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By resorting to results in quantum field theory some light is shed on the mechanism
of the formation of topological defects in the process of phase transitions.

1 Symmetry Breaking Phase Transitions and Topological Singular-
ities

I am pleased to dedicate this article to Hagen Kleinert on the occasion of his
sixtieth birthday. I met Hagen for the first time about 25 years ago, at one
of the Karpacz Winter Schools in Theoretical Physics in Poland. Since then
a sincere friendship has been established. Besides the reciprocal sympathy,
such a friendship finds perhaps its roots in the sense of humor with which
both of us look at life and theoretical physics.

In this article I discuss, from the standpoint of quantum field theory
(QFT), why topological defects, such as vortices, are formed in the pro-
cess of symmetry breaking phase transitions and which effects boundaries

and temperature have on defect formation [1,2]. Topological defects are
described in QFT as extended objects created by the non-homogeneous con-
densation of Nambu-Goldstone (NG) modes carrying a topological singular-
ity [3,4]. Therefore my attention is focused on the non-homogeneous boson
condensation. Topological defects appear in many systems in a wide range of
energy scales [5,6], from condensed matter physics to cosmology. I hope that
from my discussion will emerge the unified view of collective phenomena in
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many physically different systems which Hagen Kleinert has pursued during
the many years of his dense research activity. The results have been obtained
by the use of tools such as group theory and path integrals which have been
and are Hagen’s preferred fields of research.

I begin by recalling the mechanism of dynamical rearrangement of sym-
metry by which boson field translations are introduced in the theory. Then I
discuss how macroscopic fields and currents are generated by boson conden-
sation. By using such results, I will show that phase transitions in a gauge
theory involve non-homogeneous boson condensation with a topological sin-
gularity and hence that topological defects appear in the process of symmetry
breaking phase transitions. Finally, I will discuss finite temperature and finite
volume effects.

To be specific I start by considering a complex scalar Heisenberg field
¢u(z) interacting with a gauge field Ay ,(z) [7,8]. The Lagrangian density
Llou(z),or” (), A, (z)] is assumed to be invariant under global and local
gauge transformations:

ou(z) = ou(x),  Amu(z) — Amu(z), (1)
du () — Mgy (z) , Al @) — Amp(r) + 0 (), (2)

respectively. I assume A(z) — 0 for |zg| — oo and/or |x| — oco. I use
the Lorentz gauge 0" Ap ,(v) = 0 and set ¢p(z) = [Yu(z) +ixm(z)] /V2.
I also assume that spontaneous breakdown of symmetry (SBS) can occur:
(0|¢u(2)|0) = 0 # 0, with constant v and with pg(x) = Ya(z) — 0. The
generating functional is [9]

Wi K] = 5 [ldA,])a6]ids)[aB] exp

i / d'z (L(x) + B(@)9" A, (x)

+K* ¢+ Ko™ + J*(2)Au(z) + ie|p(x) — 0]?) 1 , (3)

where N is a convenient normalization. In the gauge constraint term, B(z)
is an auxiliary field. The e-term specifies the condition of breakdown of sym-
metry under which we want to compute the path integral. It may represent
the small external field triggering the symmetry breakdown. The limit ¢ — 0
must be performed at the end of the computations.

The LSZ maps (dynamical maps) between Heisenberg field and asymptotic
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(also called physical) in- (or out-) fields are:

om(z) = :exp {i%xm(w)} {f) + Zépin(x) + F] : (4)
A (@) = ZEU (@) + P (@) 4 P (5)
€qU

The functionals F' = Flpe, Uf;, O(Xin—bin)] and F* = F¥[piy, UL, O(Xin—bin)]

are determined within a particular model. The S-matrix is given by S =:
S[pin, U, d(Xin — bin)] 5, and Tuse AW (z) = A% () — et : Ibin(z) . The

in’

field xin denotes the NG mode, b;, the ghost mode, pi, the massive matter
field, and U/ the massive vector field. Their respective equations are

azxm(a:) =0, Ozbin(a:)

0, ((92 + mi)p1n<x) =0, (6)
(62 + mVQ)Uuin(m) = )

0"Upin(z) = 0, (7)

with my? = Z3(eg)?/Zy. One also has

Bu(x) = ?—f[bmm (@) S (8)
’Br(x) =0, —8*Anu(z) = jru(r) — 0,Bu(x) . (9)

with jg,(z) = 6L(x) /A% (x). If one requires that the current jp, is the only
source of the gauge field Ay, in any observable process, one has to impose
the condition ,(b|0,Bm(x)|a), = 0, ie.

