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Abstract: Helical polymer bundles are an important fixture in biomolecular systems. The particular
structural geometry of helix bundles is dependent on many factors including the length of the
polymer chain. In this study, we performed Monte Carlo simulations of a coarse-grained model
for helical polymers to determine the influence of polymer length on tertiary structure formation.
Helical structures of semiflexible polymers are analyzed for several chain lengths under thermal
conditions. Structural hyperphase diagrams, parametrized by torsion strength and temperature, are
constructed and compared.
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1. Introduction

Helical geometries are a ubiquitous element of biological polymer structures. Understanding the
influences on tertiary structure formation in helical molecules is an important goal in the study of
biomolecular systems. In such mesoscopic systems, structural geometry and stability are greatly
influenced or even dominated by finite-size effects. The study of generic and specific conformational
and thermodynamic properties of finite systems is therefore of utmost importance.

Helical structures in biological systems are generally considered to be a result of hydrogen
bonding along the polymer backbone or by an ordering principle such as many-body constraints [1–3].
In a generic polymer simulation, helical order can be easily induced by the inclusion of torsional
restraint potentials in coarse-grained models [4,5]. Helix formation can be described as a
one-dimensional Ising-like transition [6,7]. Since transitions in these decidedly finite systems
are not considered to be phase transitions in the thermodynamic sense [8,9], alternative approaches
to understanding structural transitions have to be employed in order to gain new insight into their
structure and behavior [10–14].

Effective potential models are useful for the study of cooperativity in complex polymer
systems [15–18]. Helical polymers have been successfully explored using such models [19–22].
In addition to the properties of helical secondary-structure formation, there has also been
a growing interest in understanding tertiary helix-bundle geometries and transitions [23–33].
Macromolecular structure and function depend on the length of the polymer and differences in
system size can also lead to a qualitative change in essential features of structural organization [34,35].
Helical polymer geometry and bundling typically exhibit significant length dependence as
well [36–38].

By analyzing an entire class of helical polymers at several lengths, we specifically investigate the
influence of the system size on helical structural phases of semiflexible polymers. For this purpose,
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extensive replica-exchange (parallel tempering) Monte Carlo [39–43] simulations of a coarse-grained
model for helical polymers [5,32] were performed.

2. Model and Results

We investigate how the stability of helix segments and the type of bundles in semiflexible
helical polymers with bending restraint [5,32] depends on the system size. For this purpose, Monte
Carlo computer simulations of a simplified coarse-grained polymer model were performed. In the
following, we describe the model and discuss the results of our study. The simulation method is
briefly summarized in the “Materials and Methods” section at the end of the paper.

2.1. Model for Helical Semiflexible Polymers

For the sampling of homopolymer chains with a propensity for helical structure formation, we
introduce a coarse-grained model for a linear chain of monomers. Adjacent monomers are linked by
elastic bonds and non-bonded interaction is governed by van der Waals forces. A bending restraint
is introduced to reduce the flexibility of the chain and a torsional restraint supports the formation of
helical segments.

The interaction between the bonded monomers is modeled by the finitely extensible nonlinear
elastic (FENE) potential [34,44,45]. For a pair of bonded monomers, separated by a distance r, it is
given by

vFENE(r) = log{1− [(r− r0)/R]2}. (1)

The bond length associated with the minimum potential r0 sets the length scale and is chosen to
be unity. The maximum deviation from this value is R ≡ (3/7)r0. Any separation of two bonded
monomers beyond the stretching limit (r > r0 + R or r < r0 − R) is specifically forbidden.

Non-bonded monomers separated by a distance r interact according to the Lennard-Jones (LJ) potential,

vLJ(r) =

{
4[(σ/r)12 − (σ/r)6]− vc, if r < rc,

0, otherwise.
(2)

We set σ = 2−1/6r0, where r0 is the length scale introduced above. The LJ potential is only nonzero for
pairs of non-bonded monomers which are separated by r < rc, improving the simulation efficiency
greatly. The potential shift vc is necessary to avoid a discontinuity at the cut-off and therefore to
satisfy vLJ(rc) = 0.

A bending potential is included, based on the angle formed by two successive bonds
(see Figure 1),

vbend(θ) = 1− cos (θ − θ0) ; (3)

where θ is the bending angle and the reference angle is chosen to be θ0 = 1.4. It has turned out that
bending restraints are essential to stabilize helical structures [5,32] and by this, biomacromolecular
matter in general.

