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Fluctuation pressure of a stack of membranes
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We calculate the universal constants in Helfrich’s pressure law for a stack of N membranes between walls
by strong-coupling theory. Using the close analogy between this system and a stack of strings, where the
universal constants are exactly known, we construct a smooth potential that keeps the membranes apart. The
strong-coupling limit of the perturbative treatment of the free energy yields pressure constants for an arbitrary
number of membranes, which are in very good agreement with values from Monte Carlo simulations.
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I. INTRODUCTION

Membranes formed by lipid bilayers are important bio-
physical systems occurring as boundaries of organells and
vesicles. In equilibrium with a reservoir of molecules, ten-
sion vanishes and the shape is governed by extrinsic curva-
ture energy E. . If a stack of membranes is placed between
two parallel walls, violent thermal out-of-plane fluctuations
of the membranes exert a pressure p upon the walls. The
pressure law was found by Helfrich [1] and reads for N
membranes

2N (kgT)?
PNENTTONT 5 (1.1)
where L=(N+1)a is the distance between the walls and «
is the bending stiffness. The universal pressure constants ay
are not calculable exactly. For a single membrane, «; was
roughly estimated by theoretical [1] and Monte Carlo meth-
ods [2-5]. The most precise theoretical result was obtained
by strong-coupling theory [6] yielding o"=0.0797149,
which lies well within the error bounds of the latest Monte
Carlo estimate «)'“=0.0798+0.0003 [5].

For more than one membrane between the walls, the
strong-coupling calculation of Ref. [6] must be modified in a
nontrivial way. We must find a different potential that keeps
the membranes apart and whose strong-coupling limit en-
sures noninterpenetration. For this, we take advantage of the
fact that membranes between walls have similar properties to
a stack of nearly parallel strings fluctuating in a plane be-
tween linelike walls [7,8], in particular the same type of pres-
sure law (1.1) with « substituted by the string tension o. The
characteristic universal constants of the latter system were
exactly calculated in Refs. [5,7] from an analogy to a gas of
fermions in 1+1 dimensions [9-11]. We use these exact
values to determine a potential that, when applied to the
stack of membranes, yields a perturbation expansion for the
pressure constants for an arbitrary number of membranes to
be evaluated in the strong-coupling limit of complete repul-
sion.
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Our results are in excellent agreement with all available
Monte Carlo estimates [3-5] for N=1,3,5. By an extrapola-
tion to N—oo we determine the pressure constant «., for
infinitely many membranes.

II. STACK OF STRINGS

We begin by studying the exactly solvable statistical
properties of a stack of N almost parallel strings in a plane,
which are not allowed to cross each other and whose average
spacing at low temperature is a. The system is enclosed be-
tween parallel linelike walls with a separation L as illustrated
in Fig. 1. In the Monge parametrization, the vertical position
of a point of the nth string is z,=2z,(x). Since the vertical
positions of the nth string are fluctuating around the low-
temperature equilibrium position at na, it is useful to intro-

duce the displacement fields
Pn(X)=2,(X) —na. (2.1)

The thermodynamic partition function is given by the func-
tional integral

Zs—ﬁ H j‘Pn+1(X)+a den(X)
n=1 x en—1(0—a y27kgT/o

N
o = [dea(x)]?
XEXp[__ZkBT nz,l dex[ ™ } ] (2.2)

FIG. 1. Stack of N strings with equilibrium spacing a between
two walls of distance L. The magnifier shows the local displace-
ment field ¢n(X) as the distance from the position Na. The walls
are labeled by 0 and N+ 1 and treated as nonfluctuating strings with

eo(X)=en+1(X)=0.
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where o is the string tension, T is the temperature, and kg is
the Boltzmann factor. We are interested in the free energy
per unit length

kgT
,S\‘E—ilnzs,

A (2.3

with A= [”_dx. Since the strings may not pass through each
other, the fluctuations ¢,(x) of the nth string are restricted to
the interval

en(X) e{en—1(X)—a,@n1(x)+a}. (2.4)

