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We evaluate perturbatively the density matrix in the low-temperature limit and
thus the ground-state wave function of the anharmonic oscillator up to second
order in the coupling constant. We then employ Kleinert’s variational perturbation
theory to determine the ground-state wave function for all coupling strengths.

1 Introduction

Variational perturbation theory as developed by Kleinert [1] provides a sys-
tematic algorithm to evaluate perturbation series at all coupling strengths
including the strong-coupling limit ¢ — co. It was thoroughly investigated
for the ground-state energy of the anharmonic oscillator up to the 250th or-
der [2,3], and its convergence was found to be exponentially fast and uniform.
A similar systematic study has not yet been performed for the ground-state
wave function. A first-order variational approach was set up by Kunihiro [4].
However, his method did not satisfactorily deal with certain problems in the
variational procedure which will be discussed in detail below.

In this work we improve Kunihiro’s first-order calculation and extend
the treatment to the second order in the coupling strength. The ground-
state wave function of the anharmonic oscillator is calculated from the low-
temperature limit of the diagonal elements of the density matrix. A vari-
ational evaluation of the density matrix for the double-well potential has
already been perfomed for finite temperatures in Ref. [5].
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2 Perturbation Theory

Consider a quantum mechanical point particle of mass M moving in the one-
dimensional anharmonic oscillator potential

M
Via) = Gwta + gat, 1)
where w denotes the frequency and ¢ the coupling constant. We determine
its ground-state wave function ¥(z) by evaluating the low-temperature limit
of the diagonal elements of the density matrix

W) = Jim ), ®)
which is defined by
xp hB|z, 0
ol z) = L2102 0). @

Here (zp if|x4 0) denotes the imaginary-time evolution amplitude with the
path-integral representation [1]

x(hB)=xp
(20 1|0 0) = / Da
xT

(0)=2a
1T M
X exp ——/ dr | =i%(1) + —w?22 (1) + g2t (7)| p ,  (4)
h )y 2 2
and Z denotes the partition function
“+oo
z :/ dz (2 hB)z0) (5)

By expanding Eq. (4) in powers of the coupling constant g we obtain the
perturbation series

h3
(zp hB|xa 0) = (2 hB|T4 0) [1 - %/0 dry (2 (1))

2

p he 3
+ 2 dﬁ/ dry (z* (1) 2t (72))s + ...
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where we have introduced the harmonic imaginary-time evolution amplitude

z(hB)=zp

(xp hB|24 0),, = / Dx

2(0)=z4
X exp {—% /Ohﬂ ir {%@2(7) + %w%ﬁ(ﬂ} } , (7)

and the harmonic expectation value for an arbitrary functional F[z] of the
path z(7):

B 1 z(hB)=x
(Flae = / o Derl

X exp {% /0 Y {%9‘52(7) + %uﬂﬁ(r)} } L ®

The latter is evaluated with the help of the generating functional for the
harmonic oscillator, whose path-integral representation reads

z(hB)=xp 1 hB
(xp hB|za 0)u[j] = / Dxexpl —— dr
z(0)=zq h 0

< |0+ 50 - i) | )

leading to [1]

1 [
(zp hB|7q 0)w[i] = (2 B4 0), exp [ﬁ /0 dry wei(71)7(71)

3 B
+ /O dri ; dr> G(TlaTz)j(Tl)J(TQ)]a (10)

212

Mw
(6 3]0 0) = 2rh sinh hfw

Mw 2 | 2
X €Xp {_m[(wa + ) cosh hfjw — Zxaxb]} - (11)

with



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

318 A. Pelster and F. WeiBbach

In Eq. (10) we have introduced the classical path

xg sinh(AfB — T)w + zp sinhwr

= 12
zal(7) sinh hBw ’ (12)
and the Green function
h 1 . .
G(r,m2) = mm [0(11 — 72) sinh(hf — 71 )w sinh wTy
+0(12 — 71) sinh(hf — 7)wsinhwr] . (13)

We follow Ref. [6] and evaluate harmonic expectation values of polynomials
in x arising from the generating functional (10) according to Wick’s theorem.
Let us illustrate the procedure to reduce the power of the polynomial by the
example of the harmonic expectation value

(2" (1) ™ (72))w - (14)

(i) Contracting z(71) with 2" ~1(r;) and ™(72) leads to a Green function
G(m, 1) and G(11, 72) with multiplicity n — 1 and m, respectively. The
rest of the polynomial remains within the harmonic expectation value,
leading to (2" 2(7) 2™ (72))e and (2" (1) 2™ 1 (12))w -

(ii) If n > 1, extract one x(71) from the expectation value giving zc(m1)
multiplied by (" !(m)2™(72))w.