Figure 1. Any two adjacent bonds define a bending angle represented by θ. Four monomers forming
three bonds are required to define the torsion angle τ.
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Eventually, a potential associated with torsion angles is introduced to facilitate the formation of
helical order. The torsion potential is used in the form [4]

vtor(τ) = 1− cos (τ − τ0) , (4)

where τ represents the dihedral angle formed by the two surfaces which can be constructed using
four successive monomers (see Figure 1). Any deviation in τ away from the reference torsion angle,
τ0 = 0.873, results in an increase in the torsion potential. The value of τ0 is chosen such that a resultant
helix will have approximately 4 monomers per turn.

The total energy associated with a particular conformation is given as a combination of all four
potentials, with each having its own associated energy scale. The energy of a polymer conformation
X is calculated as

E(X) = SFENE ∑
i

vFENE(ri i+1) + SLJ ∑
i>j+1

vLJ(rij) + Sθ ∑
k

vbend(θk) + Sτ ∑
l

vtor(τl). (5)

The overall energy scale is associated with the non-bonded interaction, SLJ, and is set to unity.
In these units, we chose SFENE = 98/5 and Sθ = 200 [5,32]. The torsion strength Sτ is considered a
“material” parameter in our study and varied over a range of values to explore its influence on helical
structure formation. Throughout the manuscript all energy units (including the torsion strength Sτ)
are represented in multiples of the basis scale SLJ and therefore temperatures are given in units of
SLJ/kB, where kB is the Boltzmann constant. The basis length scale is given by r0. Both scales SLJ and
r0 are set to unity for computational reasons in our qualitative study of generic properties and need
to be adjusted appropriately if a comparison with a realistic system is attempted.

2.2. Classification of Helical Polymer Phases

The stiffness of the helical segments exhibited by polymer structures is dependent on the strength
or energy scale of the torsion potential (Sτ). As torsion strength increases relative to attractive
non-bonded interactions, helical segments stabilize into longer helices. Figure 2 shows example
structures from several simulations of helical polymers for different system sizes at selected values
of the torsion strength. Structures shown in this figure are the lowest-energy conformations found in
our simulations and represent the putative ground states under the given conditions.

The left column shows structures generated for polymers with no torsion barrier (Sτ = 0).
Without the torsion potential, helical order cannot be established and amorphous solid structures
dominate the solid phase. For a nonzero, but weak torsion strength we find low-energy structures
shown in the second column. While helical order and multiple helical segments are present, these
segments are very flexible and unstable. Because each segment is short and flexible, they tend to
couple together incoherently without aligning into predictable helix bundles. As Sτ continues to
increase, helix segments become longer and begin to align. The third column shows three-helix
bundle formation for both the 40 mers and 50 mers. For 30 mers, no stable low-temperature
three-helix bundle is formed. For longer chains, individual helical segments begin to dominate over
non-bonded interactions only for significantly larger values of Sτ , which increase with system size.
Effectively, in this model, three-helix bundles become more stable for larger systems as it requires
a much larger torsion strength to stiffen the helical segments to the point at which they jump to
the two-helix configuration. Similarly, we see the switch from two-helix to single-helix ground-state
conformations, which occurs at approximately Sτ = 14 for the 30 mer, increases to Sτ = 26 for the
40 mer, and Sτ = 38 for the 50 mer.
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Figure 2. Lowest-energy structures found in our simulations for an array of system sizes and torsion
strengths Sτ . There is no stable region dominated by three-helix bundles for N = 30. Colors highlight
the different helical segments.

2.3. Thermodynamics of Structural Transitions

For each system we simulate, the polymer exhibits a random-coil phase at high temperature.
Upon cooling, these disordered structures generally collapse into a more globular liquid phase.
Although structures in the liquid phase are more condensed, they still have a much higher entropy
than in the solid phase, in which they reside at temperatures below the freezing transition. Despite the
finiteness of the polymers we discuss here, the heat capacity is typically a good qualitative indicator
for structural transitions, because extremal thermal fluctuations of the energy signal a cooperative
change in the thermodynamic behavior of the system. Peaks and significant changes in monotony
(“shoulders”) of these curves allow for the identification of the collapse and freezing transitions.
To illustrate the different thermodynamic scenarios, heat-capacity curves as functions of temperature
are shown in Figure 3 for helical semiflexible polymers of different lengths for the same Sτ values as
used in Figure 2.

