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Significance of bending restraints for the stability of helical polymer conformations
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We performed parallel-tempering Monte Carlo simulations to investigate the formation and stability of helical
tertiary structures for flexible and semiflexible polymers, employing a generic coarse-grained model. Structural
conformations exhibit helical order with tertiary ordering into single helices, multiple helical segments organized
into bundles, and disorganized helical arrangements. For both bending-restrained semiflexible and bending-
unrestrained flexible helical polymers, the stability of the structural phases is discussed systematically by means
of hyperphase diagrams parametrized by suitable order parameters, temperature, and torsion strength. This
exploration lends insight into the restricted flexibility of biological polymers such as double-stranded DNA and
proteins.
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I. INTRODUCTION

Helical segments and bundles are prominent structural
elements in conformations of biomacromolecules such as pro-
teins, DNA, RNA, or composites thereof. Finding the reasons
for the stability of tertiary folds composed of secondary-
structure segments has turned out to be essential for the general
understanding of the interplay of structural geometry and
biological function. A question that is associated with this
goal addresses the natural preference of freezing or confining
degrees of freedom in biologically active macromolecules.

In biological systems, formation of helical structures is
typically explained by hydrogen bonding along the backbone
of the polymer. However, helical structures are also natural
basic geometries of topologically one-dimensional objects
which can be stabilized by an ordering principle based on
many-body constraints [1–4]. In a similar sense, the transition
between disordered random-coil structures and conformations
with helical order can be described by a one-dimensional
Ising-like model [5,6]. This transition is not a phase transition
in the strict thermodynamic sense [7,8], but since biologically
relevant macromolecules are finite systems on mesoscopic
length scales, conformational transitions are generally distin-
guished from phase transitions. Finite-size effects are essential
for the understanding of biomolecular structure and function
and therefore need to be considered in the thermodynamic
interpretation of such transitions [9].

Complementing statistical and thermodynamic studies of
structural transitions in helical polymer systems, the folding
dynamics, stability, and generic features of conformation
geometry have been investigated in detail over a long period
[10–12].

More recently and only possible because of now available
computational resources, computer simulations of effective-
potential models have become an invaluable resource for
studying thermodynamic properties of flexible [13–15] and
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semiflexible polymers [16–18], polymer and peptide aggrega-
tion [19,20], and adsorption onto a substrate [21–24], as well
as systematic parameter variation in the effective potentials
contained in coarse-grained models [25,26]. Simulations of
polymer systems yielded also insight into the folding dy-
namics [27–33], conformation geometry [34–36], and stability
[37–40] of macromolecules.

Most relevant for this paper are advances in understanding
aspects of the structure formation of helical polymers [41–43].
In a coarse-grained modeling approach, the formation of
helical order in homopolymer systems can be induced by
inclusion of a torsional potential [41], and tertiary helix
bundles are stabilized by means of a bending potential [4].

By cooling, helical polymers can undergo a direct structural
transition from random-coil structures to helical conforma-
tions [44–48]. With the inclusion of nonbonded interactions,
helical segments of sufficient length tend to assemble into
helical bundles [49–56]. These helical tertiary structures vary
greatly depending on the particular interactions present and
can be controlled, for example, by an adsorbing substrate [57].

It seems that in biological systems semiflexible polymers,
which exhibit an effective restraint on the bending angles be-
tween bonds, are naturally favored. Therefore, we here extend
our recent study on the effects of bending restraints upon the
formation and stabilization of tertiary assemblies of helices
[4] by systematic comparison of structure-formation processes
for both flexible and semiflexible polymer models. For this
purpose, extensive replica-exchange Monte Carlo computer
simulations [58–61] of these models were performed. By
simulating at an array of torsion parameter strength and
temperature values and by the analysis of appropriate order
parameters, we identify the differences in folding behavior as
well as features and stability of dominant structural phases.