(*82)p<b|A0Hu(x)|a>p = p(bljmu(z)|a)y - (10)

Here |a), and |b), denote two generic physical states. The equations (10) are
the classical Maxwell equations. The condition ,(b|0,Br(z)|a), = 0 leads
to the Gupta-Bleuler-like condition

i @) = o, @)y =0, (1)
(=)
mn
fields xin and b;, which do not participate in any observable reaction. How-
ever, I stress that NG bosons do not disappear from the theory. As we will
see, their condensation in the vacuum can have observable effects.

where x and bl(; ) are the positive-frequency parts of the corresponding
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Finally, one finds that the U(1) local and global gauge transformations
[Egs. (2) and (1)] of the Heisenberg fields are induced by the in-field trans-
formations

60’l~) 60’l~}

in(@) = Xn(@) + N@) b)) — bula) + D@, (12)
z} z
pin(z) = pinz) . Ul(z) > Ul(z) (13)
and by
Xin(#) = Xin(2) + —20f(x) (14)
7
bin(2) — bin(z) , pin(x) = pin(r) . Ul(x) — Ul(x), (1)

with 92f(x) = 0, respectively. Eq. (14) with f(x) = 1, which describes
the homogeneous boson condensation, is not unitarily implementable. It in-
duces transitions among unitarily inequivalent Fock spaces. The function
f(z) makes the generator of such a transformation well defined. The limit
f(z) — 1is to be performed at the end of the computation. The fact that the
Heisenberg field transformations are induced by Egs. (12)-(15) is named the
dynamical rearrangement of symmetry [3,4]. The in-field equations and the
S-matrix are invariant under the above in-field transformations, and By is
changed by an irrelevant c-number under (14) and (15) (in the limit f — 1).
It can be shown that the group of the transformations under which the in-
field equations are invariant is the group contraction of the symmetry group
for the Heisenberg field equations [10].

1.1 How Macroscopic Field and Current are Generated by Boson Condensa-
tion

Translations of bosonic physical fields (not necessarily massless) by space-time
dependent functions, say «(x), satisfying the same field equation of the trans-
lated physical field, are called boson transformations [3]. Egs. (12) and (14)
(with 0?A(z) = 0 and 8?f(x) = 0) are examples of boson transformations.
Consider the transformation ¢ [x; xin(z)] — ¢y = dmlz; xin(z) +(z)]. The
boson transformation theorem states that ¢/, is also a solution of the Heisen-
berg field equation for ¢ [3,4].

It can be shown that, in the presence of a gauge field, the boson transfor-
mation with regular (i.e. Fourier transformable) a(z) is equivalent to a gauge
transformation. The only effect is the appearance of a phase factor in the
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order parameter: ¥(z) = ¢*°*(®)§, with a constant c. Observable quantities
are thus not affected in such a case. Note that in a theory which has only
global gauge invariance non-singular boson transformations of the NG fields
can produce non-trivial physical effects (like linear flow in superfluidity).

The proof of the boson transformation theorem relies on the fact that
a(x) is a regular function. If a(x) carries some singularity (divergence or
topological singularity) the singular region must be excluded when integrating
on space and/or time. For example, if a(x) is singular on the axis of a cylinder
(at 7 = 0), the singular line r = 0 must be excluded by a cylindrical surface
of infinitesimal radius. The phase of the order parameter will be singular
on that line. This means that SBS does not occur in that region (the core):
there one has the “normal” state rather than the ordered one.

Since translation of a boson field describes boson condensation, we see
that boson transformations describe non-homogeneous boson condensation.
The boson theorem then shows that the same dynamics (the same field equa-
tions) may describe homogeneous and non-homogeneous phenomena. This
leads us directly to the mechanism of formation of extended objects, which
are in fact created by the non-homogeneous boson condensation [3,4,11]. Also,
since different phases (described in QFT by unitarily inequivalent represen-
tations) are associated to different NG boson condensation densities, we see
that, by inducing variations of NG boson condensation, boson transforma-
tions represent transitions through physically different phases of the system.
This establishes a connection between the formation of extended objects and
the process of phase transitions.

Boson transformations must be also compatible with the physical state
condition (11). Under the boson transformation xin(z) — xin(z) +

(’lNJ/Zé)f(QL‘), By changes as

BH(QE) — BH(CE) —

f(x) . (16)

Eq. (10) is violated upon imposing the Gupta-Bleuler-like condition. In order
to restore it, one must compensate the shift in By by means of the transfor-
mation of Ujy:

Ul (z) — Ul (2) + Z5 Fa"(z) ,  ua(z) =0, (17)

with a convenient c-number function a*(z). The dynamical maps of the



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

606 G. Vitiello

various Heisenberg operators are not affected by (17) provided

2
m
(@ + mb)au(@) = TLOf () (18)
This is the Mazwell equation for the vector potential a,, [9,12]. The classical
ground-state current j, is

Ju(@) = (017 (2)|0) = mi; |au(@) - %f%f(fﬁ) : (19)

where m3,a,(z) is the Meissner current and m3.0,,f(x)/eo the boson current.
Note that the classical current is given in terms of variations 0, f of the
non-homogeneous boson condensate density.

Summarizing, the macroscopic field and current are expressed in terms of
the boson condensation function.

1.2 Why Do Topological Defects Exist Only in the Presence of Massless
Bosons?

Let us now show that boson transformation functions carrying topological
singularities are allowed only for massless bosons [3,4].