A. Free fermion model

The restriction (2.4) makes it difficult to solve the func-
tional integral (2.2) explicitly. It is, however, possible to find
a solution using an aternative of the same systems as a (1
+ 1)-dimensional Fermi gas observed by de Gennes[9]. Us-
ing this analogy, Gompper and Kroll [5] determined the 1/a®
contribution to AfY, relevant for the pressure law (1.1) as

(kgT)?
AfSN:aﬁ,—Z, (2.5
oa
with the pressure constants
_w?2N+1 -
W N 26)

For N— oo, this constant has the finite limit o= 72/6. The
analogy with fermions cannot be used to calculate the free
energy of a stack of membranes, where only approximate
methods are available. We shall use a strong-coupling theory
as in Ref. [6]. As a preparation, we apply this theory to the
exactly solvable system of a stack of strings.

B. Perturbative approach

The difficulty in solving the functional integral (2.2)
arises from the restriction (2.4) of the fluctuations by the
neighboring strings. To dea with this strong repulsion, we
introduce into the action of the functional integral (2.2) a
smooth potential that keeps the strings apart in such a way
that the integration interval for the fluctuations can be ex-
tended to ¢,(x) e {—,~}. At the end, we take a strong-
coupling limit which ensures (2.4). In Ref. [6], such a
method was used to evaluate the pressure constant for one
membrane between walls. The smooth potential for the
andlogous case of one string is  V(p(X))
=(2a ulm)*ta?[ wme(x)/2a], which describes the hard
walls exactly for u— 0. This potential is symmetric and pos-
sesses a minimum at ¢(X)=0. Thus its Taylor expansion
around this minimum is a series in even powers of ¢(X).

In the case of N strings, the minima of the repulsion po-
tential should lie at the equilibrium positions of the strings.
The Taylor expansion of such a potential will also have
terms with odd powers. Unlike the one-string system, where
fluctuations are limited by fixed walls, the range of the dis-
placements ¢,(x) of the nth string in an N-string system
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FIG. 2. Potential VM(Vnzn(x)) of string-string interaction for
finite u and small u as a function of V,z,(X) =2,(X) = zn_1(X).
The strings repel each other strongly for Vnzn(x)—>0, while the
potential has a minimuim at the equilibrium separation ﬁnzn(x)
=a, and we choose to normalize it to zero at that point.

depends on the positions z,_ 1(x) and z,,1(x) of the neigh-
boring strings. Thus the potential will be taken as a sum,

Vet (Zo(X),Z1(X), . . ., Zn(X),Zn41(X))
N+1

=2 3 V,u(Tazo0)), (27)
n=1

where Vnzn(x) denotes the prepoint lattice gradient z,(x)
—2,-1(X). This potential includes the interaction of the first
and last strings with the walls as nonfluctuating strings at
20:0 and ZN+l: (N+ 1)a: L:
®o(X) = ¢n+1(X) =0. (2.8)

In the limit «—0, the potential VM(Vnzn(x)) should again
yield an infinitely strong repulsion of two neighboring
strings for z,(x) close to z,_1(x). For z,(x)>2z,_1(X), the
limiting potential should be zero. As a matter of choice, we
let the potential between two strings V,,(V ,z,(x)) be mini-
mal and zero at the positions z'=na and z21 ;=a(n—1):
dv,(a)/dV,z,(x)=0 and V,(z;'- 21 ;) =V (a)=0 (see
Fig. 2).

The Taylor expansion around the miminum is, in terms of
the variables (2.1),

2

ViV nn(0) = S [Van(0) 12+ 12 2, @ [Vaen(01 2.
(2.9

The parameter w governs the harmonic term, whereas
higher-order terms scale with the coupling constant g=1/a,
which makes the coefficients ¢, dimensionless.

