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We give an overview about non-local field theories and their application to poly-
merized membranes, i.e. membranes with a fixed internal connectivity. The main
technical tool is the multi-local operator product expansion (MOPE), generalizing
ideas from local field theories to the multi-local situation [1,2].

1 Polymerized Membranes

Membranes have attracted much interest during the last years, especially due
to their relevance for biological systems. Most of the membranes encoun-
tered there are fluid. I shall concentrate here on another fascinating class of
membranes, namely polymerized tethered also called solid membranes. These
have a fixed and constant internal metric. They are realized in experiments
(e.g. the spectrin network of red blood cells [3,4], or sheets of graphite ox-
ide [5,6]).

A microscopic model is given by the so-called “spring and bead model”
which consists of balls (beads) which are connected by springs and form a
regular lattice. The difficulty is to incorporate the self-avoidance of the beads,
i.e. the fact that beads cannot intersect.

2 Representation of Membranes by a Non-Local Field Theory

We start from the continuous model for a D-dimensional flexible polymerized
membrane introduced in Refs. [7,8], and further studied in Refs. [9-12]. This
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Figure 1. The critical curve e(D,d) = 0. The dashed line corresponds to the standard
polymer perturbation theory, critical in d = 4.

model is a simple extension of the well-known Edwards’ model for continuous
chains [13]. The membrane fluctuates in d-dimensional space. Points in the
membrane are labeled by coordinates z € RP, and the configuration of the
membrane in physical space is described by the field r : x € RP — r(z) €
R?. At high temperatures, the free energy for a configuration is given by the
(properly scaled) Hamiltonian

Hir] = ﬁ/Z%[Vr(q:)]Z—I—bO/I/Sd(T(x) —r(y)) . (1)

Y

The integral fx runs over D-dimensional space and V is the usual gradient
operator. The normalizations are [ := [dPz/Sp with Sp = 27P/2/T(D/2)
and §%(r(x) — r(y)) = (4m)%25%r(x) — 7(y)). The latter term is normally
used in Fourier-representation 6%(r(x) — r(y)) = fp ePlr(@) =Wl where the
normalization of fp is given by fp =7~%/2 [ d%p to have fp e Pla =g d/2_ Al
normalizations are chosen in order to simplify the calculations. The first term
in the Hamiltonian is a Gaussian elastic energy which is known to describe
the free “phantom” surface. The interaction term corresponds (for by > 0)
to a weak repulsive interaction upon contact. The expectation values of
physical observables are obtained by performing the average over all field
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configurations 7(z) with the Boltzmann weight e 7{"l. This average can
not be calculated exactly, but one can expand about the configurations of a
phantom, i.e. a non-interacting surface.

Such a perturbation theory is constructed by performing the series ex-
pansion in powers of the coupling constant b. This expansion suffers from
ultraviolet (UV) divergences which have to be removed by renormalization
and which are treated by dimensional regularization, i.e. analytical continu-
ation in D and d. Long-range infrared (IR) divergences also appear. They
can be eliminated by using a finite membrane, or by studying translationally
invariant observables, whose perturbative expansion is also IR-finite in the
thermodynamic limit (infinite membrane). Such observables are “neutral”
products of vertex operators

N
O=][e* ), > ka=0. (2)
a=1

Let us now analyze the theory by power-counting. We use internal units
p~ 1/z, and note [z], =1, and [u], = — [u], = —1 . The dimension of the
field and of the coupling constant are:
2—-D
V::[r]w:T, e:=lbo], =2D —vd. (3)

The interaction is relevant for € > 0 (see Fig. 1). Perturbation theory is
then expected to be UV-finite, except for subtractions associated to relevant
operators. We shall come back to this point later.

For clarity, we represent graphically the different interaction terms which
have to be considered. The local operators are

1
1=1, 5(vr(:z;))2 - 4. (4)

The bi-local operator, the dipole, is
0% (r(x) = r(y)) = = (5)

The expectation-value of an observable is

(O]), = Norm / DI Ofp]e=HIr | (6)
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with Norm chosen such that (1), = 1. Perturbatively, all expectation-values
are taken with respect to the free theory (again normalized s.t. (1), = 1):

(Ol = Now [ D10 exp {25 [ 0@} .

