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We calculate the universal constants in Helfrich’s pressure law for a stack of N membranes between walls
by strong-coupling theory. Using the close analogy between this system and a stack of strings, where the
universal constants are exactly known, we construct a smooth potential that keeps the membranes apart. The
strong-coupling limit of the perturbative treatment of the free energy yields pressure constants for an arbitrary
number of membranes, which are in very good agreement with values from Monte Carlo simulations.
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I. INTRODUCTION

Membranes formed by lipid bilayers are important bio-
physical systems occurring as boundaries of organells and
vesicles. In equilibrium with a reservoir of molecules, ten-
sion vanishes and the shape is governed by extrinsic curva-
ture energy EC . If a stack of membranes is placed between
two parallel walls, violent thermal out-of-plane fluctuations
of the membranes exert a pressure p upon the walls. The
pressure law was found by Helfrich @1# and reads for N
membranes

pN5

2N

N11
aN

~kBT !2

ka3
, ~1.1!

where L5(N11)a is the distance between the walls and k
is the bending stiffness. The universal pressure constants aN
are not calculable exactly. For a single membrane, a1 was
roughly estimated by theoretical @1# and Monte Carlo meth-
ods @2–5#. The most precise theoretical result was obtained
by strong-coupling theory @6# yielding a1

th
50.079 714 9,

which lies well within the error bounds of the latest Monte
Carlo estimate a1

MC
50.079860.0003 @5#.

For more than one membrane between the walls, the
strong-coupling calculation of Ref. @6# must be modified in a
nontrivial way. We must find a different potential that keeps
the membranes apart and whose strong-coupling limit en-
sures noninterpenetration. For this, we take advantage of the
fact that membranes between walls have similar properties to
a stack of nearly parallel strings fluctuating in a plane be-
tween linelike walls @7,8#, in particular the same type of pres-
sure law ~1.1! with k substituted by the string tension s . The
characteristic universal constants of the latter system were
exactly calculated in Refs. @5,7# from an analogy to a gas of
fermions in 111 dimensions @9–11#. We use these exact
values to determine a potential that, when applied to the
stack of membranes, yields a perturbation expansion for the
pressure constants for an arbitrary number of membranes to
be evaluated in the strong-coupling limit of complete repul-
sion.

Our results are in excellent agreement with all available
Monte Carlo estimates @3–5# for N51,3,5. By an extrapola-
tion to N→` we determine the pressure constant a` for
infinitely many membranes.

II. STACK OF STRINGS

We begin by studying the exactly solvable statistical
properties of a stack of N almost parallel strings in a plane,
which are not allowed to cross each other and whose average
spacing at low temperature is a. The system is enclosed be-
tween parallel linelike walls with a separation L as illustrated
in Fig. 1. In the Monge parametrization, the vertical position
of a point of the nth string is zn5zn(x). Since the vertical
positions of the nth string are fluctuating around the low-
temperature equilibrium position at na , it is useful to intro-
duce the displacement fields

wn~x ![zn~x !2na . ~2.1!

The thermodynamic partition function is given by the func-
tional integral

Zs
5 )

n51

N

)
x

F E
wn21(x)2a

wn11(x)1a dwn~x !

A2pkBT/s
G

3expH 2

s

2kBT (
n51

N

E
2`

`

dx Fdwn~x !

dx G2J , ~2.2!
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FIG. 1. Stack of N strings with equilibrium spacing a between
two walls of distance L. The magnifier shows the local displace-
ment field wN(x) as the distance from the position Na . The walls
are labeled by 0 and N11 and treated as nonfluctuating strings with
w0(x)[wN11(x)[0.
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where s is the string tension, T is the temperature, and kB is
the Boltzmann factor. We are interested in the free energy
per unit length

f N
s [2

kBT

A
ln Zs, ~2.3!

with A5*
2`
` dx . Since the strings may not pass through each

other, the fluctuations wn(x) of the nth string are restricted to
the interval

wn~x !P$wn21~x !2a ,wn11~x !1a%. ~2.4!