(iii) Add the terms (i) and (ii).
(iv) Repeat the previous steps until only products of expectation values
(x(11))w = Zci(m1) remain.

With the help of this procedure, the first-order harmonic expectation value
(*(11))w is reduced to

(@ (11))w = za(m1) (2°(11))o + 3 G (11, 1) {(2?(11) ) - (15)
Furthermore, we find
(2% (1)) = za(m1)(2?(11))w +2G (71, 71) Ta(11) (16)
and
(@?(11))w = 2(11) + G(11,71). (17)
Combining Egs. (15)—(17) we obtain in first order

(#*(11))w = 24(11) +62%(11) G(r1,71) + 3G (11, 71) - (18)
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The second-order harmonic expectation value requires considerably more ef-
fort and finally leads to

(@ (r1) 2 (12))w = 2 (1) 25 (72) + 16 23 (1) G (71, T2) 78y (72)
+12a(n) G, 1) ag(72) + 7222 (1) G2 (11, 72) 7 (72)
+36 22 (11) G(11,71) G(12, 72) 22 (12) + 96 22 (11) G (71, 72) G(T2, T2) Te1 (T2)
+6 G2(11,71) 4 (12) + 96 21 (1) G2 (71, ) Tt (T2)
+14d 20(11) G(11,71) G(11,72) G(T2, 72) 2 (T2) + 9 G2 (11,71) G* (72, T2)
+36 G2(11, 11) 224 (19) G(12, T2) + 144 22 (1) G (11, 72) G(72, T2)
+72G(11,11) G* (11, 72) G(79,T0) + 24 G* (11, 72) . (19)

The contractions can be illustrated by Feynman diagrams with the following
rules. A vertex represents the integration over 7

> = /OhﬂdT, (20)

a line denotes the Green function

2 = G(Tl,TQ), (21)
and a cross pictures a classical path
*x——1 = za(m). (22)

Inserting the harmonic expectation values (18) and (19) into the perturbation
expansion (6) leads in first order to the diagrams

/hﬁdﬁ@‘*(ﬁ»w = +6 XLL +3 (X)), (23

whereas the second-order terms are

[ [ ) 4 %% %
+12 xilxx_}x +72>Q< + 36 xilxxilx
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+96PFLX +6 QQ% +96 {3

+144Mlx + 36 QQXLL +144>Q©
2 (X X ) +u +9 (X)) (X)) - (24)

We observe that contributions from both connected and disconnected Feyn-
man diagrams appear. The disconnected diagrams vanish once we rewrite
the imaginary-time evolution amplitude in the form

(xp iB|xa 0) = (ap APz 0)y, exp [W (s, if; 24, 0)] , (25)

where the exponent W (xy, if; x4, 0) contains only the connected Feynman
diagrams. We obtain from (6) and (23)—(25) the expansion

W 2y, h; 4,0) = 3( vo L vy X0 )

(T em0C rar]O

6 (X X ) +12 >+ (26)

where disconnected diagrams are indeed no longer present. As mentioned
above, we restrict ourselves to the low-temperature limit of the diagonal ele-
ments of the density matrix which determine the ground-state wave function.
In order to evaluate the various contributions in (26), we need the classical
path (12) and the Green function (13) in the low-temperature limit:

ﬂILH;O xcl(T) =T (67607- + €7w(h’g77—)) , (27)
h
ﬁlggo G(Tla 7—2) = m [ 9(7’1 - 7‘2) efw(Tlsz) + 9(7—2 _ 7_1) e*u)(Tz*Tl)
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767w(7'1+'r2) o 672hﬁw+w(‘r1+7'2) ] ) (28)
Computing with these expressions the Feynman diagrams in (26), the low-
temperature limit of the imaginary-time evolution amplitude (25) reads to-
gether with (11)