A typical term in the expansion of Eq. (6) is

(—be;f)”//...//w-—-...-—-)8 , (8)

where the integral runs over the positions of all dipole-endpoints.

3 Locality of Divergences and the Multilocal Operator Product Ex-
pansion (MOPE)

The next step to show is that all divergences are short distance divergences.
Note that even for massless theories and in the absence of IR-divergences, this
is not trivial. Divergences could as well appear, when some of the distances
involved become equal, or a multiple of each other. A simple counter-example
is the integral of ||a|—|b| ’ﬂ/d, where a and b are two of the distances involved.
The proof is given in Ref. [2].

As in local field theory, divergences can be analyzed via an operator prod-
uct expansion. Intuitively, in the context of multilocal theories — the interac-
tion depends on more than one point — we also expect multilocal operators to
appear in such an operator product expansion, which therefore will be called
“multi-local operator product expansion” (MOPE) [14,15]. An example for
such an operator product expansion is

Let us explain the formula. We consider n dipoles (here n = 5) and we sepa-
rate the 2n end-points into m subsets (here m = 3) delimited by the dashed
lines. The MOPE describes how the product of these n dipoles behaves when
the points inside each of the m subsets are contracted towards a single point
zj. The result is a sum over multilocal operators ®;(z1,..., %y), depending
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on the m points z1, ..., z2m, of the form

ZC’i(xlle,...)@i (21722,---azm) y (10)

where the MOPE-coefficients C;(x; — 21,...) depend only on the distances
x; — z; inside each subset. This expansion is valid as an operator identity,
i.e. it is inserted into any expectation value and in the limit of small distances
between contracted points. No other operator should appear at the points
Z1,...,2m towards which the operators are contracted. As the Hamiltonian
(1) does not contain a mass scale, the MOPE-coefficients are homogeneous
functions of the distances between the contracted points, with the degree
of homogeneity given by dimensional analysis. In the case considered here,
where n dipoles are contracted to an operator ®;, this degree is —nvd — [®;],.
This means that

Ci(May — z1),...) = A5 Ride (g — 2y, .. ), (11)

where [®;]; is the canonical dimension of the operator ®; and —d(2 — D)/2
is the canonical dimension of the dipole.

In order to evaluate the associated singularity, one finally has to integrate
over all relative distances inside each subset. This gives an additional scale
factor with degree D(2n — m). A singular configuration, such as in Eq. (9),
will be UV-divergent if the degree of divergence

2—-D
2

D(2n—m)—n d—[®], (12)
is negative. It is superficially divergent if the degree is zero and convergent
otherwise. The idea of renormalization is to remove exactly these superficially

divergent contributions recursively.

4 Evaluation of the MOPE-Coefficients

The MOPE gives a convenient and powerful tool to calculate the dominant
and all subdominant contributions from singular configurations. Let us ex-
plain how to calculate the MOPE-coefficients on some explicit examples which
are the necessary diagrams at 1-loop order.

In the following we shall use the notion of normal-ordering. First let us
state that

.otkr(z) . — Gikr(z) (13)
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Explicitly, tadpole-like contributions being powers of [ dPp/p? are omitted.
This is done via a finite part prescription (analytic continuation, dimensional
regularization), valid for infinite membranes, for which the normal-order pre-
scription is defined. Let us stress that this is a pure technical trick, which
can be circumvented at the expense of more cumbersome calculations.

The key formula for all further manipulations is

.etkr(@) . L oipr(y) . — okpC(a—y) . ikr(z)oipr(y) . (14)

This can be proven as follows: Consider the (free) expectation value of
any observable O times the operators of Eq.(14). Then the left- and
right-hand sides of the above equation read £ = <(9 sethr(@) ;s eipr(y) >0 and
R = ekrC@=y) (O :eibr(@)eirr(v) 1)+ First of all, for O = 1, the desired equal-
ity of £ = R holds, because <:eik’r(“”)eipr(y):>0 =1 and (:e?*r(®@)::ePr() Do =
ekPC(==Y)  Now consider a non-trivial observable @, and contract all its fields
r with e*r(@) or ePTW) before contracting any of the fields r(x) with r(y).
The result is a product of correlation functions between the points in O and
x or y, and these are equivalent for both £ and R. However, contracting

ikr(7) Jeaves the exponential e’*(*) invariant.

an arbitrary number of times e
Completing the contractions for £ therefore yields a factor of e¥P€(*=¥) and
the latter one also appears in R. Thus, the equality of £ and R holds for all
O and this proves Eq. (14).