A. Free fermion model

The restriction ~2.4! makes it difficult to solve the func-
tional integral ~2.2! explicitly. It is, however, possible to find
a solution using an alternative of the same systems as a (1
11)-dimensional Fermi gas observed by de Gennes @9#. Us-
ing this analogy, Gompper and Kroll @5# determined the 1/a2

contribution to D f N
s relevant for the pressure law ~1.1! as

D f N
s

5aN
s ~kBT !2

sa2
, ~2.5!

with the pressure constants

aN
s

5

p2

12

2N11

N11
. ~2.6!

For N→` , this constant has the finite limit a`
s

5p2/6. The
analogy with fermions cannot be used to calculate the free
energy of a stack of membranes, where only approximate
methods are available. We shall use a strong-coupling theory
as in Ref. @6#. As a preparation, we apply this theory to the
exactly solvable system of a stack of strings.

B. Perturbative approach

The difficulty in solving the functional integral ~2.2!
arises from the restriction ~2.4! of the fluctuations by the
neighboring strings. To deal with this strong repulsion, we
introduce into the action of the functional integral ~2.2! a
smooth potential that keeps the strings apart in such a way
that the integration interval for the fluctuations can be ex-
tended to wn(x)P$2` ,`%. At the end, we take a strong-
coupling limit which ensures ~2.4!. In Ref. @6#, such a
method was used to evaluate the pressure constant for one
membrane between walls. The smooth potential for the
analogous case of one string is V„w(x)…
5(2a m/p)2tan2@pw(x)/2a# , which describes the hard
walls exactly for m→0. This potential is symmetric and pos-
sesses a minimum at w(x)50. Thus its Taylor expansion
around this minimum is a series in even powers of w(x).

In the case of N strings, the minima of the repulsion po-
tential should lie at the equilibrium positions of the strings.
The Taylor expansion of such a potential will also have
terms with odd powers. Unlike the one-string system, where
fluctuations are limited by fixed walls, the range of the dis-
placements wn(x) of the nth string in an N-string system

depends on the positions zn21(x) and zn11(x) of the neigh-
boring strings. Thus the potential will be taken as a sum,

Veff „z0~x !,z1~x !, . . . ,zN~x !,zN11~x !…

5

s

2 (
n51

N11

Vm„¹̄nzn~x !…, ~2.7!

where ¹̄nzn(x) denotes the prepoint lattice gradient zn(x)
2zn21(x). This potential includes the interaction of the first
and last strings with the walls as nonfluctuating strings at
z050 and zN115(N11)a5L:

w0~x !5wN11~x !50. ~2.8!

In the limit m→0, the potential Vm„¹̄nzn(x)… should again
yield an infinitely strong repulsion of two neighboring
strings for zn(x) close to zn21(x). For zn(x).zn21(x), the
limiting potential should be zero. As a matter of choice, we
let the potential between two strings Vm„¹̄nzn(x)… be mini-
mal and zero at the positions zn

eq
5na and zn21

eq
5a(n21):

dVm(a)/d ¹̄nzn(x)50 and Vm(zn
eq

2zn21
eq )5Vm(a)50 ~see

Fig. 2!.
The Taylor expansion around the miminum is, in terms of

the variables ~2.1!,

Vm„¹̄nwn~x !…5
m2

2
@¹̄nwn~x !#2

1m2 (
k51

`

ckgk@¹̄nwn~x !#k12.

~2.9!

The parameter m governs the harmonic term, whereas
higher-order terms scale with the coupling constant g51/a ,
which makes the coefficients ck dimensionless.

An example for a potential showing qualitatively the be-
havior in Fig. 2 with a Taylor expansion of the type ~2.9!

is Vm„¹̄nzn(x)… 5 m2„a/@¹̄nzn(x)#2
2 2 / ¹̄nzn(x) 1 1/a…/2,

which vanishes everywhere for infinitesimal m , except at
¹̄nzn(x)50. The strong-coupling limit of the perturbative
expansion of order g2 presented in this paper cannot yield,

FIG. 2. Potential Vm„¹̄nzn(x)… of string-string interaction for

finite m and small m as a function of ¹̄nzn(x)5zn(x)2zn21(x).