An example for a potential showing qualitatively the be-
havior E Fig. 2 with a Tiylor expansion _of the type (2.9)
is V,(Vnza(X) = p2(@/[Vza(X) ]2 — 2/ V,zo(x) + Va)/2,
v_vhich vanishes everywhere for infinitesimal w, except at
Vaz,(X)=0. The strong-coupling limit of the perturbative
expansion of order g2 presented in this paper cannot yield,
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however, reasonable results for such an arbitrary choice of
the potential. The calculation of higher-order perturbative
coefficients requires high numerical power, which would
make this procedure of calculating the universal constants
inefficent.

Thus, we continue with the Taylor expansion (2.9), and
the partition function (2.2) becomes

N+1
den(x )2
2kgT nEl f H

= lim § DNo(x) exp[

pn—0

1 _
+ EMZ[VnQDn(X)]Z) ]

o N+1
—mqu cg E f dx[vncpn<x>]k+2]

X exp
(2.10)
with the integral measure
N = dgn(x)
§{§DN¢(x):nf=[1 1:[ { el (2.11)

The harmonic part of the partition function can be written as

N+l N+1 o w
= gﬁD%(x) exp{ 32 de dx’ @n(X)
=lnp=1J— —®
x[Gﬁn,(x,x’)]—l%,(x')] (2.12)
with the functional matrix
S R o [d® 1
[Gnn’(x’x )] :——T F Z,U, nl 8(X=X")Snns -
(2.13)

Here V,on(X)= ¢+ 1(X) — @n(X) deﬂotes the postpoint lat-

tice gradient in the z direction, and V,V,, is the lattice ver-
sion of the Laplace operator [12].

Let us now impose the vanishing of the fluctuations of the
walls (2.8), corresponding to Dirichlet boundary conditions.
For afinite number N of strings, the Kronecker symbol &, s
in Eq. (2.13) has the Fourier representation

N

Spnt = E sinyynasiny,n’a (2.14)

N+1

with wave numbers v,,=7m/(N+1)a. Thus the kernel
[G: .. (x,x")]~* may be written in Fourier space as
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[Gon (XX

N

2
~NT1 2 sinvynasinv,n’a
= dk . ’
xf_ 5-[Gh(K] Te M (2.15)
with the Fourier components
[Gh(k)] 1= T[k2+2,u23in2(vma/2)]. (2.16)

Integrating over k in the spectral representation (2.15) leads
immediately to the correlation function in configuration
space,

G (x,x")
3 1 kgT sinvynasiny,n’a
V2(N+1) po =1 sin(vpal2)
xXe~ \Q',ulx—x’\sin(vmaIZ), (2_17)
and to the harmonic partition function (2.12),
1 -1 —AfY  IkgT
=exp] — ETrIn[Gﬂ =e M8 (2.18)
the exponent giving the free energy per length,
kgT sinf wN/4(N+1)]
Nop= M > (219

S a/AN+1)]

which vanishes for ©=0.

The full partition function Z° in Eq. (2.10) is now calcu-
lated perturbatively. We introduce harmonic expectation val-
ues

(=127 § Do
N+1 N+1

conl -3 3, 3

n=1 /-1

f dxf dx’ @n(X)

X[Gﬁn/(x,X’)]lcpnf(X’)} (2.20)

in terms of which the correlation function is given by

G (XX)=(@n(X) @ (X)), (2.21)

The perturbation expansion contains the two-point correla-
tion function of V,,¢,(x), which is given by

<€n¢n(x)€n’€0n’(xr))sznvn’ GrSm,(X,Xr)_ (2.22)
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We now expand the second exponential in Eq. (2.10) in pow-
ers of the coupling constant g. Harmonic expectation values
with odd powers of V,,¢,(X) do not contribute, and the ex-
pansion reads

N+1
2°=1imZ;| 1-g%| 7~ T“ CZEJ dx ([ Vaen(x)]%);,
ILL*?O
1 2 N+1

wic? D f dxf dx’ ([Vaen(x)]3
2'4k22 1nn* n¥n

(2.23)