If Sτ = 0, we find that collapse (high-temperature “shoulder”) and freezing (low-temperature
peak) are separate transitions. These transition signatures move towards each other as Sτ increases.
For single-helix models, where the torsional energy dominates all other energy scales, collapse
and freezing are merged into a single strong transition directly from the random-coil to the
solid phase. This is the only scenario which exhibits the well-known and well-studied helix-coil
transition. Collapse and freezing transitions are relatively easy to recognize, but in addition to
these two consistent transitions, we find additional peaks in the specific heat below the freezing
transition. These peaks correspond to solid-solid transitions which are most commonly present in
disorganized helix-bundle structures and intermediate regions in which two stable helix bundle types
are energetically almost degenerate. Multiple organizations are possible for short helix segments and
entropically representative. In these cases, solid-solid transition signals are found representing the
crossover between different helical alignments.

By comparing system sizes, we note that as polymer length increases transitions become stronger
and are shifted toward slightly higher temperatures. In the following, we will analyze the qualitative
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transition features we identified from the heat-capacity curves more systematically by means of
appropriate and specific order parameters.

Figure 3. Heat-capacity curves (in units of kB) as functions of temperature for various system sizes of
semiflexible polymers with lengths N = 30, 40, and 50. Sτ values are chosen such that lowest-energy
structure types coincide in each figure row. Vertical lines mark the locations of enhanced thermal
activity represented by peaks and shoulders.

2.4. Structural Distributions in Order Parameter Space

Two structural parameters have been found to be useful in distinguishing different helical
phases [5,32]. We denote by q1 the quantity that represents the potential energy of the non-bonded
interaction between monomers separated by 6 or fewer bonds and analogously introduce q2 for the
non-bonded interaction between monomers separated by more than 6 bonds as shown and described
in Figure 4. Because a single helical segment exhibits no interactions between monomers which are
separated by more than 6 bonds, the q1 and q2 values are greatly affected by the bundling of helical
segments without being directly influenced by the torsion strength. This makes them an adequate
set of structural parameters with resemblance of order parameters used for the discrimination of
thermodynamic phases.

Figure 4. Sketch of a representative polymer structure detailing types of monomer-monomer
interactions considered in this paper. The black monomer interacts via the finitely extensible
nonlinear elastic (FENE) potential [34,44,45] with monomers to which it is bonded (green).
Nonbonded monomers interact according to the Lennard-Jones potential. The LJ interaction between
the black monomer with monomers separated by six or fewer bonds (red) contributes to q1 while
interaction with monomers separated by more than six bonds (blue) contributes to q2.

The distribution of polymer conformations in q1 − q2 space nicely shows separate, discrete
branches associated with different structure types. Figure 5 presents the regions in which structures
are present for various values of torsion strength Sτ . In each panel, the gray areas represent the
accumulated information about the structures at all simulated values of Sτ . The black regions
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represent the structural distribution for an individual Sτ value as indicated, across all temperatures.
Structures found at lowest temperatures are represented in red.

For random-coil structures, the contribution from the non-bonded Lennard-Jones interaction is
almost negligible and the distribution of conformational microstates is therefore concentrated in the
upper right-hand corner of the q1− q2 diagram. By cooling the system, attractive monomer-monomer
interaction begins dominating over entropic effects and q1 and q2 values decrease, indicating that
more ordered structures start forming and the distribution of states extends into one of the branches
as shown in Figure 5. Depending on temperature and torsion strength, the relative contribution of q1

versus q2 varies in each of those branches.
Structures formed at Sτ = 0 tend to favor bonds between monomers separated by more than

6 bonds and, for low temperatures, q2 tends to become more negative, whereas q1 is negligible.
The corresponding distribution occupies the branch associated with conformations that do not exhibit
any noticeable helical order (first row in Figure 5).

As the torsion strength increases, helical segments begin to dominate the polymer structures
and q1 and q2 behave similarly for sufficiently small values of the torsion strength (second row in
Figure 5). The distributions are relatively broad which means that while the formation of helical
structures become favorable, there is no dominant structure type and the conformations are rather
unstable. No preferred order establishes. This instability is largest for the smallest system we studied
(N = 30). The reason is that out of the disordered compact states, by increasing the torsion strength
slightly, symmetries develop in localized environments. This means that under these conditions
rather small helical segments form and arrange in ordered bundles. Figure 5p shows that for N = 50
and Sτ = 3 the dominant states already concentrate in the upper part of the branch – stable three-helix
bundles form. For N = 40 and Sτ = 4, we also find three-helix bundles, but the distribution is
less concentrated than in the case of the 50mer and therefore represents a larger structural variety.
However, ordered conformations with three helices could not clearly be identified for the 30 mer
at all. The alignment tends to be quite variable and the tertiary structure is generally mixed with
other structure types. The system is simply too small for a stable tertiary alignment of three helical
segments. The enormous stability of the three-helix bundles for the 50 mer is evident from the fact
that the dominant helical phase switches to two-helix conformations only if the torsion strength is
raised to Sτ = 12. Stable two-helix conformations can already be found for the 30- and 40 mers at
much lower Sτ values.