The strings repel each other strongly for ¹̄nzn(x)→0, while the

potential has a minimuim at the equilibrium separation ¹̄nzn(x)
5a , and we choose to normalize it to zero at that point.
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however, reasonable results for such an arbitrary choice of
the potential. The calculation of higher-order perturbative
coefficients requires high numerical power, which would
make this procedure of calculating the universal constants
inefficent.

Thus, we continue with the Taylor expansion ~2.9!, and
the partition function ~2.2! becomes

Zs
5 lim

m→0
R D

Nw~x ! expH 2

s

2kBT (
n51

N11

E
2`

`

dx S Fdwn~x !

dx G2

1

1

2
m2@¹̄nwn~x !#2D J

3expH 2

s

2kBT
m2 (

k51

`

ckgk (
n51

N11

E
2`

`

dx @¹̄nwn~x !#k12J
~2.10!

with the integral measure

R D
Nw~x !5 )

n51

N

)
x

F E
2`

` dwn~x !

A2pkBT/s
G . ~2.11!

The harmonic part of the partition function can be written as

Zm
s

5 R D
Nw~x ! expH 2

1

2 (
n51

N11

(
n851

N11

E
2`

`

dxE
2`

`

dx8 wn~x !

3@Gnn8

s
~x ,x8!#21wn8

~x8!J ~2.12!

with the functional matrix

@Gnn8

s
~x ,x8!#21

52

s

kBT S d2

dx2
1

1

2
m2 ¹̄n¹nD d~x2x8!dnn8

.

~2.13!

Here ¹nwn(x)5wn11(x)2wn(x) denotes the postpoint lat-
tice gradient in the z direction, and ¹̄n¹n is the lattice ver-
sion of the Laplace operator @12#.

Let us now impose the vanishing of the fluctuations of the
walls ~2.8!, corresponding to Dirichlet boundary conditions.
For a finite number N of strings, the Kronecker symbol dn n8
in Eq. ~2.13! has the Fourier representation

dnn8
5

2

N11 (
m51

N

sin nmna sin nmn8a ~2.14!

with wave numbers nm5pm/(N11)a . Thus the kernel
@Gn n8

s (x ,x8)#21 may be written in Fourier space as

@Gnn8

s
~x ,x8!#21

5

2

N11 (
m51

N

sin nmna sin nmn8a

3E
2`

` dk

2p
@Gm

s ~k !#21e2ik(x2x8) ~2.15!

with the Fourier components

@Gm
s ~k !#21

5

s

kBT
@k2

12m2 sin2~nma/2!# . ~2.16!

Integrating over k in the spectral representation ~2.15! leads
immediately to the correlation function in configuration
space,

Gnn8

s
~x ,x8!

5

1

A2~N11 !

kBT

ms (
m51

N
sin nmnasinnmn8a

sin~nma/2!

3e2A2mux2x8usin(nma/2), ~2.17!

and to the harmonic partition function ~2.12!,

Zm
s

5expH 2

1

2
Tr ln @Gs#21J 5e2A f N ,m

s /kBT, ~2.18!

the exponent giving the free energy per length,

f N ,m
s

5m
kBT

2

sin@pN/4~N11 !#

sin@p/4~N11 !#
, ~2.19!

which vanishes for m50.
The full partition function Zs in Eq. ~2.10! is now calcu-

lated perturbatively. We introduce harmonic expectation val-
ues

^•••&m
s

5@Zm
s #21 R D

Nw~x ! •••

3expH 2

1

2 (
n51

N11

(
n851

N11

E
2`

`

dxE
2`

`

dx8 wn~x !

3@Gnn8

s
~x ,x8!#21wn8

~x8!J ~2.20!

in terms of which the correlation function is given by

Gnn8

s
~x ,x8!5^wn~x !wn8

~x8!&m
s . ~2.21!