The paper is organized as follows. In Sec. II, we introduce
the model for helical flexible and semiflexible polymers and
describe details of the Monte Carlo methodology used for
the sampling of the structural space. Order parameters for
the statistical analysis of structural phases are introduced and
investigated in Sec. III. The hyperphase diagrams for both
polymer classes, parametrized by temperature and torsion

2470-0045/2016/93(6)/062501(10) 062501-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.062501
http://www.smsyslab.org


MATTHEW J. WILLIAMS AND MICHAEL BACHMANN PHYSICAL REVIEW E 93, 062501 (2016)

strength, are discussed and compared in Sec. IV. The paper is
concluded by the summary in Sec. V.

II. MODEL AND SAMPLING ALGORITHM

A. Model

In this study, we investigate polymers with helical structural
elements using a generic coarse-grained homopolymer model.
The energy of a polymer chain with N monomers includes
bonded and nonbonded interactions, the latter also mimicking
the implicit solvent in which the polymer is suspended. An
additional potential associated with the dihedral angles induces
helical order by exerting a torsional effect on polymer bonds.
A bending potential is introduced to control the flexibility of
the chain.

For a polymer with conformation X = {x1,x2, . . . ,xN}
where xi is the position of the ith monomer, the energy
associated with the bond between neighboring monomers
is calculated using the FENE (finitely extensible nonlinear
elastic) potential [62–64]. For bonded monomers separated by
a distance r , it is given by vbond(r) = ln{1 − [(r − r0)/R]2}.
The monomer-monomer interaction which acts between all
nonbonded monomers is calculated from the Lennard-Jones
potential vLJ(r) = 4[(σ/r)12 − (σ/r)6] − vc. The length scale
of the nonbonded interaction is defined via the van der Waals
distance σ = 2−1/6r0 associated with the potential minimum
distance which we set to r0 = 1. The computational efficiency
can be greatly increased with no appreciable influence on the
structure formation process by introducing a cutoff. For pairs
of monomers separated by r > rc = 2.5σ the nonbonded in-
teraction is zero. To avoid a discontinuity in the Lennard-Jones
potential we shift the potential by vc = 4[(σ/rc)12 − (σ/rc)6].

From each group of three bonds, two surfaces can be
constructed with the intersection having a dihedral angle τ

as shown in Fig. 1.
Since right-handed α helices are most common among

helical segments in natural macromolecules, we choose the
reference torsion angle to be τ0 = 0.873. Any deviation of a
torsion angle from this reference angle results in an energy
penalty proportional to vtor(τ ) = 1 − cos(τ − τ0). Similarly,
we set the reference bending angle to θ0 = 1.742 and the
bending energy is given by vbend(θ ) = 1 − cos(θ − θ0). With
these choices of τ0 and θ0, the energetically most favorable
helical segment in our model resembles an α helix with about
four monomers per turn.

FIG. 1. Sketch of a chain segment containing four monomers.
The torsion angle is represented by τ (blue) and the bending angle by
θ (red).

By combining all four potentials a polymer conformation
X has the energy

E(X) = SLJ

∑
i>j+1

vLJ(rij ) + Sbond

∑
i

vbond(ri i+1)

+ Sτ

∑
l

vtor(τl) + Sθ

∑
k

vbend(θk). (1)

Each potential has an associated prefactor which determines its
strength relative to all other potentials. As the reference energy
scale we choose the nonbonded interaction strength SLJ = 1,
whereas Sbond = −KR2/2 is fixed for the bond potential with
standard parameter values K = (98/5)r2

0 and R = (3/7)r0.
These parameter values ensure that without restraints (Sτ =
Sθ = 0), the polymer model describes a generic flexible
polymer with clearly separated coil-globule and freezing
transitions. The torsion energy scale Sτ is varied throughout the
study and is a key parameter which determines the dominant
structural macrostates. The bending energy scale is set to either
Sθ = 0, in which case there is no restraint on the bending angles
and the polymer is fully flexible, or Sθ = 200 which effectively
fixes all bending angles to near their reference value and the
polymer is considered semiflexible.

B. Sampling

To sample the structural space of a polymer with N = 40
monomers replica-exchange Monte Carlo (parallel tempering)
[58–61] has been used in this study. Here, the initially random
configuration is continually modified by iterative random
updates. Each change in the conformation potentially alters
the energy of the polymer by an amount �E. The modification
is accepted with probability Pmetro according to the Metropolis
criterion [65]

Pmetro =
{
e−β�E, if �E > 0,

1, otherwise,
(2)

which depends of the inverse temperature β = 1/kBT (in the
following we use units in which kB ≡ 1).

