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Interlocking order parameter fluctuations in
structural transitions between adsorbed
polymer phases

Paulo H. L. Martinsa and Michael Bachmannabc

By means of contact-density chain-growth simulations of a simple coarse-grained lattice model for a

polymer grafted at a solid homogeneous substrate, we investigate the complementary behavior of the

numbers of surface–monomer and monomer–monomer contacts under various solvent and thermal

conditions. This pair of contact numbers represents an appropriate set of order parameters that enables

the distinct discrimination of significantly different compact phases of polymer adsorption. Depending

on the transition scenario, these order parameters can interlock in perfect cooperation. The analysis

helps understand the transitions from compact filmlike adsorbed polymer conformations into layered

morphologies and dissolved adsorbed structures, respectively, in more detail.

I. Introduction

Polymers are complex systems that often tend to form struc-
tures without apparent symmetries. This makes it difficult to
analyze the cooperative behavior of the individual monomers
that leads to structure formation. Furthermore, systematic
experimental studies of individual polymers of finite size are
sophisticated and results often do not possess sufficient resolu-
tion to identify characteristic features of compact structures.
This leaves computer simulations the only tool for thorough
investigations, although for scans of parts of environmental
and material parameter spaces these studies are limited to
rather simple models.

Lattice polymer models are among the most common to study
generic features of structure formation processes. Structural
transitions of individual self-interacting lattice polymers, which
in the simplest case are self-avoiding walks1,2 with local non-
bonded interactions,3–10 and lattice proteins10–23 have been
studied extensively in the past. Whereas scaling properties of
polymer transitions between disordered and loosely ordered
phases, such as the Y collapse transition, could be investigated
by means of simulations of large systems rather easily (see, for
example, the discussion and references in ref. 9 and 24), the

analysis of compact solid phases remains a difficult problem.7–9,25

The simulation of appropriate system sizes is hardly possible. For
certain types of polymers, such as proteins, the study of finite-size
properties is more relevant than the large-scale behavior,10 but for
homopolymers the study of larger systems is beneficial and allows
for scaling analyses.

Studies of the adsorption behavior of polymers and proteins
near attractive substrates have been popular for quite some
time. As for the understanding of the folding behavior of single
polymers, lattice models of hybrid organic–inorganic systems
have also been employed largely to understand the statistical
mechanics of polymer adsorption and constrained structure
formation near such a boundary.26–39

In this paper, we investigate properties of order parameters
that are suitable to distinguish compact filmlike polymer
structures adsorbed on a homogeneous substrate (AC1) from
adsorbed expanded conformations (AE) that represent a gaslike
macrostate on the substrate. We also investigate the transition
that separates the two-dimensional compact single-layer AC1
phase and the compact and globular adsorbed phases with
multiple layers (AC2&AG). These structural phases extend into
the third dimension perpendicular to the substrate, which is
why it is a topological dewetting transition.

The structure of the paper is as follows. In Section II, we
introduce the hybrid lattice polymer–substrate adsorption
model and describe the chain-growth approach to the systematic
generation of interacting self-avoiding walks near an attractive
substrate. The statistical mechanics of microphases is discussed
in Section III and used to construct the canonical structural
phase diagrams in Section IV. The paper is concluded by the
summary in Section V.

a Instituto de Fı́sica, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT,
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II. Lattice model of polymer
adsorption and chain growth

For our study of the thermodynamic adsorption properties of a
polymer with N monomers tethered to a homogeneous substrate,
we employ a minimalistic interacting self-avoiding walk model
(ISAW) on a simple-cubic lattice. Energetically, a monomer favors
nearest-neighbor contacts with other nonbonded monomers and
with the attractive substrate. Therefore, by introducing the total
numbers of monomer–surface contacts ns and monomer–
monomer contacts nm, the energy of a single polymer confor-
mation can simply be expressed by

Es(ns,nm) = �e0(ns + snm), (1)

where e0 is the overall (irrelevant) energy scale that will be set to
unity in the following. The parameter s represents the ratio of
energy scales associated with intra-monomer contact formation
and substrate binding, respectively. Physically, it can be interpreted
as a reciprocal solvent quality parameter, because a larger positive
value supports the formation of compact polymer structures
(poor solvent), whereas smaller values favor stronger binding
to the substrate and, therefore, the effective dissolution of
conformations (good solvent). Fig. 1 shows as an example a
conformation of a polymer with 503 monomers as found in
the simulations. It has ns = 5 monomer–surface and nm = 154
monomer–monomer contacts.