The perturbation expansion contains the two-point correla-
tion function of ¹̄nwn(x), which is given by

^¹̄nwn~x !¹̄n8
wn8

~x8!&m
s

5¹̄n¹̄n8
Gnn8

s
~x ,x8!. ~2.22!

FLUCTUATION PRESSURE OF A STACK OF MEMBRANES PHYSICAL REVIEW E 63 051709

051709-3



We now expand the second exponential in Eq. ~2.10! in pow-
ers of the coupling constant g. Harmonic expectation values
with odd powers of ¹̄nwn(x) do not contribute, and the ex-
pansion reads

Zs
5 lim

m→0
Zm

s F 12g2S s

2kBT
m2c2 (

n51

N11

E
2`

`

dx ^@¹̄nwn~x !#4&m
s

2

1

2!

s2

4kB
2 T2

m4c1
2 (

n ,n851

N11

E
2`

`

dxE
2`

`

dx8 ^@¹̄nwn~x !#3

3@¹̄n8
wn8

~x8!#3&m
s D 1•••G . ~2.23!

In the sequel, we restrict ourselves to the terms of second
order in g51/a , which contribute directly to the pressure law
as in Eq. ~2.5!. The higher powers diverge for m→0, and in
Ref. @6# it was shown how to calculate from them a finite
strong-coupling limit. Here we shall ignore these terms for
reasons to be explained shortly. Reexpressing the right-hand
side of Eq. ~2.23! as an exponential of a cumulant expansion,
we obtain the free energy per length,

f N
s

5 lim
m→0

g2S s

2kBT
m2c2 (

n51

N11

E
2`

`

dx ^@¹̄nwn~x !#4&m ,c
s

2

1

2!

s2

4kB
2 T2

m4c1
2 (

n ,n851

N11

E
2`

`

dxE
2`

`

dx8

3^@¹̄nwn~x !#3@¹̄n8
wn8

~x8!#3&m ,c
s D 1••• . ~2.24!

We have used that the free energy f N ,m
s of the harmonic

system ~2.19! vanishes in the limit m→0. The first cumu-
lants are the expectations

^O1„¹̄wn1
~x1!…&m ,c

s
5^O1„¹̄wn1

~x1!…&m
s ,

^O1„¹̄wn1
~x1!…O2„¹̄wn2

~x2!…&m ,c
s

5^O1„¹̄wn1
~x1!…O2„¹̄wn2

~x2!…&m
s

2^O1„¹̄wn1
~x1!…&m

s ^O2„¹̄wn2
~x2!…&m

s ,

~2.25!

.

.

. ,

defined for any polynomial function O i„¹̄wn i
(x i)… of

¹̄wn i
(x i). Following Wick’s rule, we expand the expecta-

tions into products of two-point correlation functions ~2.22!.
The different terms are displayed with the help of Feynman
diagrams, in which lines and vertices represent the correla-
tion functions and interactions:

x1 ,n1 x2 ,n2 → ^¹̄n1
wn1

~x1!¹̄n2
wn2

~x2!&m
s ,

~2.26!

" → (
n51

N11

E
2`

`

dx . ~2.27!

In what follows, we assume that the potential parameters ck
with k>3 are chosen in such a way that they make all terms
of order g3 and higher vanish. Dividing the free energy
~2.24! by N, we obtain the following expression for the free
energy per length and string, which can be compared with
Eq. ~2.5!:

~2.28!

The calculation of the Feynman diagrams is straightforward using Eq. ~2.17!. The evaluation is only complicated by the
Dirichlet boundary conditions, which destroy momentum conservation. This makes the numeric calculation quite time-
consuming for an increasing number N of strings. As an explicit example, consider the sunset diagram, which requires the
evaluation of the multiple sum

~2.29!
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with the abbreviation

hn1n2

m
5sin nmn1a sin nmn2a2sin nmn1a sinnm~n221 !a

2sin nm~n121 !a sin nmn2a

1sin nm~n121 !a sin nm~n221 !a . ~2.30!