Qualitatively similarly for all three system sizes, there is a region of Sτ space which exhibits
two-helix dominance. Because helix segments are longer for larger systems, the torsion strength
required to stabilize two-helix bundles must increase. Note that for larger systems the transition into
two-helix bundles requires the crossing of an entropically suppressed region, since for the 50 mer
these structures reside on an island in q1 − q2 order-parameter space. In contrast to the 30- and 40
mer, where an intermediate single-helix phase exists, the transition of the 50 mer goes directly from
random coils to two-helix bundles.

For sufficiently large torsion strength, all systems exhibit a transition from random coils to single
helices, representing the traditional “helix-coil” transition. Single helices are uniquely associated with
most negative q1 and almost zero q2 values. This reflects the highly local but non-existing tertiary
order of this secondary-structure type.

2.5. Structural Dependence on Sτ

By projecting the phase space shown in Figure 5 onto the representative ensemble at a particular
temperature, the relative quantity qfrac

2 ≡ q2/(q1 + q2) is particularly useful for the discussion of the
folding behavior of helical polymers. The distributions of this quantity are shown in Figure 6 for all
system sizes studied at different temperatures. Each structure distribution corresponds to a single
canonical ensemble at the given temperature. Histograms are displayed vertically with each baseline
aligned with that ensemble’s Sτ value.
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Figure 5. Distribution of polymer conformations in q1 − q2 space for an array of values for Sτ and
N. Gray regions cover all structures obtained in simulations of a single polymer length N across all
values of Sτ and temperatures. Black regions highlight the part of the distribution that dominates for
the specified Sτ value, and red regions represent only the lowest-temperature structures. Chosen Sτ

values correspond to specific structure types. For ordered helix-bundle geometries, intermediate Sτ

values fall into the discrete structure types shown.
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Figure 6. Distributions of qfrac
2 for the semiflexible helical polymers with N = 30, 40, and

50 monomers. Histograms are shown vertically with each baseline aligned with the particular Sτ

value on the horizontal axis. Each column represents a different system size and rows represent three
specific temperatures.

The differences in structural behavior in dependence of Sτ become quite apparent in this
presentation, in particular, at the lowest temperature T = 0.03. For the 30mer, as shown in Figure 6a,
clear distinct helix bundles appear to begin at Sτ ≈ 3 where there is coexistence between globular
conformations and two-helix bundles. This two-helix bundle continues to be the major type of
conformation until the structural dominance crosses over to single helices at Sτ ≈ 14. For the 40 mer
Figure 6b, the three-helix bundle region, from Sτ ≈ 2 to 6, is still rather unstable. The helix segment
alignment and joints vary, which leads to multi-peaked, inconclusive distributions. The three-helix
phase looks significantly different for the 50 mer, though, when this phase becomes essentially
stable. This is also reflected by the comparatively large value of Sτ ≈ 12, where two-helix bundles
become competitive.

The stability of these helix-bundle phases can also be analyzed by considering their consistency
as temperature increases. The second row of Figure 6 shows structure distributions for ensembles
at T = 0.3, and the third row is at T = 0.6. For the 30mer, the two-helix phase remains stable at
T = 0.3 but is nearly dissolved by T = 0.6. Two-helix bundles of the 40 mer are more stable to higher
temperature but still exhibit less definition than their 50 mer companions.

