer �qagg, with respect
to M−1/3 where M is the number of polymer chains. The latent
heat increases with system size, providing further evidence that the
transition remains of first order even for large M .

Data fits of the values from Table I are shown in Fig. 6. We
observe that the transition temperature is reduced for small
system sizes as finite-size effects become more prominent. For
very large system sizes, it converges to a fixed value (T M→∞

agg ≈
0.95). The latent heat per monomer approaches the estimated
value �qM→∞ ≈ 2.56 in the thermodynamic limit, providing
further evidence that the aggregation transition is a first-order
phase-separation process.

IV. SUMMARY

In this paper, we have investigated the properties of the
aggregation transition for systems consisting of up to M = 20
short flexible elastic homopolymer chains. Utilizing micro-
canonical inflection-point analysis, we have confirmed that
the aggregation transition is a sequential process consisting
of M − 1 subtransitions between intermediate, partially frag-
mented structural phases. Each oscillation in the microcanon-
ical inverse temperature curve indicates a single transition
between two adjacent subphases. We have established the
relationship between the microcanonical density of states
g(E) and the densities of states gi(E) corresponding to the
individual subphases. From this, we have further derived
similar expressions for the microcanonical entropy S(E) and
its energy derivative, the microcanonical inverse temperature
β(E). We have used those relationships to motivate the origins
of the convex intruder in S(E) and the prominent back-bending
region in β(E), both of which are indicators of a first-order
process.

Canonical energy histograms hi(β; E), collected at the
transition temperature βagg for each individual subphase,
confirm that certain subphases contribute only negligibly to
the total canonical distribution. The origin of these missing
subphases can be explained on the basis of the effects of
translational entropy on the relative positions of the subphase
entropy curves Si(E). The results of this paper show that
with increasing system size, the number of possible subphases
increases rapidly, whereas their relevant subset increases only
linearly.

Finally, we have discussed the scaling properties of βagg and
the latent heat per monomer �q. The increasing values of �q

with system size provide further evidence that the aggregation
transition seems to remain a first-order process even as M

tends towards the thermodynamic limit.
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