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Abstract. Bonded interactions in coarse-grained models of elastic polymers are commonly
represented by the finitely extensible nonlinear elastic (FENE) potential. In this study, we
perform parallel multicanonical Monte Carlo simulations to examine the impact of an additional
Lennard-Jones term in the bonded potential on the geometry of ground-state structures of a
short polymer. Employing microcanonical inflection point analysis and conformational analysis,
we construct a hyper-phase diagram and identify ground-state structures with two distinct
geometries.

1. Introduction

The physical and chemical functionality of biopolymers and synthetic variants is intimately
related to their conformational structure. Therefore, the systematic study of their dynamic
and structural properties is of a fundamental importance and a major topic of current
interdisciplinary research. Theoretical approaches are generally not adequate due to the
prohibitive complexity of even the simplest molecular systems [1]. On the other hand,
computational methods such as the replica-exchange [2], multicanonical [3, 4], and Wang-Landau
sampling [5], have proven to be most effective. Despite the vast increase in the availability of
computational resources over the past decade, simulations of fully atomistic models remain a
major challenge. Hence a clever choice of suitable coarse-grained models with a reduced number
of parameters is often a prerequisite to a successful computational study. In this paper, we
consider a generic model of the flexible elastic homopolymer and examine the effects of adding
an extra Lennard-Jones term to the bonded potential. The unexpected consequences for the
ground-state structures highlight the importance of a careful choice of model parameters.

2. Model and Methods

We employ a generic model of a flexible elastic homopolymer to study the effects of the shape and
width of the bonded potential on the formation of low-energy structures for a polymer chain
with N = 15 monomers. Finite-size effects are essential and the 15mer shows a particularly
distinct and clear transition behavior, which makes it a perfect candidate for this systematic
study.
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Figure 1. The modified bonded
potential UB(r), modeled by the
FENE and LJ interactions. The
strength of the Lennard-Jones term
is controlled by the bond flexibility
parameter η ∈ [0, 1].

Non-bonded interactions are represented by the truncated and shifted Lennard-Jones (LJ)
potential

U trunc
LJ (rij) =

{

ULJ(rij)− ULJ(rc), if rij ≤ rc,
0, if rij > rc,

(1)

where

ULJ(r) = 4ǫ

[

(

σ

r

)12

−

(

σ

r

)6
]

. (2)

The energy scale is set to ǫ = 1 and the van-der-Waals radius to σ = r0/2
1/6, where r0 = 1.0 is

the location of the potential minimum. We select a cut-off radius at rc = 2.5σ and introduce a
shift ULJ(rc) ≈ −0.0163169 ǫ to avoid discontinuities in the potential. In our model, monomers
adjacent in the linear chain interact via a modified bonded potential

UB(r) = −
1

2
KR2 ln

[

1−

(

r − r0
R

)2
]

+ η(ULJ(r) + ǫ)− (ǫ+ Ushift), (3)

where R = 3/7 andK = 98/5. In addition to the standard anharmonic FENE (finitely extensible
nonlinear elastic) potential [6, 7, 8], the modified potential contains an additional Lennard-Jones
term adjusted by a bond flexibility control parameter η. The bonded potential is shifted by
−(ǫ+ Ushift) in order to match the minimum energy with the non-bonded interactions.

The maximum bond extension is limited by the FENE potential, which diverges as r → r0±R.
Increasing the value of η introduces asymmetry to the bonded potential and the energy cost
associated with non-optimal bond lengths is increased. In particular, compressed bonds result
in high energy penalties as η becomes large. The effects of different η values on the shape
and width of the bonded potential is exhibited in Fig. 1. The total energy of a configuration
X = (~r1, ..., ~rN ) with the monomer-monomer distances rij = |~ri − ~rj | is given by

E(X) =
N
∑

i<j

ULJ(rij) +
N−1
∑

i=1

UB(ri i+1). (4)

In order to enhance the sampling of low-energy configurations, a parallel version of
multicanonical sampling [3, 4, 9] is employed in this simulation. The standard multicanonical
runs are performed in K replicas independently with the same initial weight functions but
different random seeds. Displacement updates are proposed within a cubic box of edge lengths
d = 0.3r0 and accepted according to the probability

P (X → X ′) = min[1,W (E(X ′))/W (E(X))], (5)

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012013 doi:10.1088/1742-6596/759/1/012013

2



where W (E(X)) represents the weight function of a given configuration X. After the ith
iteration, since the weights are identical in each thread, the energy histograms obtained for
each replica can simply be summed up:

H i(E) =
K
∑

k=1

H i
k(E). (6)

The total histograms are combined with the current weights to calculate the weights for the
subsequent iteration by utilizing the error-weighted recursive scheme [1, 3, 4].