There are several possible updates which are used to modify
the polymer conformation. The most basic modification is the
displacement update, where a single monomer i is chosen at
random and its position is shifted by a vector �xi within a cubic
box with edge lengths rd surrounding its original location.

The size of the box has a strong influence on how efficiently
the displacement update explores the state space accessible to
the polymer [66]. Using a very small value for rd typically
results in a small energy change �E and a high acceptance
rate. Although the majority of moves is likely to be accepted,
conformational changes are small and autocorrelation times
high. Therefore, many moves are required to explore the
structural state space. Alternatively, large shifts rd result in
a high rejection rate if the conformation is sufficiently dense.
Thus, although it takes fewer successful steps to modify the
polymer structure appreciably, autocorrelation times remain
high due to the high rejection rate.

During an initialization period without measurements, we
adjust rd dynamically to achieve a desired acceptance rate
of χfin

accept ≈ 0.5. This can be done by modifying rd every
100 updates to be r ′

d = rd + p[χaccept(rd ) − χfin
accept], where
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p = 0.04 is a factor determining the size of the correction
and χaccept(rd ) is the measured acceptance rate at given box
size rd . Note that the thus determined optimal box size rd

depends on the temperature T .
The sampling efficiency can be improved by nonlocal

updates such as angular Monte Carlo moves. Among those,
bond angles can be altered by pivot rotations, which is
efficient for extended conformations of flexible polymers. For
semiflexible polymers, torsional rotations about a randomly
selected bond are more efficient [9].

Simulating at each temperature independently is impracti-
cal due to the inability of Metropolis sampling to overcome
free-energy barriers in a reasonable number of moves. To
improve the sampling efficiency, we employ replica-exchange
Monte Carlo (parallel tempering) [58–61]. For each choice
of model parameters Sτ and Sθ , Metropolis simulations are
performed at N temperatures {T1,T2, . . . ,TN } in parallel
with attempts to exchange structural conformations between
different temperature threads every 400 sweeps. The ith
temperature thread alternates between attempting exchange
with the i + 1 thread and the i − 1 thread. Because both T1

and TN have only one neighbor, they each remain idle during
half of the exchanges. During a single exchange attempt the
polymer structure is passed between thread i and thread j with
probability

PPT = min(1,e−(βi−βj )[E(Xj )−E(Xi )]). (3)

Ideally, temperatures are chosen such that exchanges and
rejections both occur frequently. We find that Ti = 1.15Ti−1

leads to acceptable exchange rates in all threads. It is also
important that TN is large enough that structures are fully
melted in the N th simulation thread.

III. STRUCTURAL TRANSITIONS IN
ORDER-PARAMETER SPACE

A. Classifying structures

Examining structures from ensembles simulated at values
of torsion strengths Sτ ∈ [0,40] and temperatures in the inter-
val T ∈ [0.1,3.0], with and without the bending restraint Sθ =
200 and Sθ = 0, respectively, we find a variety of different
structure types. Single helices, two-helix bundles, three-helix
bundles, four-helix bundles, disordered helical conformations,
and amorphous solids can form at low temperatures, depending
on the values of Sτ and Sθ . We introduce parameters q1 and q2

to quantitatively distinguish between different structure types.
In a single conformation, the average over all monomers of the
Lennard-Jones interaction between a monomer and all of the
monomers within six bonds of itself reads

q1(X) = ε
1

N

N−2∑
i=1

N∑
j=i+2


6,j−i vLJ(rij ), (4)

where we have introduced the symbol


k,l =
{

1, if k � l,

0, otherwise. (5)

The average over all monomers of one monomer’s interaction
with all monomers separated from it by more than six bonds

FIG. 2. Definition of the order parameters q1 and q2. The black
monomer interacts with the green monomers via the FENE potential
and with the blue and red monomers via the LJ potential. The
total energy of the LJ interactions between nonbonded monomers
separated from the black monomer by 6 or fewer bonds, as represented
by red monomers, contributes to q1. Consequently, q2, accounts for
the LJ contributions from the monomers more than 6 bonds away
(blue monomers).