In this study, we consider s as a system or material para-
meter, and the temperature T as an environmental control
parameter for the canonical statistical ensemble of the system
coupled to a heatbath. Both parameters together govern the
energetic and entropic system behavior and thus enable the
construction of a hyperphase diagram that accounts for
the transition between classes of macrostates of the system,
which in the following we will simply call ‘‘phases’’.10

Simulations of different system sizes with up to N = 503
monomers were performed by employing the contact-density
chain-growth algorithm,10 which samples the (ns,nm) contact
number space directly and completely. The result is the contact
density g(ns,nm), which is simply given by the number of

polymer conformations with ns surface and nm monomer–
monomer contacts. As we will discuss later, these contact numbers
suit perfectly as order parameters that enable the discrimination
of most adsorbed and desorbed structural phases of the polymer.
The energy-free representation of the ‘‘density of states’’ is also
extremely convenient as it allows for the reweighting of energetic
quantities to any desired system and environmental condition
(in T–s space) after the simulation has been performed.

The contact-density chain-growth method is a generalization
of multicanonical10,20,21 and flat-histogram40 versions of the
pruned-enriched Rosenbluth method (PERM)6 and its nPERM
extensions.18,19 PERM is a significant improvement of the original
Rosenbluth method.1 Generally, in chain-growth methods, the
polymer chain is typically grown from the first bead. Since the
bond length is fixed, only nearest-neighbor sites are available for
placing the next bead. An unoccupied nearest-neighbor site is
chosen to extend the chain by adding another monomer. If the
number of unoccupied nearest-neighbor sites of the current chain
end point is ml, l = 1,. . ., N � 1, then one of those lattice sites is
chosen with probability ml

�1 as the new end point of the chain.
The procedure is continued until the chain has reached its final
length (N monomers) or if it got stuck in a ‘‘dead end’’, where no
continuation is possible. In order to sample the configuration space
to get appropriate statistics for further analysis, the Rosenbluth
chain-growth method is repeated many times. The method
obviously creates a bias which needs to be corrected by assigning

each chain, created in this way, an own weight, WR ¼
QN�1
l¼1

ml . If the

algorithm is repeated a large number of times M, the mean of the

Rosenbluth weight WR �
PM
i¼1

W
ðiÞ
R

.
M is a good estimator for

the absolute total number of possible polymer conformations.
In PERM,6 at each step the Rosenbluth weight is multiplied by

the Boltzmann factor containing the energetic change caused by
this step. Furthermore, enriching the sample by creating copies of
chains with large weights and pruning chains with less promising
weights increases the sampling efficiency. The result is an absolute
estimate of the canonical partition function. In the multicanonical
variants,10,20,21,40 pruning and enriching is based on weight functions
that result in a flat energy histogram by artificially enhancing the
population of entropically suppressed states during the simulation.
These methods provide absolute estimates for the density of states.

Fig. 2 shows the contact density for a lattice polymer with 503
monomers as obtained in our simulations. The contact density
covers more than 300 orders of magnitude. Note that the chain-
growth method is capable of creating absolute estimates, in contrast
to importance-sampling Monte Carlo methods. This is particularly
beneficial if an estimate for the ground-state degeneracy is needed
such as in studies of designing sequences of lattice proteins.20,21

III. Statistical mechanics of the
micro-contact ensemble

The standard canonical partition function that can be written
as a sum over all microstates with energy E and their degeneracy

Fig. 1 Example of a conformation with 503 monomers as found in the
chain-growth simulations of the lattice polymer model of adsorption used
in this study. One end of the chain is grafted at the substrate.
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(number of states) ĝ(E) can also be expressed by means of the
contact numbers