We proceed to the first explicit example, the contraction of a single dipole

with endpoints = and y:

ZQ :/:eikr(m)::e_ikr(y): . (15)

This configuration may have divergences when z and y come close together.
Let us stress that in contrast to ¢*-theory, these divergences are not obtained
as a finite sum of products of correlators: Since C(z —y) = |z — y|*> 2, the
latter is always well-behaved at x = y. The singularity only appears when
summing an infinite series of diagrams. To this purpose, we first normal-order
the two exponentials using Eq. (14)

/k ikl (@) =r(y)]. o=k lz—y* (16)

Note that the operators €’*"(*) and e~**"¥) are free of divergences upon ap-
proaching each other, since no more contractions can be made. The diver-
gence is captured in the factor e~ **la=yI* " Therefore we can expand the
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exponential : e”*["(®) =W . for small  — y and consequently in powers of
[r(z) — r(y)]. This expansion is

. 1 2 k2 e—y|?
/k:{1+7,k[r(:c)r(y)]E(k[r(x)r(y)]) +...}:e Fle=yl™ (17)

The expansion is truncated after the third term. It will turn out later that
this is sufficient, since subsequent terms in the expansion are proportional
to irrelevant operators for which the integral over the MOPE-coefficient is
UV-convergent.

Due to the symmetry of the integration over k£ the term linear in k van-
ishes. Also due to symmetry, the next term can be simplified with the result

/k [1 - l;—; r() —r@)]?: +.. } oK o=yl (18)

Finally, the integration over k£ can be performed. Recall that normalizations
were chosen such that fk e~k = §=4/2_ We obtain

=@+ (@

where we have used the notation o435 = 1(Jar)(9sr) and the MOPE-
coefficients (reminding Feynman’s bra and ket notation)

(Qo) =t i (20)
(Qlats) = 2 @=)a@=pale—y 7@ (1)

2
As long as the angular average is taken (and this will be the case when
integrating the MOPE-coefficient to obtain the divergence), we can replace,
in Eq. (19), o+ by + := 2(Vr)?, and Eq. (21) by

(Cal+) = —%lw —yl7 (22)

Next consider a real multi-local example of an operator-product expan-
sion, namely the contraction of two dipoles towards a single dipole:

a+g> ats +.ooo, (19)

o Zg HE zj}g - /k ciklr(z+u/2)—r(y+v/2)] /p eiplr(z—u/2)=r(y=v/2)]
(23)
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This has to be analyzed for small v and v, in order to control the diver-
gences in the latter distances. As above, we normal-order operators which
are approached, yielding

eikr(m+u/2)eipr(937u/2) — :eikr(eru/Q) . :eipr(mfu/Q)

— :eikr(w+u/2)eipr(m7u/2) . ekpC(u) ] (24)

A similar formula holds when approaching e ~**7(¥+v/2) and e~irr(v—2/2) Eq.
(23) then becomes

/ / k(a2 +ipr(e—u/2) o =ikr(+v/2—ir(y—v/2) | kPCWCE) (95
kJp

In order to keep things as simple as possible, let us first extract the leading
contribution before analyzing subleading corrections. This leading contribu-
tion is obtained when expanding the exponential operators (here exemplified
for the second one) as

e tkrlytv/2) gmier(y=v/2) . — o= kHPITW) (1 4 O(Vr)): (26)

and dropping terms of order Vr. This simplifies Eq. (25) to
/ / ik tD)r(@) , ik AP)r(y) . PO +CW)] (27)
kJp

In the next step, first k& and second p are shifted, ¥ — k—p then p — p+£k/2.
The result is (dropping the normal-ordering according to Eq. (13))