. Mw hw Mw 5 g 9h?
(x hB|z 0) = ﬁlgr;o o exXp { 2"+ 7 <8M2w3

_BF 3h 5 14\ g% (210°8  205h
2h2 \AM3wS ~ 16M4wb

lim
B—o00

4M2w?2 2Mw? 2w
215 , 112

4 6
e L e 29
Toars” T ara” T3t > * } (29)

According to (5), the partition function Z follows from (29) by performing
an integration with respect to . This results in

(hﬂu) 3gh23 n 21g%h33 n )

lim Z = lim exp
B—o00 B—o00

2 4AM2w? ' 8M4w (30)

Inserting (29) and (30) into (3) we observe a cancellation of all terms which
would diverge in the low-temperature limit 3 — oco. Thus the diagonal ele-
ments of the density matrix read in this limit

lim plr.z) = ) L o [ M2 g (O B, L
ﬁ—»oop, a hm P h B\ 8M2u3 2Mw? 2w

2 4 4 2
g 2057 olht , 1R, h
(- ., w )+ . (31
o ( 16055 o T ora” T3mst )T (1)

By taking the square root and expanding the exponential term up to second
order in the coupling strength g, we derive the second-order ground-state
wave function (2):

Mw\Y* Mw 4 g 9h2
V() = (E) exp (%“f ) {1 7 (TMm

8o, 1), 8 15591 MECUR
Mt T’ 212 \ T 256070 | 32035
53R 13h

6 8
+32M2w4:1: +24Mw3x + Tk ) —I—} .

(32)
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This result corresponds to the solution of the Bender-Wu recursion relation [7]
for the ground-state wave function which is normalized such that

+oo
/ do U2 (z) = 1 (33)

holds up to second order in the coupling strength g.

3 Variational Perturbation Theory

Variational perturbation theory enables us to evaluate the ground-state wave
function for all values of the coupling constant ¢ and even in the strong-
coupling limit ¢ — oo. To this end we simply add and subtract a harmonic
oscillator of trial frequency €2 to the anharmonic oscillator potential (1):

%wQ—QQ

5 22 +gat. (34)

M
V(z) = 7923:2 +g
We now treat the second term as if it was of the order of the coupling constant
g. The result is obtained most simply by substituting the frequency w in the
original anharmonic oscillator potential (1) according to Kleinert’s square
root trick [1]

w— Q1+ gr, (35)
where we have
w? —0?
g2

ﬁ
If

(36)

Writing the ground-state wave function (32) in the form ¥(z) = exp[W(z)]
with the cumulant expansion

1 Mw Mw g 9h? 3h 1
w _ | Yy P2 J _ 2_ - .4
(¥) = exp [4 8 ( It ) ST (16M2w3 M2’ T 160"

2 205h* 21h% 11h2 h
+2 < + 24+ 4 m6> + } ,(37)

o2 \ 3ot T st sttt T 6Mws

we apply the trick (35) to W(x), and reexpand in powers of g at fixed 7.
Afterwards r is substituted according to (36). Thus we obtain in the first

order
1 MQ 1w MQ w?
(1) — z 2y _ v At hadi Qo
U (z, Q) exp[4log<h7r) 8+SQ2 m (1—!—92)3:
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g 9h? o 3h 5, 1
“h (16M2§23 a2’ 1t )| (38)

whereas the second-order expansion reads

MQ) 1 w? wt

1
@ (4.Q) = Z1 ielull e T
() exp{4 Og(fm 6 102 1604

MQ 34_3u)2 w? 2_i_g 9h? 5 3w?
on \8 402 304" T h 160203 \2 T 202

__3n 2— W o 1 (3 WY
AMO2 02)" Ta\2 2"
2 4 3 2
4> [ 205k ord , 1K, h
212 [ STV A VE RS VEr TR Vet B G

Both in first and in second order, the ground-state wave function depends on
the artificially introduced frequency parameter €). According to the principle
of minimal sensitivity [8] we minimize its influence on W) (z, Q) by searching
for local extrema of ¥(")(z,Q) with respect to Q. As we have written the
wave function in the form ¥ (z,Q) = exp[W ) (z,Q)], it is sufficient to
take into account just the inner derivative of ¥(™)(z,Q)

condition OW (™ (z,Q) /99 = 0.