Zcan
T ;s ¼

X
Es

ĝ Esð Þe�Es=kBT ¼
X
ns;nm

ZT ;s ns; nmð Þ: (2)

Here, we have introduced the restricted partition function in
contact number (or order parameter) space:

ZT,s(ns,nm) = g (ns,nm)e�Es(ns,nm)/kBT. (3)

With this, we can introduce the free energy, parametrized by
s and T, as a function of the contact numbers:

FT,s(ns,nm) = �kBT ln ZT,s(ns,nm). (4)

By introducing the conformational contact entropy S(ns,nm) =
kB ln g(ns,nm), we can also write the free energy in the
common form

FT,s(ns,nm) = Es(ns,nm) � TS(ns,nm). (5)

Note that the free-energy landscapes for all values of the
temperature T and solvent quality s can be obtained easily, in
principle, by reweighting from the contact density after a single
simulation run. If one accepts that ns and nm are appropriate
order parameters, the global minimum of the free-energy land-
scape for each parameter pair (T,s),

F min
T,s = FT,s(n

min
s ,nmin

m ), (6)

represents the dominant macrostate (nmin
s ,nmin

m )T,s in contact
number space. If upon variation of T and s, the macrostate does
not change within a certain environment e(T,s) of the parameter
space, i.e., (nmin

s ,nmin
m )e(T,s) = (nmin

s ,nmin
m )T,s, we call this section of

the parameter space a ‘‘stable microphase’’. Structural phases
can then be defined as ensembles of macrostates (or micro-
phases) sharing characteristic (structural) features.

It is worth mentioning that the contact definition can be
extended to continuum models as well by introducing effective
energy ranges or threshold distances.41

A. Microphase free-energy landscapes

Fig. 3 shows the microphase diagram for a polymer with 503
monomers in the section of the parameter space relevant for
our study. Each cell corresponds to a microphase representing
the same macrostate (nmin

s ,nmin
m ). Although it is not easily

possible to combine microphases in order to identify structural
phases, three regions can be distinguished, in which the sizes
of the cells significantly differ. As we will see later, the inter-
faces between these regions fall together with transition lines of
structural transitions. In the lower right part of the figure,
we find very small cells, i.e., each of the many connected
microphases is unstable. This is an indication that the entire
structural phase possesses high entropy and is disordered. In
the upper right part, microphases cover larger regions in
parameter space, meaning that overall they are more stable
and ordered. The wedge-shaped part to the left is highly ordered
and since the s value is comparatively small (i.e., surface contacts
are favored), this structural phase is dominated by strong
adsorption effects.

A complementary approach to the discussion of phase dia-
grams based on free-energy landscapes is the identification and
mapping of all free-energy minima in (ns,nm) space for any desired
(T,s) parameter pair. Therefore, by scanning sufficiently large
regions in (T,s) space and determining the corresponding free-
energy minimum locations (i.e., the macrostates) (nmin

s ,nmin
m ), it is

also possible to identify structural phases and even to determine
the character of the transitions in-between (continuous or
discontinuous). The map of all free-energy minima (nmin

s ,nmin
m )

identified for the 503mer in the temperature region T A [0,10]
and for solvent parameter values in the interval s A [0,10] is
shown in Fig. 4. Shaded regions correspond to structural
phases, i.e., the conformations associated with the free-energy
minima possess characteristic similarities.

Fig. 2 Contact density distribution g(ns,nm), i.e., the number of states with
ns contacts with the substrate and nm monomer–monomer contacts of a
polymer with 503 monomers.