/kem(x)fmm / (HF° =P CW+C ()] (28)
p

The factor of [, i eklr(@)—rW)] is again a d-distribution, and the leading term
of the short-distance expansion of Eq. (28). Derivatives of the §-distribution
appear when expanding (12 —P*)[C(W)+C ()] jp k2; these are less relevant and

only the first sub-leading term will be displayed for illustration:

2
/ iklr(e) 7o) / o PO (1 + 2 00) + W)+ )
k

p

= () e F () e (29)
where in analogy to Egs. (19) to (21)

(3 ) = [C(u) + C)] Y,
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(£t h) = 1 [C) + CI 2, (30)

with ~— = §(r(z) — r(y)) and —— = (=A,)0%r(z) — r(y)).

Let us mention that the leading contribution proportional to the 6-
distribution will renormalize the coupling constant, and that the next-to-
leading term is irrelevant and can be neglected. The same holds for the
additional term proportional to (Vr) which was dropped in Eq. (26).

There is one more possible divergent contribution at the 1-loop level,
namely ,_,Q We now show that the leading term of its expansion, which is
expected to be proportional to «—, is trivial. To this aim consider

Q — / :eikr(u) . :efikr(a:) : :eip'r(y) . :efipr(z) .
e k,p

u TYz

:/ etkr(uw). . g—ikr(z) Gipr(y) o—ipr(2). e*p20(y72) ekplC(z—2)—C(z—y)]
k,p

In order to study the contraction of x, y, and z, and to look for all con-
tributions which are proportional to ~— = [, el e mikrl(@tyt+2)/3)
we observe that, in Eq. (31), the leading term is obtained by approximating
ekplCle=2)=C(z=y)] ~ 1. All subsequent terms yield factors of k, which after
integration over k give derivatives of the d%distribution. The result is

(k=)= () =0 1)

This means that divergences of ,_,Q are already taken into account by a
proper treatment of the divergences in (), analyzed in Eq. (19).

5 Renormalization at 1-Loop Order

In order to renormalize the theory, we shall identify the divergences through
the MOPE, and then introduce counter terms which subtract these diver-
gences. These counter terms are nothing else than integrals over the MOPE-
coefficients, properly regularized, i.e. cut off. We introduce two renormaliza-
tion group factors Z (renormalizing the field r) and Z, (renormalizing the
coupling b). Recalling Eq. (1), this becomes

Hr] = %L%(Vr(x))z +beI~LE/m/gd(7"($) —7(y)) (32)

Y



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

654 K.J. Wiese

where r and b are the renormalized field and renormalized dimensionless cou-
pling constant, and p = L ! is the renormalization momentum scale. (To be
precise: The field 7 in Eq. (1) is the bare field and should be noted rq.)

Let us start to eliminate the divergences in the case, where the end points
(z,y) of a single dipole are contracted towards a point (taken here to be the
center-of-mass z = (z + y)/2). The MOPE was given in Eq. (19) and follow-
ing. We have to distinguish between counter terms for relevant operators and
those for marginal operators. The former can be defined by analytic contin-
uation, while the latter require a subtraction scale. Indeed, the divergence
proportional to 1 is given by the integral

t dz D—vd 1 D—¢ e—D
/A1<my|<L (zlel) B /A,l ?x  D-—=¢ (A —L ) » (33)

where A is a high-momentum UV-regulator and L a large-distance regulator.
For ¢ ~ 0 this is UV-divergent but IR-convergent. The simplest way to
subtract this divergence is therefore to replace the dipole operator by

N (34)

where - = |z — y|~¥¢. This amounts to adding to the bare Hamiltonian
(1) the UV-divergent counter-term

AHy = —bZyif //|x—y|7”d, (35)
xJYy

which is a pure number and thus does not change the expectation value of
any physical observable.