It turns out in the first order n = 1 that this equation has two solutions
for x < 0.684 and for = > 0.780, however in the interval 0.684 < z < 0.780,
U (2, Q) does not have any extremum [4]. In accordance with the principle
of minimal sensitivity we look for turning points on that interval instead,
i.e. we solve WM (2,0)/00% = 0. Fig. 1 shows how the curve for the
turning points links the extremal branches. Now we have to choose which
one of the branches of Q2! (x) we take into account. Inserting the lower branch
for z > 0.780 into the wave function (38) leads to unphysical results as the
ground-state wave function explodes dramatically. Thus we choose the upper
branch for x > 0.780. For =z < 0.684 the wave function becomes rather
independent of the choice of Q. As we are looking for a function Q) (z)
which is as smooth as possible, we choose the lower branch for x < 0.684.
Fig. 1 shows all branches of 2 and highlights our final choice by a solid line.

For the second order n = 2 there are no real positive solutions of the
equation W) (x,Q2)/0Q = 0 on the interval = = [0,4]. Once more we have
to look for turning points instead and solve 9?W () (x,Q)/00? = 0. This
equation has two positive solutions on this interval, so we get two branches
for the solution Q(®)(z) (see Fig. 2). Again we have to choose one of these two

i.e. we obtain the
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Figure 1. First-order results for the variational parameter 2 at the intermediate coupling
g = 1/2. The extremal branches for z < 0.684 and for > 0.780 (solid lines and dashed
lines) are obtained from the equation dW () (z,Q)/8Q = 0. For 0.684 < = < 0.780 there
are no real positive solutions of this equation. Thus we look in this interval also for turning
points, i.e. we determine real positive solutions of the equation 62W(1)(w,Q)/692 = 0.
The curve for the turning points on the entire interval lies between the two other branches
(dot-dashed line) and fills the gap. Thus we can take those branches into account which
provide us with the most continuous function Q1) (z), i.e. the solid line.

branches. Relying on a similar argument as for the first-order approximation
we choose the upper branch for x > 0.8 and the lower one for z < 0.8.
The perturbation series converges so quickly that the curves for the first
and second order as well as the exact ground-state wave function are not
distinguishable on the plots. To see the difference we determine the mean
square deviation from the exact numerical solution

D™ =2 /0 T [w) (z) — \Dex(ac)] ° (41)

where the index n denotes the order. The integration is performed numer-
ically. The factor 2 is introduced for symmetry reasons, since we restrict
our calculations to the positive z-axis. It turns out that the mean square
deviation D® = 6.8 x 1077 is smaller than D™ = 1.1 x 1075 by a factor
of 0.063, which indicates that variational perturbation theory converges very
quickly also for the ground-state wave function. The same applies to both
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Figure 2. The two positive branches of Q(® () on the interval [0,4] for intermediate
coupling g = 1/2 obtained by solving the turning point equation 92W 2 (z,Q)/992 = 0.
In order to achieve the smoothest function we choose the lower branch for < 0.8 and the
upper branch for > 0.8. This choice is justified by the results of our first-order calculation
(see Fig. 1).

weak and strong coupling as is illustrated in Fig. 3 which shows the second-
order ground-state wave function ¥(?(z) for g = 0.1, g = 1/2, and g = 50,
respectively.

Note that variational perturbation theory does not preserve the normal-
ization of the wave function. Although the perturbative ground-state wave
function (32) is still normalized in the usual sense, this normalization is spoilt
by extremizing ¥(z, Q) with respect to the frequency parameter Q. Thus we
have to normalize the variational ground-state wave function at the end.
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W(x)

Figure 3. The normalized second-order ground-state wave function for weak coupling
(dashed, g = 0.1), for intermediate coupling (solid, g = 1/2), and for strong coupling
(dotted, g = 50).
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