It is useful to factor out the physical dimension of the dia-
gram. Any Feynman integral Ws with l lines and v vertices
can be expressed in terms of a reduced dimensionless Feyn-
man integral Ws,r as

Ws
5AS kBT

s
D l

m2(l1v21) Ws,r. ~2.31!

This brings Eq. ~2.28! to the form

D f N
s

5aN
s

kB
2 T2

sa2
, ~2.32!

~2.33!

where the diagrams indicate the reduced Feynman integrals.
Their values are listed in Table I for different string numbers
N. Note that the 1/a2 contributions to the free energy per
length and string in Eq. ~2.28! are independent of m since the
m prefactors are canceled by the m dependence of the dia-
grams. Thus the limit m→0 becomes trivial for these contri-
butions.

With the knowledge of the exact values of the constants
aN

s from Eq. ~2.6!, we are now in a position to determine the
potential parameters c1 and c2 from Eq. ~2.33! to obtain the
exact result from the two-loop expansion ~2.33!. Comparing
Eqs. ~2.33! and ~2.6! for N51 and N52, we obtain

c15

p

3
, c25

p2

6
. ~2.34!

Note that Eq. ~2.33! consists of more equations than neces-
sary to compute c1 and c2. It turns out, however, that all of
them give the same c1 and c2, such that the same potential
~2.9! can be used for any N. This is the essential basis for
applying this procedure to a stack of membranes.

We now justify the neglect of the higher g powers that
would in principle give a further contribution to the pressure

constant aN
s in the strong-coupling limit. We simply observe

that it is possible to choose the higher expansion coefficients
ck to make all higher gn contributions vanish @14#.

III. STACK OF MEMBRANES

Having determined the parameters c1 and c2 of the Taylor
expansion ~2.9! of the smooth potential applicable for any
number of strings, we shall now use the same potential for a
perturbative expansion in a stack of N membranes displayed
in Fig. 3. The equilibrium spacing at low temperature be-
tween the membranes is again a. Denoting the vectors in the
plane by x5(x ,y), the vertical displacements of the mem-
branes from the positions na are wn(x), with Dirichlet
boundary conditions at z0 and zN11,

w0~x!5wN11~x!50. ~3.1!

For membranes without tension, the energy has the harmonic
approximation

EC ,n5

k

2E d2x @]2wn~x!#2, ~3.2!

FIG. 3. Stack of self-avoiding fluid membranes fluctuating in
the z direction between two walls. As for the previous stack of
strings, the walls are treated as nonfluctuating membranes.

TABLE I. Reduced numeric values Ws,r of the two-loop dia-
grams for the free energy for a stack of N strings.
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where k is the bending stiffness and ]2
5]x

2
1]y

2 is the La-
placian in the plane parallel to the walls. By analogy with the
preceding section, the kernel of the harmonic stack now
reads

@Gn1n2
~x1 ,x2!#21

52

k

kBT S @]x1

2 #2
1

1

2
m4¹̄n1

¹n1D
3d~x12x2!dn1n2

, ~3.3!

where we have used a mass parameter m4 instead of m2, for
dimensional reasons. The partition function for the stack of
membranes is then written up to order g2

51/a2 by

Z5 lim
m→0

R D
Nw~x! expH 2

1

2 (
n1 ,n251

N11

E d2x1

3E d2x2 wn1
~x1!@Gn1n2

~x1 ,x2!#21wn2
~x2!J

3F 12g2S k

2kBT
m4c2 (

n51

N11

E d2x @¹̄wn~x!#4

2

k2

8kB
2 T2

m8c1
2 (

n1 ,n251

N11

E d2x1E d2x2 @¹̄wn1
~x1!#3

3@¹̄wn2
~x2!#3D G , ~3.4!

with the same parameters c1 and c2 of the Taylor expansion
~2.9! as in the string system, determined in Eq. ~2.34!. We
neglect terms of order g3, which certainly contribute in the
strong-coupling limit, and which vanish only for the strings,
where the partition function ~2.23! with the choice ~2.34! for
the parameters c1 ,c2 is exact in second order. An evaluation
of the neglected terms by variational perturbation theory is
expected to give only a negligible contribution to our final
result.