is given by

q2(X) = ε
1

N

N−2∑
i=1

N∑
j=i+2


j−i,7 vLJ(rij ). (6)

In Fig. 2, the Lennard-Jones interactions between the black
monomer with all red monomers contribute to q1 and its inter-
action with blue monomers contributes to q2. To understand
the usefulness of this set of parameters, consider the contrast
between a single helix and a two-helix bundle. In a single helix,
monomers will interact via the Lennard-Jones potential only
with monomers which are in the helix turn below and above
its own. For a helix with four monomers per turn, this means
that nonbonded interaction will only occur between monomers
separated by six or fewer bonds. The two-helix bundle will
sacrifice some of the local LJ and torsional interaction in
favor of contacts between monomers in separate helices which
are separated by more than six bonds. So, in going from a
single helix to a two-helix bundle, the q1 value increases as
interactions between monomers close to each other along the
chain become weaker and q2 decreases as energetic contacts
between separate helical segments are formed.

B. Distributions in structure-parameter space

Figure 3 depicts in gray the regions in order-parameter
space populated by structures found in the entire generalized
ensemble of the parallel-tempering simulations, parametrized
by torsion strength Sτ and temperature T for semiflexible
[Figs. 3(a)–3(d)] and flexible polymers [Figs. 3(e)–3(h)].
Black regions correspond to polymer conformations with
specific torsion strengths Sτ . Red regions account for structures
found at the lowest simulation temperature T � 0.1 only and
represent the folded (and biologically potentially active) states.

For Sτ = 0, as shown in Figs. 3(a) and 3(e), low-
temperature structures collect at lowest q2 values and as the
temperature increases so does q2, while the distribution in
q1 space barely changes. It is apparent that there are several
distinct structural clusters formed which entail a multiwelled
free-energy landscape in the solid phase, i.e., lowest-energy
states are degenerate. These amorphous structures do not
possess any obvious symmetry, but they are highly compact.
Thus, primarily energetic contacts form between monomers
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FIG. 3. Regions of structure formation in (q1,q2) space for
the (a)–(d) semiflexible (bending restrained) and (e)–(h) flexible
(bending unrestrained) polymers with 40 monomers. Light-gray
regions represent the generalized ensemble of all conformations
found at all temperatures T and torsion strengths Sτ simulated.
Black regions correspond to the most populated states at given Sτ

values. Red regions represent only the states populated for T � 0.1.
Representative conformations for each low-temperature ensemble are
shown.

distant along the chain. Local ordering which would be
required for helical segments hardly occurs. Note that the
amorphous conformations are morphologically different for
flexible and semiflexible polymers. Due to the large bending
constraint of the semiflexible polymer (Sθ = 200), bond angles
are close to the reference angle θ0 and “bending” the chain is
only possible by a sequence of properly adjusted torsion angles
(since Sτ = 0, deviations from the reference torsion angle Sτ

are not penalized energetically). As there is no such bending
constraint for the flexible polymer, compact packing is only
restricted by volume exclusion.

The structural behavior of semiflexible polymers changes
noticeably if torsion is restrained. In Fig. 3(b), for Sτ = 2,
we observe the formation of helical segments which organize
into bundles. The population of low-temperature structures
corresponds to unique bundling configurations with three
and four helices. The order parameter values of these stable
conformations (red dots) differ significantly from the Sτ = 0
case. While q2 increases, q1 becomes smaller. This means
that contacts between monomers which are separated by
six or fewer bonds become dominant and arrange in helical
structures. However, contacts of monomers that are more
distant in the sequence are relevant as well. In consequence,
helix bundles form.

Further increasing Sτ stiffens the helical segments, leading
to a dominance of two-helix bundles. This is apparent from
Fig. 3(c) for Sτ = 8. The two-helix bundle offers fewer pos-
sible orientations and variations, therefore exhibiting a single
well-defined low-temperature cluster, which corresponds to a
single structure type.