We next consider marginal operators: In the MOPE of Eq. (21), the in-
tegral over the relative distance of fw,y(mQy la*8) atp is logarithmically
divergent at ¢ = 0. In order to find the appropriate counter term, we use
dimensional regularization, i.e. set ¢ > 0. An IR-cutoff L, or equivalently
a subtraction momentum scale ¢ = L~!, has to be introduced in order to
define the subtraction operation. As a general rule, let us integrate over all
distances appearing in the MOPE-coefficient, bounded by the subtraction scale

L = ', Defining
<Q O‘+B>L = /x_y<L (ny

a+g) , (36)
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we need the following counter term in the Hamiltonian

AH, = by <Q

subtracting explicitly the divergence in the integrals. The reader is in-
vited to verify this explicitly in the example of the expectation value of
O = etklr(s)=rM] The solution is given in Appendix H of Ref. [2].

Since the angular integration in Eq. (36) reduces 443 to 4, we can re-
place Eq. (37) by the equivalent expression

AH, = —bye <Q‘+>L /x 4, (38)

for which the numerical value of the diagram is calculated as

(=L L) =g [ S =gt o

z—y|<L €T

a+ﬁ>L / a*ﬁxa (37)

We can now subtract this term in a minimal subtraction scheme (MS). The
internal dimension of the membrane D is kept fixed and (39) is expanded as
a Laurent series in e, which starts here at ¢ 1. The residue of the pole in Eq.

(39) is
Q) =35 (a0

It is this pole that is subtracted in the MS-scheme by adding to the Hamil-
tonian a counter term

AH. :72<Q)+>/I+x (41)

Similarly, the divergence arising from the contraction of two dipoles to a single
dipole is subtracted by a counter term

At = (), [ [ (42)
z Jy
with

b= k) (43



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

656 K.J. Wiese

Reducing this integral counter term to a number, we subtract the residue of
the single pole of

<./\. |._. / / s ’._.) _ / / (|x|2u+|y|2u)7d/2.
|lz|<L |y|<L |z|<L |y|<L
(44)
Note that the regulator L cuts off both integrations. One can now either
utilize some simple algebra or show, by the methods of conformal mapping
(see Ref. [2]), that the residue is obtained by fixing one distance to 1 and by
freely integrating over the remaining one:

. : r (%)
<i;©}|.—'>5:/0 dx P (14 227P) 21DF(<22DDD>) (45)

As a result, the model is UV-finite at 1-loop order, if we use, in the renor-
malized Hamiltonian (32), the renormalization factors

Z=1-(2-D <Q’+> + o), (46)
Zy=1+ <sj@jsy-—->€ ~ +00%). (47)

Note that due to Eq. (31) no counter term for Q is necessary.
The renormalized field and coupling are re-expressed in terms of their bare
counterparts through

ro(x) = ZY%r(z) , bo=b2Zy Z? 1f . (48)

Finally, the renormalization group functions are obtained from the variation
of the coupling constant and the field with respect to the renormalization
scale u, keeping the bare coupling fixed. The flow of the coupling is written
in terms of Z and Z;, with the diagrams given in Egs. (40) and (45) as

0 —eb
B) '_“a_ubob L+ b2 nZ, + 962z
— bt (<:j]0[;|-—->5 - yd<Q‘+>> Ro®®) .  (49)

Similarly, the full dimension of the field (the exponent entering into the cor-
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relation function) is obtained as

2-D 1 0 5-D 1. 5
V(b):T_E a_uboan:T_iﬁ(b)%an

Note that minimal subtraction is used on the level of counter terms or equiv-
alently Z-factors. Since Z enters as Z¢ into the SB-function, the latter also
contains a factor of d in the 1-loop approximation, i.e. Z¢ is not minimally
renormalized. In order to calculate the leading order in e, the factor of d can
be replaced by d. = 4D/(2 — D).

The S-function has a non-trivial fixed point with 5(b*) = 0, which has a
positive slope and thus describes the behavior of the model at large distances.
The anomalous dimension v* := v(b*) becomes to first order in €

2-D £ r(;25)*
* _ 2 7 1 = L 2—D 1 2 . 1
s =22 S (HRE 1) [ roen. e
For polymers, this result reduces to the well-known formula
1 4-—d
V(D=1)=-+—+0(4-d)?).