Fig. 3 Structural microphase diagram for the 503mer adsorbed at a
substrate from the free-energy perspective. Each dot in this graph
represents a change of the location of the free energy minimum F min

T,s =
FT,s(n

min
s ,nmin

m ) in the space of the contact numbers (ns,nm), by varying
temperature T and solvent quality s. The dashed lines correspond to the
ridges of the specific-heat landscape (see Fig. 6) and correspond well to
the boundaries of the cell structure of the microphase diagram. Deviations
are caused by finite-size effects.
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B. Solvent effects

It is instructive to follow two thermal trajectories through
this landscape by increasing the temperature successively at a
constant value of s. From Fig. 3, we find s = 0.3 and 0.8 inter-
esting choices, because the cuts in T-direction at these values
cross different transition lines. The temperature dependence of
the free-energy minimum locations nmin

s,m is depicted in Fig. 5.
At zero temperature, both trajectories start in the filmlike
regime, which we label AC1 (adsorbed-compact, single layer).
While all monomers are in contact with the substrate (i.e.,
nmin

s = 503), the number of monomer–monomer contacts
of the lowest-energy conformations found in the simulations
is nmin

s = 461 for both s values.
1. Good solvent. By adiabatically increasing the temperature,

the number of surface contacts of the free-energy minimum
configuration remains widely stable, but under the good solvent
conditions present at s = 0.3, the compactness of the filmlike
structure decreases. At about T = 0.41, this change is most rapid:
the polymer undergoes a transition from the compact AC1 phase
into more disordered, but still mostly two-dimensional microstates

in the adsorbed-expanded (AE) phase of polymer conformations.
The number of monomer–monomer contacts drops below nmin

m =
150 before T = 1.0 is reached. Conformations that resemble

Fig. 4 Map of all global free-energy minima located at contact number values nmin
s,m in the intervals of temperatures T A [0,10] and solvent parameters s A

[0,10] for a lattice polymer with 503 monomers grafted at a solid substrate. The trajectories shown for s = 0.3 and 0.8 connect the corresponding free-
energy minima at all temperatures in the given interval. This provides insight into the differences of the conformational changes in contact-number space
upon adiabatically changing the temperature under good and poor solvent conditions. Also shown are representative conformations at selected
temperatures along those minimum free-energy paths. The numbers close to the arrows correspond to the selected values of the temperature T.
In parentheses next to each sample conformation, the contact numbers (nmin

s ,nmin
m ) that are associated with the free-energy minimum are given.

Fig. 5 The contact numbers nmin
s,m at the global free-energy minima as a

function of temperature for s = 0.3, 0.8.
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random coils extend more and more in the direction perpendi-
cular to the substrate. The effect of the good solvent is two-fold:
polymer structures dissolve and previously adsorbed monomers
are released off the substrate.

As Fig. 5 shows, nmin
s drops steadily over a large temperature

interval until, near T = 4.0, almost all monomers have lifted off
and enjoy the additionally available transitional entropy. The
polymer has reached the desorbed phase D in its random-coil
regime (desorbed expanded), where it is quasi-free in the avail-
able space that grafting permits. If the polymer was not grafted,
but confined in a sufficiently large volume, it would completely
desorb and the large translational entropy would cause a (first-
order-like) phase separation between the adsorbed and desorbed
phases,30,31,42,43 although the transition is strictly continuous in
the thermodynamic limit.44

2. Poor solvent. Under poor solvent conditions, as present
for s = 0.8, the structural behavior of the polymer upon
adiabatic heating is significantly different. As can be seen in
Fig. 5, the macrostates characterized by nmin

s,m are very stable
in the compact phase of basically two-dimensional filmlike
structures AC1 at low temperatures below T = 0.57. At this
point a topological transition occurs. While in good solvent
(s = 0.3) the polymer passes the transition AC13AE continuously,
the crossover from AC1 into the neighboring phase is a phase-
separation process. Structurally, the polymer forms additional
layers which increase the number of monomer–monomer con-
tacts at the expense of surface contacts. Structures remain
compact, but are three-dimensional.

For s = 0.8, the monomer arrangement in this phase is not
particularly ordered, which is why we denote the phase as
adsorbed globular (AG). Note that at even higher s values the
polymer transitions into much more ordered double-layer
states (AC2: adsorbed-compact with two or more layers).30,31

For s = 0.8, characteristic conformations at the coexistence
point are shown in Fig. 4. Upon increasing the temperature to
T = 0.72, the number of monomer–monomer contacts increases
further slightly (from nmin

m = 530 to 578), while the number of
surface contacts continues to diminish. The structural response
to the thermal environment remains almost the same until
T E 1.15 is reached. Then, it changes radically. Between T =
1.15 and T = 1.76, the number of monomer–monomer contacts
drops rapidly from nmin

m = 536 to 354 at almost constant number
of surface contacts (nmin

s = 247 vs. 245). The compact polymer
structure disintegrates while going through the transition from
AC2&AG to AE. From here on, the behavior at higher temperatures
is similar to that in the good-solvent scenario, i.e., solvent effects
are less relevant, although structures remain more compact
when the system experiences the desorption transition, entering
phase D, at about T = 4.10.