For Sτ = 30 [Fig. 3(d)], we find that the low-energy
ensemble contains only the single stiff helix. This state is
uniquely characterized by q2 = 0 and minimal q1 value.

In contrast to the bending-restrained case, the populations
shown in Figs. 3(e)–3(h) do not exhibit particularly distinct
features. This means that a large variety of structure types
possess sufficient entropy, such that no structure type is of any
relevance and stability. The q1 values hardly depend on Sτ

and therefore helical conformations are not significant. While
we do see helical order emerge as Sτ increases, the lack of a
bending restraint lends no stiffness to the helical segments. For
this reason there exists far less predictability and organization
in the evolution of structures as Sτ varies.

C. Folding trajectories in the free-energy landscape

A more detailed analysis of the free-energy landscape in
q1-q2 order-parameter space gives further insight into the
folding pathways and their dependence on Sτ . We determine
the free energy for each canonical ensemble from the inverse
frequency of states in each bin of the partitioned q1-q2

space. The free energy for a specific model parameter Sτ and
temperature T can then be introduced as

FSτ ,T (q1,q2) = −kBT lnZSτ ,T (q1,q2), (7)

where

ZSτ ,T (q ′
1,q

′
2) =

∫
DXδ(q ′

1 − q1(X))δ(q ′
2 − q2(X))e−E(X)/kBT

(8)

is the restricted partition function in the space of all structures
present in the ensemble.

For each given Sτ -T ensemble, the global free-energy
minimum corresponds to the dominant structural conformation
of the polymer. If the structural features, associated with the
order parameters q1 and q2, do not change significantly, a
subset of the Sτ -T space forms a stable structural phase. Note
that the system is finite and rather small (as all biomolecules)
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FIG. 4. Structural phase diagrams for bending-restrained semiflexible (left) and unrestrained flexible polymers (right) in (q1,q2) order-
parameter space for the temperature and torsion strength space (T ,Sτ ) covered in our simulations. Colored regions represent structural phases.
Black dots locate free-energy minima at given T and Sτ values. Trajectories show the helical folding pathways at fixed torsion strengths Sτ by
decreasing the temperature (Sτ values are attached to each trajectory).

and, therefore, structural phases should not be confused with
phases in the strict thermodynamic sense. In Fig. 4, structural
phases in q1-q2 space, corresponding to the dominant structure
types, are shown in different colors for semiflexible bending-
restrained (left) and flexible bending-unrestrained polymers
(right). The boundaries of these regions, which represent
the structural transition lines, were obtained by a canonical
statistical analysis of extremal fluctuations of energy (i.e.,
peaks in the heat-capacity landscapes as shown in Fig. 5,
parametrized by Sτ and T ).

Each black point represents the global free-energy min-
imum for a single canonical ensemble, with black lines
signifying the folding pathway for fixed torsion strength Sτ =
const. For all pathways, the high-temperature ensembles in the
random-coil phase are located in the upper-right hand corner of
the panel (phase C). As structural ordering begins by cooling,
free-energy minima move down one particular branch, which
depends on the value of Sτ . If Sτ = 0, the folding pathway
passes the liquid phase L and the ground state is an amorphous
solid (A) in both scenarios (semiflexible and flexible). For
Sτ > 0, a clear separation of distinct folding pathways can only
be observed for semiflexible (bending restrained) polymers.
The Sτ value determines and discriminates the stable structure

type the polymers fold into, such as four-helix (4h) and
three-helix bundles (3h), double-helices (2h), as well as single
helices (1h).

In certain cases, e.g., the bending-restrained polymer with
Sτ = 20, a crossover from one solid phase to another is
possible as temperature decreases. In that particular case,
structures transition predominantly from the random coil
phase into the single-helix phase, but upon further cooling,
single-helix and double-helix phases coexist. Eventually, the
single-helix phase dies out completely, leaving structures in
only the double-helix phase at lowest temperatures.