Inverting the kernel ~3.3! yields the correlation function

Gn1n2
~x1 ,x2!5

2

N11

kBT

k (
m51

N

sin nmn1a sin nmn2a

3E d2k

~2p !2

1

k4
12m4sin2~nma/2!

e2ik(x12x2).

~3.5!

The explicit calculation of the Fourier integral leads to a
difference of modified Bessel functions K0(x) as in Ref. @6#:

Gn1n2
~x1 ,x2!5

i

A8p~N11 !m2

kBT

k

3 (
m51

N
sin nmn1a sin nmn2a

sin~nma/2!

3@K0~21/4Aisin~nma/2!mux12x2u!

2K0~21/4A2isin~nma/2!mux12x2u!# .

~3.6!

For x15x2[x and n15n2[n , this reduces to

Gnn~x,x!5

1

A32~N11 !m2

kBT

k (
m51

N
sin2nmna

sin~nma/2!
,

~3.7!

leading to the partition function of the harmonic system,

Zm5expH 2

1

2
Tr ln G21J

5expH 2m2
A

8

sin@pN/4~N11 !#

sin@p/4~N11 !#
J , ~3.8!

where A5*d2x is the area of the projected plane of the
membranes. The free energy per area f N ,m5

2(kBT/A)ln Zm vanishes again for m50.
As for the calculation of the free energy of the stack of

strings, we introduce harmonic expectation values

^•••&m5@Zm#21 R D
Nw~x! •••

3expH 2

1

2 (
n51

N11

(
n851

N11

E
2`

`

d2xE
2`

`

d2x8 wn~x!

3@Gnn8
~x,x8!#21wn8

~x8!J ~3.9!

TABLE II. Numeric values Wr of the reduced two-loop Feyn-
man integrals contributing to the pressure constants of a stack of N
membranes in Eq. ~3.15!.
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which appear in the perturbation expansion of Eq. ~3.4!, the
cumulants yielding a perturbative expansion for the free en-
ergy per area f N52(kBT/A)ln Z. The lines and vertices in
the Feynman diagrams now stand for

x1 ,n1 x2 ,n2 → ^¹̄n1
wn1

~x1!¹̄n2
wn2

~x2!&m ~3.10!

" → (
n51

N11

E d2x , ~3.11!

and the two-loop approximation to the free energy per area
and membrane in order 1/a2 reads

~3.12!

Going over to reduced Feynman integrals as in Eq. ~2.31!,

W5AS kBT

k D l

m22(l1v21) Wr, ~3.13!

where v is the number of vertices and l the number of lines
of the diagram, we obtain

D f N5aN

kB
2 T2

ka2
, ~3.14!

~3.15!

The pressure exerted by the membranes upon the walls is
obtained by differentiating the free energy f N5ND f N with
respect to the distance of the walls L5a(N11):

pN52N
]D f N

]L
5

2N

N11
aN

kB
2 T2

ka3
. ~3.16!

The first and the last Feynman integrals in Eq. ~3.15! are the
simplest:

~3.17!

~3.18!

where we have used the abbreviation hn1n2

m defined in Eq.

~2.30!. The evaluation of the second diagram in Eq. ~3.15! is
much more involved. The Fourier integrals can be done ex-
actly, except for one, which must be treated numerically.
This calculation is deferred to Appendix A. The values of the
three diagrams are listed in Table II for various numbers of
membranes. With these numbers, the evaluation of the pres-
sure constants yields the results given in Table III. Except for
N51 and N→` , no analytical values were found in the
literature. We also compare with pressure constants obtained
by Monte Carlo simulations and find a good agreement @3,5#.
The values of the Monte Carlo simulations for N53,5,7
from Ref. @3# show an independence of the number N of
membranes. This arises by the simulation technique, where
the free energy of the central membrane was determined. In
contrast to that, we have calculated the pressure constant

from the free energy of the complete system averaged over
all membranes. Thus these Monte Carlo values cannot be
directly compared with ours.