X[Vn«pnf(x')]%z) +

In the sequel, we restrict ourselves to the terms of second
order in g= 1/a, which contribute directly to the pressure law
asin Eq. (2.5). The higher powers diverge for u—0, and in
Ref. [6] it was shown how to calculate from them a finite
strong-coupling limit. Here we shall ignore these terms for
reasons to be explained shortly. Reexpressing the right-hand
side of Eq. (2.23) as an exponential of a cumulant expansion,
we obtain the free energy per length,

N+1

3= I|mg (Zk ST M 022 f dX([VnQDn(X)]

N+1
1 o2

42
u'c E f dxf dx’
2 gt LA

X <[€n¢n(x)]3[Vn’€Dn’(X’)]3 :

(2.24)
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system (2.19) vanishes in the limit ©—0. The first cumu-
lants are the expectations

(01(Ven,(X0)))5,c=(01(Ven, (x)))3,
(Ol(€¢nl(xl))02(€¢n2(X2))>Z,c
=(01(Ven, (x1))02(V ¢, (X2)))3,

~(01(Ven, ()34 O2(V e, (X))
(2.25)

defined for any polynomia function Oi(Vgoni(Xi)) of
Von (x;). Following Wick's rule, we expand the expectar
tions into products of two-point correlation functions (2.22).
The different terms are displayed with the help of Feynman

diagrams, in which lines and vertices represent the correla-
tion functions and interactions:

X1,Np——Xz2,N2 — <€nl¢nl(xl)vn2¢’n2(x2)>i ,
(2.26)
N+1
_>2 f dx. (2.27)

In what follows, we assume that the potential parameters ¢,
with k=3 are chosen in such away that they make all terms
of order g and higher vanish. Dividing the free energy
(2.24) by N, we obtain the following expression for the free
energy per length and string, which can be compared with

of the harmonic

We have used that the free energy f} N,

Eq. (2.5):

(2.28)

QOO -1t (s +9 00 )}

The calculation of the Feynman diagrams is straightforward using Eq. (2.17). The evaluation is only complicated by the
Dirichlet boundary conditions, which destroy momentum conservation. This makes the numeric calculation quite time-
consuming for an increasing number N of strings. As an explicit example, consider the sunset diagram, which reqguires the
evaluation of the multiple sum

N+1

my mz pms
Z Z h"'l"Z h"1"2 hn1"2

ny,na=1 ml m2

S =AEB_T_"'___L_
AT (N F 1)
1

X Sin(Vm, a/2) sin(Vm,a/2) sin(Vm,a/2) [sin(vm,a/2) + sin(vm,a/2) + sin(vm,a/2))

(2.29)
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with the abbreviation
hnmln2= sinvpn;asinyn,a—sinvynasinyg(n,—1)a
—sinvy,(n;—1)asinyynsa
+sinvy(ng—1)asinvy,(n,—1)a. (2.30)

It is useful to factor out the physical dimension of the dia-
gram. Any Feynman integral W® with | lines and v vertices
can be expressed in terms of a reduced dimensionless Feyn-
man integra W°' as

1 3 s,r
= 3% OO -4

where the diagrams indicate the reduced Feynman integrals.
Their values are listed in Table | for different string numbers
N. Note that the 1/a? contributions to the free energy per
length and string in Eq. (2.28) are independent of u since the
u prefactors are canceled by the w dependence of the dia-
grams. Thus the limit u— 0 becomes trivial for these contri-
butions.

With the knowledge of the exact values of the constants
ay, from Eq. (2.6), we are now in a position to determine the
potential parameters ¢; and ¢, from Eq. (2.33) to obtain the
exact result from the two-loop expansion (2.33). Comparing
Egs. (2.33) and (2.6) for N=1 and N=2, we obtain

T 2
C1=§, Cg=?. (2.34)
Note that Eq. (2.33) consists of more equations than neces-
sary to compute ¢4 and c,. It turns out, however, that all of
them give the same ¢, and c,, such that the same potential
(2.9) can be used for any N. This is the essential basis for
applying this procedure to a stack of membranes.