To construct the hyper-phase diagram, we use the generalized microcanonical inflection-
point analysis [1, 10]. This approach has the advantage of uniquely and systematically locating
the transition energies and thus is commonly employed to study pseudophase transitions in
finite-size systems. By applying the principle of minimal sensitivity [11] to the derivatives of
microcanonical entropy S(E), the (2n+1)th-order transition (n is a positive integer) is identified
from the least sensitive inflection point of the 2nth-derivative of entropy and the positive valley
in the (2n + 1)th-derivative curve. For a 2nth-order transition, the least sensitive inflection
point in the (2n− 1)th-derivative of entropy together with the negative peak in the 2nth-order
derivative curve are utilized to locate the transition energy. The specialty of the first-order-like
transition is that it can be distinguished from the back-bending region in the inverse temperature
β(E) ≡ T−1(E) = dS(E)/dE and the corresponding positive peak in the γ(E) = dβ(E)/dE
curve.

3. Results

3.1. Canonical and microcanonical analysis

First we discuss the results of canonical statistical analysis applied to our generic model. Heat-
capacity curves as functions of temperature (Fig. 2(a)) are constructed using the time series
of data collected in the multicanonical production run. At T ≈ 0.34, broad prominent peaks,
indicating the freezing transition, are identified for all simulated η values. At this transition,
globular structures change to more compact crystalline or amorphous structures. For η = 0,
an additional peak emerges at T = 0.11, suggesting the existence of a solid-solid transition.
With increasing values of η the peak becomes more pronounced as it gradually shifts towards
zero temperature and finally disappears when η ≥ 0.1. However, the order of the individual
transitions remains ambiguous and the broad peaks of the freezing transition may envelope
several transitions which cannot be resolved by the methods of canonical analysis. Therefore we
further examine the system using a more systematic and robust approach. One such method
that has proven to reliably signal transitions is the microcanonical inflection-point analysis [10].

The microcanonical results are shown in Fig. 2(b-d) for six different values of η. Careful
inspection of the first and second derivatives of β(E) in the energy region E ∈ [−45.5,−33]
reveals that the broad peak in the canonical specific heat encloses two distinct transition signals;
clear indication that the freezing transition is a two-step process. The first signal located at
E ≈ −44, is a fourth-order transition indicated by the corresponding least sensitive inflection
point in δ(E). The second transition, found at E ≈ −38, is of third order for η ≤ 0.2, but it is
classified as a second-order transition for higher values of the bond flexibility control parameter.
In agreement with the canonical results, we have also identified signals corresponding to a solid-
solid transition for values of η ≤ 0.1. For η = 0.02 and 0.05, the negative-valued peaks in γ(E)
at energies E = −49.7 and −50.4 respectively, indicate a second-order transition. The inflection
point in γ(E) and the corresponding positive valley in δ(E) = dγ(E)/dE at E = −48.92 reveal
that for η = 0.00 the solid-solid transition is of third order.

The hyper-phase diagram is constructed on the basis of the signals identified in the
microcanonical analysis and plotted in Fig. 3. In the “gas” pseudophase at high energies, the
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Figure 2. (a) Heat capacity Cv, (b) microcanonical inverse temperature β(E), and (c,d) its
first and second derivatives γ(E) and δ(E), respectively.

polymer expands in free space and forms random-coil structures. As the energy decreases,
the expanded chain undergoes a second-order collapse transition and enters the “liquid”
pseudophase consisting mainly of globular structures. Passing the third/second-order transition
associated with the nucleation process, the polymer enters the Sic pseudophase in which
incomplete icosahedral structures become dominant. Further decrease in energy weakens thermal
fluctuations and allows for the formation of a stable surface layer. The transition associated
with the surface formation process is of fourth order. Visual inspection of low-energy structures
reveals that icosahedral geometries are dominant. However, for η ≤ 0.1, the additional solid-
solid transition suggests the existence of low-energy conformations with unexpected geometric
properties. In order to examine the low-energy structures systematically, we carry out a careful
structural analysis utilizing a suitable set of order parameters.