2.6. Hyperphase Diagram

Structural transitions with changes in temperature are discernible from observations of
peaks and shoulders in the specific heat as a function of temperature—as seen in Figure 3.
Additionally, variations in structure type upon altering the torsion strength are evident from the
qfrac

2 histograms for all Sτ values, as shown in Figure 6. From this data, it is possible to construct
a hyperphase diagram which provides a quantitative and complete overview of the helical structural
phase behavior across temperature T and material parameter Sτ . For this purpose, regions of extremal
thermal activity in temperature space are identified in fluctuation quantities for each individual
torsion strength value. Typically, peaks of quantities like the heat capacity or the temperature
derivatives of the order parameters serve as indicators for transition points. The change of the
corresponding average values of q1 and q2 at these peak temperatures gives a first hint as to
the alteration of structure types that dominate the regions below and above the transition point.
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Visual inspection of structures generated at temperatures in these stable conformational phases helps
to confirm the characteristic structural properties of dominant macrostates in each phase.

These hyperphase diagrams are presented in Figure 7 for the three different system sizes we
compare in this study. Each major conformational phase is represented by its unique color and the
color key is given above the phase diagrams. In all cases, the largest region in the given parameter
space is covered by random-coil structures. There is also a liquid phase that increases slightly with
system size. Also common to all system sizes is a small region at almost negligible values of the
torsion strength, where the polymers fold into a compact structure with much smaller entropy than
in the liquid phase. We call these structures amorphous solids, because they do not exhibit any
local order and are metastable or potentially glassy. This is the regime of semiflexible polymers
without torsion restraint. Apparently, no helical structure can favorably form without confining the
torsion angles.
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Figure 7. Hyper-phase diagrams for the (a) 30 mer, (b) 40 mer, and (c) 50 mer showing the regions of
T − Sτ space over which each particular structure type is dominant. The color key is found above.

Figure 7a shows the hyperphase diagram for the 30 mer. It exhibits clearly separated phases,
despite the small system size. If the torsion barrier is sufficiently strong (Sτ ≥ 14) the system exhibits
only a single transition, directly from random-coil structures to single-helix configurations. This is
the prominent and well-studied helix-coil transition.

As the torsion strength decreases, we reach a domain (approximately 8 < Sτ < 13) in
which there are two distinct organized structure types with a solid-solid like transition between
them. In this region, two-helix bundles are the lowest-energy structures found. Above a distinct
solid-solid transition temperature, the energy benefit of the two-helix bundle gives way to the
entropic suppression of these more constrained structure types. The system transitions to the
predominantly single-helix configuration at this point. Below Sτ ≈ 8, there is insufficient torsion
restraint to form single-helix structures. Direct transition from two-helix bundles to random-coil
structures is observed between torsion strength of Sτ ≈ 7 and 8.

While there are very clear regions in which two-helix and single-helix structures are formed,
when the torsion strength is very small the stiffness of helical segments is insufficient to stabilize
helix bundles and non-bonded contacts among a maximum number of monomers are locally favored.
For Sτ = 4, there is a solid-solid phase transition between the two-helix bundles with parallel
alignment of the helical segments found at higher Sτ values and a new structure type in which the two
helices are not aligned and a long helix wraps around a shorter helix. Decreasing the torsion strength
even further the helix segments become more flexible and various different globular structures with
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and without helical order form, depending on the torsion strength. The amorphous solid phase is a
catch-all for the different solid geometries which do not belong to a dominate helix-bundle phase.

For the longer 40 mer, there are several distinct changes from the 30 mer. The Sτ value at which
the two-helix bundle becomes a single helix has increased significantly. This increase is because
the 40 mer can form a larger number of inter-helix contacts in the two-helix case than the 30 mer,
giving it a greater energetic benefit for folding in half. The transition between two-helix bundles and
more globular amorphous-solid or three-helix bundle phases also occurs at a higher value of Sτ for
similar reasons. For N = 40, there is a stable three-helix bundle phase that is not present for the
30 mer. This three-helix region has only a very small domain in which it is the ground-state structure.
For the largest part of the Sτ region over which it exists, there are also energetically more favorable
structures, which include three-helix bundles with non-standard alignment and four-helix bundles
with variable alignment.

For the largest system investigated in our study, the 50 mer (see Figure 7c), further expansion
of helix-bundle phases into larger Sτ domains is found. Again the transition between two-helix
bundles and single helices occurs at an increased torsion strength, as well as the transition between
three-helix and two-helix bundles. Of particular note is the vastly increased parameter space over
which the three-helix bundle structures dominate. Not only does the three-helix phase extend to
larger values of Sτ , but it is also stabilized down to lower values of Sτ . The reason for the extended
lower bound to the three-helix phase in Sτ is the decreased opportunity for misaligned helix segments
in the three-helix phase.