We now justify the neglect of the higher g powers that
would in principle give a further contribution to the pressure

TABLE I. Reduced numeric values W™ of the two-loop dia-
grams for the free energy for a stack of N strings.

N OO o

1 12 0 0

2 1.288675 0.398717 0.089316
3 2.100656 0.832299 0.146447
4 2.915827 1.270787 0.184463
5 3.730993 1.709326 0211325
6 4.545586 2.147034 0.231245
7 5.359574 2.583849 0.246583

(67+:0-0"))
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kgT)'
\AFZA(%) o (Fo=Dysr (2.31)
This brings Eqg. (2.28) to the form
k3T?
A=y —5, (2.32)
oa
(2.33)

constant ay, in the strong-coupling limit. We simply observe
that it is possible to choose the higher expansion coefficients
¢, to make all higher g" contributions vanish [14].

I11. STACK OF MEMBRANES

Having determined the parameters ¢, and c, of the Taylor
expansion (2.9) of the smooth potential applicable for any
number of strings, we shall now use the same potential for a
perturbative expansion in a stack of N membranes displayed
in Fig. 3. The equilibrium spacing at low temperature be-
tween the membranes is again a. Denoting the vectors in the
plane by x=(x,y), the vertica displacements of the mem-
branes from the positions na are ¢,(x), with Dirichlet
boundary conditions at zy and zy 4 1,

@o(X) = @n+1(X)=0. (3.1
For membranes without tension, the energy has the harmonic
approximation

Ecn=y | Px(Fon0T, (32)

o,

FIG. 3. Stack of self-avoiding fluid membranes fluctuating in
the z direction between two walls. As for the previous stack of
strings, the walls are treated as nonfluctuating membranes.
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where « is the bending stiffness and 92= 95+ 4; is the La-
placian in the plane parallel to the walls. By analogy with the
preceding section, the kernel of the harmonic stack now
reads

(G (X %)= — = [62 24 2 447, ¥
nin, 1172 kBT Xq 2 ny¥ng

X 5(X1_X2) 5n1n21 (33)

where we have used a mass parameter u* instead of w2, for
dimensional reasons. The partition function for the stack of
membranes is then written up to order g?=1/a® by

N+l
Z=lim fﬁ DNg(x) exp[ > f d?x,
u—0 ng,no=1

Xf d2)(2 ‘Pnl(xl)[Gnlnz(Xl-XZ)]_l(PnZ(XZ)}

N+1
1-g? T TM CZE f d?X [Ven(x)]*
K2 N+1 o
8 2 2 2 3
d=x fd X[V X
8k2T2M nln22* 1 2[Ven, (X1)]
X[V (x2)]° (34)

with the same parameters ¢, and ¢, of the Taylor expansion
(2.9) as in the string system, determined in Eq. (2.34). We
neglect terms of order g3, which certainly contribute in the
strong-coupling limit, and which vanish only for the strings,
where the partition function (2.23) with the choice (2.34) for
the parameters ¢4 ,C, is exact in second order. An evaluation
of the neglected terms by variational perturbation theory is
expected to give only a negligible contribution to our final
result.
Inverting the kernel (3.3) yields the correlation function

2 kel
Gnyn,(X1:X2) = 3T mZ sinvynasinvyn,a
XJ dk 1 e—ik(xl—xz)_
(2m)2 K4+ 2*Sin?(voal2)
(3.5

The explicit calculation of the Fourier integral leads to a
difference of modified Bessel functions Ky(x) asin Ref. [6]:

i keT

(X1,X2) = —\/§7T(N+1),LL2 e

”1”2

N . .
siny,n;asiny,n,a
X :
=1 sin(val2)

X [Ko(2Y*isin(vpmal2) /X, = Xo|)

PHYSICAL REVIEW E 63 051709

TABLE II. Numeric values W' of the reduced two-loop Feyn-
man integrals contributing to the pressure constants of a stack of N
membranes in Eq. (3.15).