3.2. Structural analysis

Various order parameters, such as the number of monomer-monomer contacts, radius of
gyration, or radial and angular distributions, have proven to provide valuable insight into the
thermodynamic and structural properties of polymer systems. Based on the microcanonical
results in Fig. 3, we expect the existence of two solid phases when the strength of the bond
flexibility parameter is sufficiently small (η ≤ 0.1). We aim to identify the dominant structures
in the low-energy phases and to gather additional data supporting the existence of the solid-solid
transition line. For this purpose, we employ a set of order parameters exploiting the symmetry
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Figure 3. (a) Microcanonical hyper-phase diagram parameterized by energy and the bond
flexibility control parameter η. Here, G, L, and S stand for “gas”, “liquid”, and “solid” structural
phases, respectively. The Sic−core pseudophase consists mostly of incomplete icosahedral
structures. Sic and Sbi incorporate compact icosahedral and bihexagonal structures, respectively.
(b) Enlarged section detailing the low energy region for η < 0.15. The solid-solid transition line
is extended by a dashed empirical line constructed based on the data provided by structural
analysis.

properties of real spherical harmonics [12].
We define a polymer core to consist of monomers within a distance rcore < 1.25σ of the central

monomer, which has been chosen to be nearest to the center of mass. Let C = {~r1, ....., ~rM} be
the coordinates of a core with M monomers. Various core geometries can be distinguished using
the set of rotationally invariant order parameters

Ql =





4π

2l + 1

l
∑

m=−l

|ρl,m|2





1/2

, (7)

where

ρl,m =
1

M

M
∑

i=0

Yl,m(~ri) (8)

is the average of the real spherical harmonics evaluated at the locations of the core monomers.
The connection between the real and complex spherical harmonics is given by

Ylm =























i√
2

[

Ym
l − (−1)mY−m

l

]

if m < 0,

Y m
l if m = 0,

1√
2

[

Y−m
l + (−1)mYm

l

]

if m > 0.

(9)

Using of the order of 106 polymer structures per value of η, we computedQl up to l = 6 and found
that Q6 can be used most effectively to resolve the geometries of the low-energy conformations.
We present the results in the form of intensity plots in Fig. 4. The probability of detecting a
structure with a specific value of the order parameter at an energy E is represented by shading;
red indicating the maximum probability and black corresponding to zero. In agreement with the
microcanonical and canonical results, we detect a single solid phase for η > 0.1, corresponding to
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Figure 4. (a,b,c,d) Intensity plots of the Q6 order parameter for a 15mer with η =
0.00, 0.05, 0.10, 1.0. The shading indicates the probability of detecting a configuration with
a given value of the order parameter, red being the maximum probability and black being the
lowest. The freezing and the solid-solid transitions are indicated by solid and dashed horizontal
lines respectively. For η ≤ 0.1, the polymer has two distinct solid phases. In addition to the
icosahedral phase (Q6 ≈ 0.65) the polymer is found in the bihexagonal phase at low energies
(Q6 ≈ 0.41).

the narrow funnel in Q6 below the transition line at E ≈ −43. The dominant structures in this
region contain an icosahedral core which is typically found in the ground-state conformations
of many short polymer chains. Below η = 0.1, the 15mer explores an additional solid phase, as
indicated by the appearance of a second funnel centered around Q6 ≈ 0.41. Structures which
populate this phase possess an unusual bihexagonal geometry which has also been recently found
in longer chains. The energy at which both phases coexist agrees well with the microcanonical
estimates for the solid-solid transition. Representative structures of both solid phases are shown
in Fig. 5.
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Figure 5. Two distinct low-
energy structures of the elastic
15-mer. (a) Compact structure
with a stable icosahedral core and
two monomers displaced onto the
incomplete second layer. (b) The
bihexagon is the preferred ground-
state geometry for η ≤ 0.1.

The shape of the bonded potential has undoubtedly a strong effect on the geometry of the
ground state. Having identified the two dominant structure types, we may ask why the additional
LJ term in the bonded potential eventually precludes the existence of the bihexagonal phase.
The answer is readily obtained by comparing the average bond lengths for the icosahedral and
bihexagonal structures. The bihexagon accommodates all monomers into a single shell allowing
for a larger number of non-bonded interactions and consequently lower energy. However, the two
six-monomer rings of the bihexagon contain significantly compressed bonds (rbond ≈ 0.88r0),
which become energetically infeasible as η increases. In contrast, we find near-optimal bond
lengths in the icosahedron (rbond ≈ r0), hence the “narrowing” of the bonded potential imposes
no additional energetic penalty.

4. Summary

By means of multicanonical simulations of a generic model for elastic, flexible polymers, we
have investigated the structural behavior of a 15-mer upon changing a model parameter η that
controls the shape of the bonded potential. For small values of this parameter, a freezing
transition into an icosahedral phase precedes a solid-solid transition into low-energy states with
bihexagonal geometry. The non-optimal bond lengths found in bihexagonal conformations cause
a large energy penalty due to the “narrowing” of the bonded potential if η is increased. Hence
only a single solid phase remains for η > 0.1, which is icosahedral. The striking consequences of
a relatively small modification to the standard model of elastic, flexible homopolymers illustrate
the importance of a careful choice of model parameters.
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