Table III contains also a value a` for an infinite number
N→` of membranes in the stack. This pressure constant is
obtained by the following extrapolation procedure. We as-
sume that the pressure constants determined for N
512,13,14,15 are of higher accuracy than those for lower
numbers of membranes. This assumption is justified by com-
paring our values for N51,3,5 with the latest Monte Carlo
results @5#. For N51, the deviation is about 3.4%. Consid-
ering N53, the deviation reduces to 1.8% and further to
1.1% for five membranes. Since the pressure constants are
approximated increasingly fast with an increasing number N
of membranes, we make the following exponential ansatz for
determining the approach to infinite N:
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aN5a`@12h exp~2jN«!# . ~3.19!

The unknown four parameters in this equation are then de-
termined by solving the system of equations with the pres-
sure constants a12 ,a13 ,a14 , and a15 listed in Table III. We
obtain h'1.1712, j'1.6417, «'0.3154, and thus the lim-
iting pressure constant for an infinite stack of membranes,

a`'0.1041. ~3.20!

This value is in very good agreement with the Monte Carlo
result @5# ~see the last row of Table III!. It differs by a factor
close to 9

4 from the initial result by Helfrich @1,15#.

IV. SUMMARY

We have calculated the pressure constants for a stack of
different numbers of membranes between two walls in excel-
lent agreement with results from Monte Carlo simulations.
The requirement that the membranes cannot penetrate each
other was accounted for by introducing a repulsive potential
and going to the strong-coupling limit of hard repulsion. We
have used the similarity of the membrane system to a stack
of strings enclosed by linelike walls, which is exactly solv-
able, to determine the potential parameters in such a way that
the two-loop result is exact. This minimizes the neglected
terms in the variational perturbation expansion, when apply-
ing the same potential to membranes.
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APPENDIX: EVALUATION OF THE SUNSET DIAGRAM

The second diagram in Eq. ~3.15! requires some simplification before the numerical calculation. We write the reduced
Feynman integral as

~A1!

TABLE III. Pressure constants aN for different numbers N of membranes in the stack, calculated from
Eq. ~3.15!, with the numerical values of the two-loop diagrams given in Table II. We compare with results
from Monte Carlo simulations and earlier analytic results.

N aN Monte Carlo results Earlier analytic values

1 p2/128'0.07711 0.060 @2#, 0.07860.001 @3#, 0.079860.0003 @5#,
0.080 @3#

p2/128 @4,6#, 0.079715 @6#

2 0.08669
3 0.09134 0.09360.004 @5#, 0.100260.0006 @3#

4 0.09408
5 0.09590 0.0966 @5#, 0.102260.0006 @3#

6 0.09719
7 0.09815 0.100960.0007 @3#

8 0.09890
9 0.09950
10 0.09999
11 0.10039
12 0.10074
13 0.10103
14 0.10129
15 0.10151
` 0.10409 0.074 @13#, 0.10160.002 @3#, 0.106 @5# 3p2/128'0.23 @1#
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with the integral

Km1m2m3
5E d2x1d2x2E d2k1

~2p !2

d2k2

~2p !2

d2k3

~2p !2

e2i(k11k21k3)(x12x2)

~k1
4
12sin2nm1

a !~k2
4
12sin2nm2

a !~k3
4
12sin2nm3

a !
. ~A2!

All integrals are easily calculated, except for one. If we in-
troduce abbreviations

M l
2
52sin2nm l

a , l51,2,3, ~A3!

we find

Km1m2m3
5

A

2p
E

0

`

dk
k

k4
1M 3

2
J~k,M 1

2 ,M 2
2! ~A4!

with

J~k,M 1
2 ,M 2

2!5E d2p

~2p !2

1

~p2k!4
1M 1

2

1

p4
1M 2

2
.

~A5!