r T r
N O o OO
1 1/32 0 0
2 0.080542 0.022446 0.005582
3 0.131291 0.046992 0.009153
4 0.182239 0.071866 0.011529
5 0.233187 0.096762 0.013208
6 0.284099 0.121619 0.014453
7 0.334973 0.146428 0.015411
8 0.385815 0.171195 0.016172
9 0.436630 0.195925 0.016789
10 0.487422 0.220624 0.017300
11 0.538197 0.245300 0.017730
12 0.588958 0.269954 0.018097
13 0.639706 0.294592 0.018414
14 0.690444 0.319215 0.018690
15 0.741174 0.343827 0.018933

—Ko(2¥=isin(vmal2) u|x,—X,|) -

(3.6)
For x;=X,=x and n;=n,=n, this reduces to
1 keT < sinfrgna
G(X,X)=——"—"—— 0
n(%.%) V32(N+1)u? K 2:1 sin(vmal2)’
3.7

leading to the partition function of the harmonic system,
1 -1
Z,=expy — ETrInG

oA sm[qu/4(N+1)]
w 8 sin[w/4(N+1)]

(3.8

-t

where A= [d?x is the area of the projected plane of the
membranes. The free energy per area
—(kgT/A)InZ, vanishes again for u=0.

As for the calculation of the free energy of the stack of
strings, we introduce harmonic expectation values

fN,M:

(=120 $ Do
N+1 N+1

xexp[ 53 3 | e f:dzx'cpnu)

n= 1n’:1 —

X[Gnn’(xfx,)]_l@n’(xl)] (3.9
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which appear in the perturbation expansion of Eq. (3.4), the
cumulants yielding a perturbative expansion for the free en-
ergy per area fy=—(kgT/A)InZ. The lines and vertices in
the Feynman diagrams now stand for

X1,Ng——

X2.N2 = (Vi @0, (X1) Vo @1 (X2)),. (3.10)

PHYSICAL REVIEW E 63 051709

N+1

HEJOP

(3.12)

and the two-loop approximation to the free energy per area
and membrane in order 1/a? reads

72 K 7r2rc2,u8 1 1
s =im {75 OO0 ~fraa (5 © +: O-O )} @1
|
Going over to reduced Feynman integrals as in Eq. (2.31), 72 /1 1
aN = N (- @ - ’8- ) .

kgT)\'

W=A( ) 20D g (3.13)

K

where v is the number of vertices and | the number of lines
of the diagram, we abtain

kaT?

Afy=ay—, (3.14)
2
Ka

r 1
0 = 32(N +1)? £

N+1

ZZ

ny,ne=1 m’l

Q_—O N+1)3

where we have used the abbreviation hn”‘1nz defined in Eq.

(2.30). The evaluation of the second diagram in Eq. (3.15) is
much more involved. The Fourier integrals can be done ex-
actly, except for one, which must be treated numericaly.
This calculation is deferred to Appendix A. The values of the
three diagrams are listed in Table Il for various numbers of
membranes. With these numbers, the evaluation of the pres-
sure constants yields the results given in Table 111. Except for
N=1 and N—oo, no analytica values were found in the
literature. We aso compare with pressure constants obtained
by Monte Carlo simulations and find a good agreement [3,5].
The values of the Monte Carlo simulations for N=3,5,7
from Ref. [3] show an independence of the number N of
membranes. This arises by the simulation technique, where
the free energy of the central membrane was determined. In
contrast to that, we have calculated the pressure constant

(3.15)

The pressure exerted by the membranes upon the walls is
obtained by differentiating the free energy fy=NATfy with
respect to the distance of the walls L=a(N+1):

2N k
TN+1“ ad’

oAty
aL

py=—N (3.16)

The first and the last Feynman integrals in Eq. (3.15) are the
simplest:

N+1 [ N R ?
Zl L; S /2)] ; (3.17)
Py Py P (3.18)

. Sin(Um, @/2) sin®(Vm,a/2) sin(vm,a/2)’

from the free energy of the complete system averaged over
all membranes. Thus these Monte Carlo values cannot be
directly compared with ours.