IV. Canonical analysis of structural
phases

In this section, we investigate the hyperphase diagram of polymer
adsorption, parametrized by temperature T and solvent quality s,

from the perspectives of fluctuations of energy and interlocking
contact numbers.

A. Canonical structural phase diagrams

The contact density g(ns,nm) enables immediate access to all
thermodynamic quantities that depend on ns,m. Because of the
model definition, eqn (1), this includes all energetic quantities.
Since we have already identified the contact numbers as useful
order parameters for the characterization of the structural
transitions between the phases AC1, AC2&AG, and AE, the
investigation of the thermal fluctuations of these quantities is
beneficial as well. By means of the restricted partition function
(3), the canonical statistical average of any quantity O that is a
function of ns and nm is given by

O ns; nmð Þh iðT ; sÞ ¼ 1

Zcan
T ;s

X
ns ;nm

O ns; nmð ÞZT ;s ns; nmð Þ; (7)

with the canonical partition function Zcan
T,s from eqn (2). The

conformational energy Es associated with the model (1) and the
contact numbers that we consider as order parameters in this
study are the most basic quantities of interest.

For the study of enhanced thermal activity in response
to adiabatic changes of environmental parameters such as
temperature or external fields, it has always been useful to
introduce response quantities. These are commonly defined as
the derivatives of order parameters with respect to the external
field that causes the perturbation. The most prominent response
quantity is the heat capacity of the system, which quantifies the
amount of energy necessary to readjust the temperature of the
system to the environmental heat-bath temperature. An extremal
fluctuation is typically associated with a qualitative change in the
system, which we consider here as a phase transition in the general
sense that includes finite systems. The corresponding order
parameter is the energy. It is a general and therefore unspecific
order parameter, because it does not normally offer much insight
into the physical nature of the transition. In the context discussed
in this paper, extremal fluctuations of the energy hEsi upon a
change of the temperature T represent a significant qualitative
alteration of the geometric structure of the polymer.

We introduce any thermal response quantity in the form

GOðT ; sÞ ¼
dhOiðT ; sÞ

dT

� 1

kBT2
OEsh iðT ; sÞ � hOiðT ; sÞ Esh iðT ; sÞ½ �:

(8)

Therefore, GEs
(T,s) = CV(T,s) defines the heat-capacity profile in

(T,s) space. The specific-heat profile for the 503mer in this
space is shown in Fig. 6. Cuts at s = 0.3 and 0.8 are plotted in
Fig. 7. The canonical phase diagram covers the same region as
the microphase diagram depicted in Fig. 3, where dashed lines
represent the ridge lines of the specific-heat profile. Slight
deviations in the location of these estimates for transition lines
and the boundaries of the cell structure in Fig. 3, particularly
apparent for the transition between AC2&AG and AE, are due
to the finite size of the system. Finite-size effects broaden
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distributions of canonical quantities such as the energy
distribution. In the canonical statistical analysis, averages
calculated from these distributions and the extremal fluctua-
tions about this mean at the transition point are used to locate
the transition point. The solid lines in the specific-heat land-
scape in Fig. 6 represent the regions of extremal energy fluctua-
tions. However, the thus determined transition parameters
do not necessarily match the microcanonical estimates, which
are more unique as microcanonical thermodynamics does
not allow for fluctuations. Therefore, microcanonical analysis
methods enable a more universal definition of transition points
in finite systems, which is why these techniques have become
more popular recently in the context of studies of polymer
systems.