Decomposing the integrand into partial fractions

J~k,M 1
2 ,M 2

2!52

1

4M 1M 2
E d2p

~2p !2 F 1

~p2k!2
1iM 1

2

1

~p2k!2
2iM 1

GF 1

p2
1iM 2

2

1

p2
2iM 2

G
52

1

4M 1M 2
@I~k,M 1 ,M 2!2I~k,M 1 ,2M 2!

2I~k,2M 1 ,M 2!1I~k,2M 1 ,2M 2!#

~A6!

we are left with integrals of the type

I~k,g1 ,g2!5E d2p

~2p !2

1

~p2k!2
1ig1

1

p2
1ig2

, ~A7!

where g1,256M 1,2 are real numbers. Employing Feynman’s
parametrization, these integrals become

I~k,g1 ,g2!5

1

4p
E

0

1

dx
1

2x2k2
1x~k2

1ig12ig2!1ig2

,

~A8!

taking the general form

E dx
1

ax2
1bx1c

5

2

AD
arctan z~x ! ~A9!

with

D54ac2b2, z~x !5

b12ax

AD
,

a52k2, b5k2
1i~g12g2!, c5ig2 . ~A10!

Since b is a complex number, Re arctan z is discontinuous, if
Re z changes sign and uIm zu.1. Thus the right-hand side of
Eq. ~A9! is discontinuous at a certain point x0 within the
interval @0,1# . As will be seen subsequently, J(k,M 1

2 ,M 2
2)

from Eq. ~A5! must be real and thus all imaginary contribu-
tions in the decomposed form ~A6! cancel each other.

We determine the point of discontinuity x0 to obtain the
solution of the integral ~A8! by investigating the zero of the
real part of z(x). Decomposing z(x0) into real and imaginary
parts, we obtain

Re z~x !5uDu21/2Fk2~122x !cosS 1

2
arctan

Re D

Im D
D

1~g12g2!sinS 1

2
arctan

Re D

Im D
D G , ~A11!

Im z~x !5uDu21/2F ~g12g2!cosS 1

2
arctan

Re D

Im D
D2k2

3~122x !sinS 1

2
arctan

Re D

Im D
D G , ~A12!

where

Re D5~g12g2!2
2k4, Im D522k2~g11g2!.

~A13!

Thus, the zero of Re z(x) is found at

x05

1

2 H 11

g12g2

k2
tanF1

2
arctan

2k2~g11g2!

k4
2~g12g2!2G J .

~A14!
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From the bounds of integration in Eq. ~A8!, it follows that we must include the discontinuities of Eq. ~A9! for x0P@0,1# . This
occurs if k,ug12g2u and sign g1Þsign g2. Thus the solution of the integral ~A8! reads

I~k,g1 ,g2!5H S~k,g1 ,g2 ,x !ux50
x51 , sign g15sign g2~~sign g1Þsign g2`k>Aug12g2u!,

lim
«→0

@S~k,g1 ,g2 ,x !ux50
x5x02«

1S~k,g1 ,g2 ,x !ux5x01«
x51 # , sign g1Þsign g2`k,Aug12g2u, ~A15!

where S(k,g1 ,g2 ,x) is the explicit right-hand side of Eq. ~A9!:

S~k,g1 ,g2 ,x !5

1

2pA~g12g2!2
2k4

22ik2~g11g2!
arctan

k2~122x !1i~g12g2!

A~g12g2!2
2k4

22ik2~g11g2!
. ~A16!

The function I(k,g1 ,g2) possesses the properties

I~k,g1 ,2g2!1I~k,2g1 ,g2!52 Re I~k,6g1 ,7g2!, ~A17!

I~k,g1 ,g2!1I~k,2g1 ,2g2!52 Re I~k,6g1 ,6g2!. ~A18!

Inserting Eq. ~A15! into Eq. ~A6!, the remaining integral in Eq. ~A4! together with the sums in expression ~A1! for the sunset
diagram can be calculated numerically. The values are listed for N51, . . . ,15 in the third column of Table II.
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