Table Il contains also a value a., for an infinite number
N—o of membranes in the stack. This pressure constant is
obtained by the following extrapolation procedure. We as-
sume that the pressure constants determined for N
=12,13,14,15 are of higher accuracy than those for lower
numbers of membranes. This assumption is justified by com-
paring our values for N=1,3,5 with the latest Monte Carlo
results [5]. For N=1, the deviation is about 3.4%. Consid-
ering N=3, the deviation reduces to 1.8% and further to
1.1% for five membranes. Since the pressure constants are
approximated increasingly fast with an increasing number N
of membranes, we make the following exponential ansatz for
determining the approach to infinite N:
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TABLE III.

PHYSICAL REVIEW E 63 051709

Pressure constants «y for different numbers N of membranes in the stack, calculated from

Eg. (3.15), with the numerical values of the two-loop diagrams given in Table I1. We compare with results
from Monte Carlo simulations and earlier analytic results.

Monte Carlo results

Earlier analytic values

21128 [4,6], 0.079715 [6]

0.080 [3]

N ay

1 7?%128~0.07711 0.060 [2], 0.078+0.001 [3], 0.0798= 0.0003 [5],
2 0.08669
3 0.09134
4 0.09408
5 0.09590
6 0.09719
7 0.09815
8 0.09890
9 0.09950
10 0.09999
11 0.10039
12 0.10074
13 0.10103
14 0.10129
15 0.10151
© 0.10409

0.074 [13], 0.101+0.002 [3], 0.106 [5]

0.093=0.004 [5], 0.1002=0.0006 [3]
0.0966 [5], 0.1022+0.0006 [3]

0.1009-0.0007 [3]

372/128~0.23 [1]

an=a.[1— 7exp(—EN%)]. (3.19)

The unknown four parameters in this equation are then de-
termined by solving the system of equations with the pres-
sure constants aqp, 13,14, and aqg listed in Table 111. We
obtain ~1.1712, {~1.6417, £~0.3154, and thus the lim-
iting pressure constant for an infinite stack of membranes,

a,,~0.1041. (3.20)

This value is in very good agreement with the Monte Carlo
result [5] (see the last row of Table l11). It differs by afactor
close to $ from the initial result by Helfrich [1,15].

V. SUMMARY

We have calculated the pressure constants for a stack of
different numbers of membranes between two wallsin excel-
lent agreement with results from Monte Carlo simulations.
The requirement that the membranes cannot penetrate each
other was accounted for by introducing a repulsive potential
and going to the strong-coupling limit of hard repulsion. We
have used the similarity of the membrane system to a stack
of strings enclosed by linelike walls, which is exactly solv-
able, to determine the potential parametersin such away that
the two-loop result is exact. This minimizes the neglected
terms in the variational perturbation expansion, when apply-
ing the same potential to membranes.

ACKNOWLEDGMENTS

We thank Professor W. Janke and Professor R. Lipowsky
for stimulating discussions in this subject. One of us (M.B.)
is grateful for generous support by the Studienstiftung des
Deutschen Volkes.

APPENDIX: EVALUATION OF THE SUNSET DIAGRAM

The second diagram in Eqg. (3.15) requires some simplification before the numerical calculation. We write the reduced

Feynman integral as

N+1

@T_ N+1

E § my mi m
hnlnz hn1 no n1n2 Kmlmzms

ny,na=1 "’1 mo.