IV. HYPERPHASES IN THE SPACE OF TEMPERATURE
AND TORSION STRENGTH

A. Extremal fluctuations in energy as indicators
of structural transitions

While transitions in Sτ are nicely revealed by the discrete
branches seen in q1-q2 space, transitions in temperature are
not nearly as apparent. To detect these transitions we consider
how the heat capacity behaves as a function of temperature.
Figure 5 shows the heat-capacity curves for the semiflexible
model on the left and the flexible model on the right across a
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FIG. 5. Heat-capacity curves CV as functions of temperature T for an array of Sτ values, for polymers with bending restraint on the left
and without on the right.

variety of Sτ values. For the semiflexible case, starting from
the top panel where the torsion potential is quite strong, we
see a single strong transition in the specific-heat curve. It
corresponds to the well-known helix-coil transition between
random-coil conformations and the solid single-helix phase.
Moving down in Sτ , a second sharper transition emerges which
can be identified as a transition between single helices and
double helices. This solid-solid transition comes in at low
temperatures starting at Sτ = 24. At Sτ = 14, it merges with
the freezing transition. As we continue to decrease Sτ , the
transition splits into a 
 transition and a freezing transition
which spread apart to form an increasingly large liquid phase
between them. For Sτ � 8, the temperature region to the right
of both transitions corresponds to the random-coil phase. In
between the peaks the structural phase resembles a liquid:
highly entropic compact structures, but without well-defined
global order. Below the liquid-solid transition low-entropy
solid phases, corresponding to either double-helix, three-
helix, and four-helix bundles, or amorphous solids are found.
As discussed in the previous section, these structures are
easily distinguishable by the q1-q2 branch in which they lie
(cf. Fig. 4). For Sτ < 4, transitions in temperature become
increasingly complicated with the introduction of multiwelled
low-temperature ensembles. Due to the limited chain length,
three-helix and four-helix bundles compete, and amorphous
structures start mixing in. However, it should be noted

that for longer chains, stable helix bundles with four and
more segments can form and remain well separated from
the amorphous phase. The system-size dependence of helix
formation will be investigated in detail elsewhere [67].

Analysis of transitions, e.g., recognizable in the specific-
heat curves in Fig. 5, gives insight into not only the temper-
atures at which each transition occurs but also the region of
q1-q2 space, as shown in Fig. 4, in which we find solid, liquid,
and random coil phases. Repeating this analysis for an array
of torsion strengths Sτ reveals the structure of the hyperphase
diagram that contains the structural phases of an entire class
of helical polymers.

B. Hyperphase diagram in system-parameter space

Using information gathered in both the folding trajectory
study and the heat-capacity curves, we construct a hyperphase
diagram parametrized by torsion strength and temperature. In
Fig. 6, the structural phases present for all values of Sτ and
T are colorized differently. The left-hand figure shows the
structural phase diagram for semiflexible helical polymers;
the right-hand figure contains the hyperphases for the flexible
model.

In the semiflexible case (left), a much more robust organiza-
tion of unique structural phases is observed. For Sτ � 7, we see
a clear distinction between random coil, liquid, single-helix,
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FIG. 6. Hyperphase diagrams of bending-restrained semiflexible (left) and unrestrained flexible polymers (right) with 40 monomers.
Regions are represented in the space of the torsion strength Sτ as a material parameter distinguishing classes of polymers and the temperature
T as an external control parameter for the formation of structural phases. The color code is the same as in Fig. 4. The width of the white spaces
between the structural phases corresponds to the general uncertainty in locating the precise transition lines using canonical statistical analysis
for this finite system [9].

and double-helix phases. In each of the regions specified,
the dominant structures are qualitatively distinguishable and
recognizable. Moving to lower values of Sτ the phase bound-
aries are less clear. For Sτ = 6, low-temperature structures are
clearly dominated by three-helix bundles but the four-helix
bundles and amorphous solids exhibit more variability, which
is due to the small size of the system. For longer chains, bundles
composed of four or more helices become also more stable
[67]. For example, we find for a 60-mer that the instability
in the three-helix bundle reduces, with the three-helix branch
forming at larger Sτ values and separating more obviously from
the four-helix branch. The bundling also becomes less variable
in orientation and helix-segment length. The variability of
the four-helix bundle reduces as well, but to a lesser extent.
Conversely, in the case of the 30-mer we see the disappearance
of the four-helix phase, and in the small parameter space that
allows for the formation of three-helix bundles, we find that
these structures are highly unstable.