2 16

6 Results for Self-Avoiding Membranes from 2-Loop Calculations

Two-loop results are obtained by an explicit analytic and numeric integration
of the following combination of diagrams (which are all of order 1/¢):

6= -5 (b, + k)",
(sl + (L)), (),

(Qle), (s, + P —),
Fa= 5 ()

< ((Canloy+ EEREEOL) — (] (3 414),).

Cz

Cs
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0.0 I I I I I I I I

Figure 2. Extrapolation of the 2-loop results in d and e for membranes (D = 2) in d
dimensions, using the expansion of v*(d + 2) (squares). The solid line is the prediction
made by Flory’s approximation, the dashed line by the variational ansatz.

Fam MO (b, — Gl )

One then has the freedom to extrapolate about any point on the critical
curve £(D,d) = 0 (see Fig. 1). This freedom — or ambiguity — can be used
to optimize the results. The results of such a procedure for the 2-loop cal-
culations of v* are given in Fig. 2 for membranes (D = 2) in d dimensions
(2 < d < 20). We see that for d — oo the prediction of a Gaussian variational
method 1,y = 2D/d becomes exact. For small d, the prediction made by
Flory’s argument vpiory = (2 + D)/(2 + d) is close to our results. This is
a non-trivial result, since the membrane case corresponds to € = 4, and in
comparison with polymers in d = 3, where ¢ = 1/2, the 2-loop corrections
were expected to be large. In fact, they are small when one expands around
the critical curve € = 0 for an adequate range of D ~ 1.5 (depending slightly
on d and on the choice of variables) and a suitable choice of extrapolation
variables. In this case the 2-loop corrections are even smaller than the 1-loop
corrections and allow for more reliable extrapolations to € = 4. This can be
understood from the large-order behavior [16].

Let us now turn to the physically relevant case of membranes in three
dimensions (D = 2, d = 3). Our calculations predict an exponent v* ~ 0.85
or equivalently a fractal dimension of d¢f ~ 2.4, which is in agreement with
those experiments and simulations finding a fractal phase. However, this is
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still under debate, and a lot of evidence has been collected that the flat phase
is generic.

7 Outlook

We have here only discussed the simplest applications of non-local field the-
ories. Much more has been achieved during the last years.

First of all, it has been demonstrated that the dynamics, described by a
Langevin equation

_ oMl
Er(x,t) = Or(x.t)

+C(z. ), (Cx, )¢’ 1)) = A6P (z —a")d(t—t') (53)

also leads to a renormalizable field theory [17], where the dynamic exponent z,
defined by the decay of the auto-correlation function ([r(z,t) — r(z,t')]*) ~
|t — t'|?/# is given by z = 2+ D/v* = 2+ d; (df = D/v* is the fractal
dimension of the membrane). This result had been suggested long-time ago
by De Gennes [18] for polymers and by Kardar et al. for membranes [19],
but only with the methods discussed above, a proof of that conjectures could
be given [17]. When hydrodynamics is included, the dynamical exponent z
changes to z = d [20].

Interestingly, also disorder can be treated via the same methods, since av-
eraging over disorder leads to interactions very similar to self-avoidance. The
above methods have been applied to the motion of a polymer or membrane
in a static disordered force field with both potential and non-conserved parts
— leading to new universal physics [21,22].

The advection of a polymer in a turbulent flow has also been analyzed [23],
paralleling the discussion of the passive advection of particles, which in the
turbulence community is known as the passive scalar problem.

Another interesting generalization concerns anisotropically tethered mem-
branes [24-26]. In these models, the membrane is more rigid in one direction,
forming a tubular phase.

One of the most useful tricks for self-avoiding polymers is the mapping
onto a massive scalar field theory, i.e. a ¢*-theory [27]. In the limit, where
the number of compoents n — 0, results for self-avoiding polymers are ob-
tained. Stated differently, ¢*-theory is a generalization of self-avoiding poly-
mers. Another generalization has been discussed above: The generalization
to membranes with internal dimension D # 1. The question arises, whether
a common generalization of both the ¢*-theory and polymerized membranes
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is possible. Such a model has indeed been constructed [28,29] and leads to
interesting new physics.

Another still open question is the analysis of the spectrum of subdominant
operators [30]. This may give a hint of why polymerized membranes are
generically seen to be flat in simulations.
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