(A1)

=1
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with the integral

d%k,; d%k, d%kg
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efi(k1+ ko +K3g) (X —Xp)

K = f d?x,0%x f : (A2)
MMM =) 2m? (2m)? (2m)? (Ki+ 28y, @) (K3 + 28in%py, @) (KE+ 28y, @)
|
All integrals are easily calculated, except for one. If we in- 1 2
troduce abbreviations f dX —— = — arctan z(x) (A9)
ax?+bx+c VA
2_oain2 _
M{=2sin Vi a, =123, (A3) with
we find ) b+ 2ax
A=4ac—b*, z(x)= ,
(x) A
K A de k J(k,M2 M2)  (A%)
mm,m; ™ 5 T4, xa2 MNP
vEE 2mle KMy a=—Kk?, b=k +i(y1-72), C=iy,. (A10)
with Since b is a complex number, Rearctanz is discontinuous, if
Rez changes sign and |Imz|>1. Thus the right-hand side of
d?p 1 1 Eqg. (A9) is discontinuous at a certain point x, within the
J(k,Mi,Mg)zf 5 T R— interval [0,1]. As will be seen subsequently, J(k,M3,M?3)
(2m)* (p=k)*+ M7 p"+M; (AS5) from Eq. (A5) must be real and thus all imaginary contribu-

Decomposing the integrand into partial fractions

1

1 d?p
I(k,M{,M%)=— f
(M MD=" M) (2m?

1
(p—k)?=iM;

1 1
p?+iM, p?—iM,

1
== 4M1M2[|(k,Ml,Mz)_I(k,Ml,_MZ)

—1(k,—M1,M5) +1(k,—My,—M5)]
(A6)

we are left with integrals of the type

d’p 1
(2m)2 (p—K)2+iyy p?+iys,

I(k!71172)=f ’ (A7)

where y,; ,= * M, , are real numbers. Employing Feynman's
parametrization, these integrals become

1
— X2+ X(K2+ iy —iyy) +iy,
(A8)

1 1
(71,720 = 5= |

taking the general form

tions in the decomposed form (A6) cancel each other.

We determine the point of discontinuity X, to obtain the
solution of the integral (A8) by investigating the zero of the
real part of z(x). Decomposing z(Xg) into real and imaginary
parts, we obtain

(12 1 . ReA
( X)C0S Earcanm

Rez(x)=|A| 12

+(y1—y2)sin

1 ReA ALl
Zacanol . (ALD

| =[A]7Y3 (y,— L actn | 2
mz(x)=|A| (y1— v2)COS 5 actan
1-2x)s ! ReA Al12
X (1—2x)sin Earctanm , (A12)

where

ReA=(y;—y2)?—K*, ImA=—2K3(y;+ 7,).

(A13)
Thus, the zero of Rez(x) is found at
1 - 1 2K?(y,+
xom o 14 172 | L g 272 |
2 k? 2 k*=(y1=72)?
(A14)
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From the bounds of integration in Eq. (A8), it follows that we must include the discontinuities of Eq. (A9) for xo€[0,1]. This
occurs if k<|y;— y,| and sign y;# sign y,. Thus the solution of the integral (A8) reads

S(k1’}’1,’)’2,x)|§:é,
l(k171172):

e—0

where S(k, y1,7y,,X) is the explicit right-hand side of Eq. (A9):

sign y1=sign y,\/(sign y1 #sign y,/\k= | y1— v2),

S(k!71!721X):

The function 1 (k,y,,72) possesses the properties

iMES(K, 1,72 ) g+ Sk v, v2 0 [h 2]y Sonyi#sign v Ak<\Ty—yo|, (ALY
1 K3(1—2x)+i(y,—
— arctan ( > )4 (?12 v2) . (Al16)
27\ (y1— ¥2)2 =K = 2ik3(y1+ ¥,) V(y1— v2)2—K*=2ik3(y1+ v,)
I(kv’)/lv_72)+|(k1_711'y2):2Rel(kviylvi')/Z)y (Al7)
[(K,y1,72) F1(K, = y1, = v2) =2 Rel (K, £ y1,% v,). (A18)

Inserting Eq. (A15) into Eq. (A6), the remaining integral in Eqg. (A4) together with the sumsin expression (A1) for the sunset
diagram can be calculated numerically. The values are listed for N=1, . .. ,15 in the third column of Table II.
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