As shown in the right-hand side of Fig. 6 for flexible
polymers, the folding process is not influenced strongly by
the torsion strength. Again, while helical order emerges for in-
creased Sτ values, there is no organization of helical segments,
so the tertiary folding process is not strongly influenced by
the formation and organization of helical segments. Also in
contrast to the bending-restrained case, we no longer observe
the disappearance of the liquid phase at high torsion strengths.

C. Low-temperature structural analysis

At low temperatures, the dependence of the structure type
on the torsion strength can be easily analyzed and com-
pared for the bending-restrained and unrestrained polymers

by means of the parameter qfrac
2 = q2/(q1 + q2), which is

defined as the fraction of Lennard-Jones energies which occur
between monomers separated by more than six bonds and the
total Lennard-Jones interaction energy between nonbonded
monomers. In Fig. 7, we plot the canonical average 〈qfrac

2 〉 at
each value of Sτ for different fixed temperatures. The behavior
of 〈qfrac

2 〉 highlights the structural transitions in Sτ , which
as a material (or model) parameter determines the dominant
structure type of the respective polymer.

In Fig. 7(a) we show the behavior of 〈qfrac
2 〉 for T = 0.1. In

the bending-restrained case (black), 〈qfrac
2 〉 for the amorphous

solid at Sτ = 0 drops to about half for the three- and four-helix
bundles once the torsion potential is turned on. It reduces
further to about 〈qfrac

2 〉 ≈ 1/4 at Sτ ≈ 7 when the double helix
becomes the dominant structure. For Sτ > 25, it is zero, which
corresponds to the single helix. As already discussed, there
is no well-defined separation between three- and four-helix
bundles for this system size, whereas the single- and double-
helix regions are both highly consistent over the extent of
their domain. In the unconstrained case (red), the structural
ambiguity is evident from the erratic behavior of qfrac

2 with Sτ

and no helical structure type is dominant.
As temperature is increased to T = 0.3 [Fig. 7(b)], we see

spreading out of the crossover between the structure types
due to the increased variability within each helical phase. For
T = 0.6 [Fig. 7(c)], the change between stable unique states
has completely disappeared in favor of a continuous evolution
from globulelike Sτ = 0 structures towards single-helix or
coil-like conformations for torsion strengths Sτ > 20 with
q2 = 0.

No notable change in behavior of 〈qfrac
2 〉 is observed in the

bending-unrestrained case if temperature is increased, because
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(a) (b)

(c)

FIG. 7. Structural parameter 〈q frac
2 〉 plotted for a single temperature for each value Sτ . Regions of constant 〈q frac

2 〉 represent consistent phases
over a range of Sτ . (a) For T = 0.1 there is strong division between distinct states in the bending-restrained case. This behavior is not present
in the unrestrained case. At higher temperature (b) we see the sharpness of the transitions decrease as the structural variability increases and in
(c) the distinct states are no longer discernible.

this order parameter is not sufficiently sensitive to discriminate
amorphous and globular structures.

Helical structure types that semiflexible polymers with
torsional barriers can form are more likely to occur in nature
if the range of torsion strengths that lead to the same stable
structure type is comparatively large. For this purpose, we now
investigate (putative) ground-state structures, as found in our
simulations, more closely. Lowest energies E0 obtained for
bending-restrained polymers with different torsion strengths
Sτ are plotted as dots in Fig. 8. The color indicates the structure
type as defined in Fig. 6.