For the fluctuations of the contact numbers ns,m that we
have identified as useful specific order parameters in the
discussion in the previous sections, we can derive similar
expressions. If we denote the second-order cumulant of two
quantities x and y by hxyic = hxyi � hxihyi, where x and y can be

either ns or nm, the contact-number correlation matrix can be
written as

M ¼
ns

2
� �

c
nsnmh ic

nsnmh ic nm
2

� �
c

0
@

1
A: (9)

Therefore, trivially, one can introduce unit state vectors

ens ¼
1

0

 !
; enm ¼

0

1

 !
(10)

that project the system state into the spaces of monomer–
surface and monomer–monomer contacts. Effectively, each
contact represents a ‘‘quasi-particle’’ and the variances of the
total number of contacts in these spaces can be written as
ns;m

2
� �

¼ eTns;mMens;m . More important in our context is the

introduction of contact-number fluctuations. If we introduce
the energy scale vector

e ¼ e0
1

s

 !
¼ e0 ens þ senmð Þ (11)

for the monomer–surface (first component) and monomer–
monomer contacts (second component), respectively, the fluc-
tuations can be expressed by

Gns;m ¼ �
1

kBT2
eTMens;m : (12)

The fluctuation profiles of the contact numbers are shown in
Fig. 8 as density plots. Large fluctuations are represented by bright
colors and help indicate regions of rapid changes of the order
parameters. Dashed lines are inserted to mark the phase bound-
aries as identified from the specific-heat profile shown in Fig. 6.
Expectation values of the contact numbers and horizontal cuts
through the landscapes of the contact-number fluctuations at
s = 0.3 and 0.8 are depicted in Fig. 9 and 10, respectively.

Using eqn (9) and (11), the heat capacity simply reads

GEs ¼
1

kBT2
eTMe: (13)

Because of the minimal coupling of the energetic contributions
in the model (1) and the corresponding separation of the energy
scales in contact-number space (11), we can immediately write
down an important relation between the energetic and the
order-parameter fluctuations in (T,s) space:

GEs
(T,s) = �e0[Gns

(T,s) + sGnm
(T,s)]. (14)

This means that signals in the heat capacity like peaks or
‘‘shoulders’’, indicating structural transitions in the finite
system, can be directly related to order-parameter fluctuations.

B. Interlocking

In particular, if the heat capacity is extremal as a function of T,
dGEs

/dT = 0 in finite systems, as it is at the structural transition
point, then eqn (14) leads to the correlation relation

dGnsðT ; sÞ
dT

¼ �sdGnmðT ; sÞ
dT

; (15)

Fig. 6 Color-coded specific-heat profile CV(T,s) representing the part
of the structural hyperphase diagram of the 503mer that features the
transitions between filmlike, two-dimensional adsorbed conformations
(AC1), adsorbed expanded structures (AE), and adsorbed multi-layer com-
pact and globular polymer morphologies (AC2&AG).

Fig. 7 Cuts through the specific-heat profile in Fig. 6 at solvent parameter
values s = 0.3 and 0.8 for the 503mer.
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i.e., for s 4 0, the changes of contact numbers are anticorrelated.
This dependence of the fluctuations of otherwise independent
order parameters upon each other renders the transition that is

associated with dGEs
/dT = 0 a cooperative effect. In this sce-

nario, the order parameters are interlocking, because a change
in the fluctuation behavior of one order parameter is inevitably
connected to an alteration of the other one in accordance with
eqn (15). Most striking is the situation where the relation (15) is
satisfied by dGns

/dT = dGnm
/dT = 0, in which case the fluctua-

tions of energy and both order parameters are extremal at the
same temperature. This is not at all typical in transitions
of finite systems. This interlocking scenario is particularly
apparent for the topological transition from AC1 to AC2&AG.
For s = 0.8, as shown in Fig. 10, both contact numbers are
perfectly anticorrelated at the transition point (T E 0.57).