Noteworthy in all cases, there is an intermediate low-temperature region in Sτ space, where
the system first forms a stable single helix which upon further temperature decrease is replaced by a
two-helix bundle. Due to the larger number of possible conformations for the single helix (vibrational
degrees of freedom), this structure type is entropically more favorable than the two-helix bundle at
higher temperatures. The two-helix structures are more rigid and structurally constrained because of
the strong non-bonded energetic contacts between the helical segments. Therefore, it dominates at
lowest temperatures.

3. Materials and Methods

The simulation details were already reported elsewhere [5,32,33] and shall be reviewed briefly
here. Data used in this study was generated by means of replica-exchange Monte Carlo simulations
(parallel tempering) [39–43]. For each individual system (N and Sτ value), parallel simulations
were performed with an array 32 simulation threads, each at a unique constant temperature,
distributed exponentially in the interval Ti ∈ [0.03, 2.5], where i = 1, . . . , 32 is the corresponding
thread index. In each thread, an initial random polymer configuration was continually modified by
structural updates of the monomer positions. These moves were accepted or rejected according to the
Metropolis criterion [46]. Every 400 updates, a replica exchange was attempted with its neighboring
thread at higher and lower temperature in accordance with the detailed-balance criterion for replica
exchange [40–42].

Two different update types are included in these simulations. Displacement updates are the
most common with rare torsion updates to improve the efficiency. For each update, one of the two
types is chosen at random with the displacement update weighted to occur 3× L times more often.
Displacement updates simply move a single randomly chosen monomer to a new location within
a box with side length rd centered on the monomer’s initial location. The value of rd is initially
iteratively determined such that the acceptance rate is approximately 0.5 in all threads. During the
subsequent simulation period the respective choices of rd are kept constant. Because our model
includes a very strong bending potential and a comparatively moderate torsion potential, much of the
variation between structure types depends on torsion angles. For this reason, a global update which
directly changes individual torsion angles can greatly improve the efficiency of the simulation. We do
this with a torsion update in which a single bond is chosen at random. Then, all of the monomers to
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one side of the bond are rotated around the axis collinear with the bond by the same, random angle
chosen from the interval τ ∈ [−π,+π].

4. Discussion

Extending previous studies on the importance of bending and torsion restraints [5,32], we have
investigated the polymer length and torsion strength dependence of structure formation processes
and conformational stability for helical semiflexible polymers. We employed a coarse-grained model
containing bonded and non-bonded monomer-monomer interaction as well as bending and torsion
potentials. Sampling of the conformational space was done by using the replica-exchange Monte
Carlo method. In our study, we explored the entire space of torsion strengths and temperature, in
which significant structural transitions are observed. Canonical statistical analysis of fluctuation
quantities was performed to construct hyperphase diagrams which we compared for semiflexible
polymers with 30, 40, and 50 monomers.

We find that for a polymer with 30 monomers, two-helix bundle and single-helix phases
are the dominant stable folded structure types. By increasing the system size to 40 monomers,
moderately stable three-helix bundles are introduced and the two-helix bundle phase is expanded
over a wider range of torsion strengths. Additionally, two-helix bundles remain stable up to a
slightly higher temperature. Continuing to increase the system to 50 monomers drastically increases
the stability of the three-helix bundle phase in both torsion strength and temperature. The 50 mer
shows further stabilization of two-helix bundles in the temperature domain and further expansion in
torsion strength.

By comparing system size data, generalizations can be made about the torsion strength required
to generate various structure types. We find that as the system size increases, the torsion strength
required to stabilize a particular structure increases. This increase can be explained by the fact
that the torsion potential penalty incurred by the formation of a joint remains constant while the
energetic benefit from the increased number inter-helix contacts grows in proportion to the chain
lengths. With even longer chains we expect to see these trends continue. The torsion barrier required
to stabilize each structure type is supposed to increase further. For the system sizes covered in this
study, stable four-helix bundles with aligned helix segments are not observed. Because the energetic
benefit for non-bonded interactions in bundles with a larger number of helix segments increases
with the chain length, additional structure types such as four-helix bundles are not only expected
to emerge, but the optimal alignment and dense packing become additional interesting aspects of
future investigations of our model.

5. Conclusions

Our study was based on a coarse-grained model to allow for a systematic investigation of
the significant features and conditions of helix-structure formation in entire classes of semiflexible
polymers with propensity for helix formation. A comparison with specific, realistic systems requires
the proper adjustment of the energy and length scales left open in this generic approach.
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