First, we observe that the ground-state energy is a
monotonously growing function of Sτ . This means that for
larger values of Sτ the torsion barrier increasingly confines the
helical structure type and stabilizes it. This becomes even more
apparent if we hypothetically extrapolate the ground-state
energy of a polymer at a given value of torsion strength, say
S0

τ , to different values of Sτ :

Eext(X0; Sτ ) = E
(
X0,S

0
τ

) + (
Sτ − S0

τ

) N−3∑
l=1

vtor(X0(τl)), (9)

where X0 is the lowest-energy conformation at S0
τ , and

E(X0,S
0
τ ) ≡ E0 is the ground-state energy at S0

τ . The slope
of this linear function acts like a lever and can be considered
as an indicator for the sensibility of the given structure
type. This means that if the slope is rather large, it is more
likely that there is a qualitatively different structure type
associated with the ground state of a polymer with slightly
increased torsion strength Sτ > S0

τ . The linear curves Eext

through the individual ground-state energy values are also
depicted in Fig. 8 and the initially somewhat puzzling result
is that the slopes decrease with increasing torsion strength.
The obvious reason is that the ground-state structures change
qualitatively. Combining these observations, we can conclude

that the lowest-energy structures at small torsion strengths (i.e.,
amorphous structures, four-helix, and three-helix bundles) are
more unstable and unlikely to occur for the 40-mer investigated
in this study than the two-helix bundles and single helices.
This shows also how occurrence and stability of helical
structure types depend on minimal system sizes. In exemplary
simulations of a 60-mer, a stabilization of three-helix and
four-helix bundles was observed. It is worth noting that in

FIG. 8. Energies E0 of putative ground-state structures at dif-
ferent values of torsion strength Sτ (dots) for bending-restrained
polymers (N = 40) with torsional barriers. The color of the dots
and curves is consistent with the key in Fig. 4. The solid lines are
hypothetic extrapolations of the energy Eext(Sτ ) if the torsion strength
in the torsion potential of a given ground-state structure is changed.
The intersection points of lines with different color mark the crossover
between different structure types of ground-state conformations. The
thus identified Sτ threshold values agree with the zero-temperature
transition points in the hyperphase diagram shown in Fig. 6.
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the helix-bundle phases different helix alignment types occur
as subphases.

As a quantitative feature of this representation, the inter-
section points of the linear curves mark the crossover points
from one ground-state structure type into another in Sτ space.
These threshold values are consistent with the location of
the low-temperature transition points discussed above in the
context of the structural phases in the hyperphase diagram
shown in Fig. 6.

V. SUMMARY

We have simulated bead-spring models of homopolymers
with propensity for helical order with and without bending
restraints by means of parallel tempering Monte Carlo simula-
tions. This enabled us to systematically explore the structural
space of flexible and semiflexible helical polymers. The
tendency to form helical segments is controlled via a torsion
potential. Its strength was varied in a way that the competition
between the energy scales associated with torsion potential,
bending energy (if present), and nonbonded Lennard-Jones
interaction facilitates conditions under which different stable
structural phases can form.

We find that with the inclusion of both a torsion and bending
potential, rather stiff helical segments can form. The helical
segments can vary in length and may align into bundles. The
stiffness of the helical segments, and consequently the number
of helices per bundle, is determined by the strength of the
torsion potential.

We also find that without an effective bending restraint,
the polymer chain lacks helical segment stiffness and does
not form stable organized helix bundles. Ensembles of struc-
tures without bending stabilization exhibit a higher entropy

of low-temperature structures, indicating instability in the
amorphous structures formed. In this scenario, we also observe
unpredictable sensitivity to a change in environment such as
torsion strength and temperature.

The lack of stability and tolerance to environmental
variability provides insight into the preference of biopolymers
for effectively restrained bond angles, as it is prominent
for semiflexible polymers. DNA and most protein structures
possess such effective restraints; degrees of freedom are
typically limited to rotations about dihedrals. This reduced
flexibility in polypeptides is essential for functional structures
to behave predictably and consistently.

Our results, obtained by means of an extensive statistical
analysis of a simple, generic, and adaptive model, support the
understanding of the way nature creates variety and stability of
biomacromolecular matter. While models, refined to atomistic
scales, are essential for revealing specific details, only generic
models like the one used in our study can help to attain a more
comprising and qualitative understanding of general features in
complex biomolecular systems. Future work shall address the
detailed quantitative analysis of the folding landscape and the
estimation of free-energy barriers associated with the different
folding pathways into stable helical structures. The set of order
parameters discussed in this and previous work [4] forms a
useful basis for the helical state space, in which the free-energy
landscape is represented.
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