If only one of the order-parameter fluctuations is extremal,
the peak/valley locations of the heat capacity and this order-
parameter fluctuation may differ. The other order parameter
mixes in and its contributing fluctuation makes the extremal
locations of the other quantities vary, to satisfy eqn (14). This is
the more common scenario for transitions in finite systems.
The transition behavior from AC1 to AE is generally of this
kind. For s = 0.3, as shown in Fig. 9, only the monomer–
monomer contact number fluctuates violently at this transition
(T E 0.41), whereas the number of surface contacts remains
almost constant. In this case the transition temperature differ-
ence of the estimates from GEs

and Gnm
is negligible, because

Gns
E 0 and also dGns

/dT E 0. However, the difference can be
rather large, particularly at entropic transitions that occur at
comparatively high temperatures (cf., e.g., the discussion in
ref. 20 and 21).

This can be generalized for the corresponding sections of
the phase diagram. The density plots of the contact-number
fluctuations shown in Fig. 8 for the section of (T,s) parameter
space that contains these phases, exhibit very nicely the differences
of transition behavior along the entire AC13AC2&AG and
AC13AE transition lines, respectively. If in both figures,
Fig. 8(a) and (b), pronounced bright regions are found in the
same sections of the phase diagrams, both order parameters

Fig. 8 Density plots of the fluctuations of (a) the number of surface
contacts, dhnsi /dT, and (b) the number of monomer–monomer contacts,
dhnmi/dT as functions of s and T for the 503mer. The brighter the
shade, the stronger the fluctuation. Dashed black lines separate the
structural phases as identified from the analysis of the specific-heat profile
shown in Fig. 6.

Fig. 9 Suitable order parameters: average numbers of monomer–surface
hnsi and monomer–monomer contacts hnmi of the polymer with N = 503
beads, and their respective fluctuations dhns,mi/dT as functions of tem-
perature T for s = 0.3. The hnmi fluctuation near T = 0.41 signals the
AC13AE transition. The number of surface contacts ns remains almost
unchanged in this region.

Fig. 10 The same as in Fig. 9 for s = 0.8. Now both parameters exhibit
thermal activity and interlock: the AC13AC2&AG transition at T E 0.57 is
clearly characterized by a correlated increase of monomer–monomer
contacts upon a decreasing number of surface contacts.
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have interlocked. Beyond the topological transition AC13AC2&AG,
we find that similar interlocking occurs if the solvent quality
is reduced further, which enhances the population of com-
pact three-dimensional, higher-layered adsorbed conformations
in AC2.

V. Summary

By means of advanced generalized-ensemble contact-density
chain-growth methods, we have investigated structural phases
of a flexible, self-interacting polymer adsorbed at a homogeneous
substrate and studied the transition behavior in much more detail
than has been dedicated before. In this study, we focused on the
understanding of the thermal activity of two obvious order para-
meters of the system, the numbers of monomer–monomer and
monomer–surface contacts, respectively.

By introducing the free energy as a function of these order
parameters, we could locate all free-energy minima in a large
parameter space (temperature and solvent quality). Based on
the analysis of the structural microphases and their stability,
the complex structure of the microphase diagram, which is
typically inaccessible, could be revealed and the transition lines
located. The structural phases were identified as adsorbed-
compact single-layer (AC1), higher-order layered compact and
globular (AC2&AG), as well as adsorbed expanded (AE).

In a complementary approach, we constructed the phase
diagram based on the free-energy minima in contact-number
space, which yielded interesting insights into the nature
of transition paths passing these transitions under different
solvent conditions. Ultimately, we performed a canonical
statistical analysis of the fluctuations of energy and contact
numbers in the space of the external parameters temperature
and solvent quality. Since the fluctuations of energy and order
parameters are not independent of each other, we found that
in the extreme case of anticorrelated behavior the order para-
meters interlock, in which case the transition temperatures
estimated from the heat capacity and from the fluctuations of
the contact numbers coincide. This scenario applies to the
topological transition between AC1 and AC2&AG (poor solvent),
whereas the behavior is different if the polymer goes through
the AC13AE transition (good solvent).

The occurrence of interlocking can be interpreted as cooperative
behavior and as an indicator that the set of corresponding order
parameters is sufficient for the understanding of this transi-
tion. In future works, the significance of the transitions in the
adsorption regime needs to be verified by thorough scaling
analyses. It is also appealing to investigate the adsorption
behavior for brushes of grafted polymers.
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