Consider the boson transformation xin(z) — Xin(2)+f (). Let f(x) carry
a topological singularity making it path-dependent such that it fails to satisfy
the integrability condition of Schwarz:

Gl () = [0, 0,] f(z) #0 (20)

for certain p,v,z. We have seen that 0, f is related to observables and
therefore it is single-valued, i.e. [0p,0,] 0, f(z) = 0. Recall that f(z) is a
solution of the y;, equation, and suppose that xi, is massive: (9%+m?)f(z) =
0. It follows from the regularity of 9, f(z) that

1

uf(x) = maA Gl(@) (21)

which leads to 8% f(z) = 0, which in turn implies m = 0. Thus (20) is com-
patible only with a massless equation for yi,. This explains why topological
defects are observed always in the presence of NG bosons, namely of ordering
induced by NG condensate. The topological charge is defined as

1
Np = / di* o, f = / dS,e"° 9,0, f = = / as™ G, . (22)
c s 2 /s
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where C' is a contour enclosing the singularity and S a surface with C' as a
boundary. The charge N7 does not depend on the path C provided it does
not cross the singularity. The tensor G* is G*(z) = —3 e“"’\PGT\p(m). It
satisfies the continuity equation

9,G"(x) =0 &  0,Gl, +09,Gl, +0\G}, =0. (23)

This completely characterizes the topological charge of the extended ob-
ject [4].

On the other hand, the macroscopic ground-state effects do not occur for
regular f(z) (G], = 0). In fact, from Eq. (18) we obtain a,(z) = 9, f(z)/eq
for regular f which implies a zero classical current (j, = 0) and a zero classical
field (F,, = dua, — dya,) (the Meissner and the boson current cancel each
other).

In conclusion, the vacuum current appears only when f(x) has topolog-
ical singularities and this is allowed only for the condensation of massless
bosons, i.e. when SBS occurs. We thus see that, in a gauge theory, the sym-
metry breaking phase transitions characterized by macroscopic ground-state
effects, such as the vacuum current and field (as in superconductors), can
occur only when there are non-zero gradients of topologically non trivial,
non-homogeneous condensation of NG bosons. Since these are also the con-
ditions for the formation of topological defects, we also see why topological
defects are observed in the process of phase transitions.

Notice that the appearance of a space-time order parameter is no guar-
antee that persistent ground-state currents (and fields) will exist: if f is a
regular function, the space-time dependence of v can be gauged away by an
appropriate gauge transformation.

Since the boson transformation with regular f does not affect observable
quantities, the S matrix is actually given by

1
S =:8pin, U, — —0(Xin — bin)] : . (24)
my
This is in fact independent of the boson transformation with regular f:
1 1 1
S — 8" =:Spin, Uy = —0(Xin — bin) + Z5 * (" — —0"f)] 1,  (25)
my €0
since a,(z) = 9, f(x)/eo for regular f. However, S’ # S for singular f: S’

includes the interaction of the quanta Ui‘; and ¢y, with the classical field and
current. Thus we see how quantum fluctuations may interact and have effects
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on classically behaving macroscopic defects: our picture includes interaction
of quanta with macroscopic objects.

2 Temperature and Volume Effects

The condition of breakdown of symmetry at finite temperature in the case of
non-homogeneous condensation is [11]

O(E)9@)I0(8) = Zs0(z.6). (26)
where 3 = 1/kpT. Here, |0(3)) denotes the temperature-dependent vacuum
state in Thermo Field Dynamics [3,4,13]. Note that the statistical average of
some operator A is given by (A)o = (0(8)|¢(x)|0(5)).

The fields ¢ = p + o(z, 3)/V?2, x and A,, may undergo translation trans-
formations by c-number functions, say o, x and «,,, respectively, controlling
the respective condensate structures. Usual gauge transformations are in-
duced by using o =0, k = a(z) and o, (z) = Jya(x). The parameters m and
A will denote the Higgs field mass and self-coupling, respectively; o = (0]|¢|0)
at T = 0 is assumed to be non-zero, M is the gauge field mass, e the coupling
between A, and ¢.

The vortex solution can be studied by introducing cylindrical coordinates.
The asymptotic gauge field configuration is imposed by considering the pure
angular function as a gauge function at infinity x(z) = n /e, where k(z) =0
at r =0:

i n

i
=", 2
as er €y ( 7)

«

Here n is the winding number. One can show [11] that the masses are given
by

m?(z) =2)og f2(x) . M*(z) = e*(ogf*(2) + (57 1)) ,  (28)

with oo the Higgs field condensate which goes to zero at the critical temper-
ature T¢, and to © at T' = 0; p denotes the physical field. These masses
act as potential terms in the field equations and only at spatial infinity
(r — oo, f(z) — 1) ordinary mass interpretation is recovered. In fact one
has the asymptotic behavior

K(r)~e Mr=e/Bo  fry 11— foem™ =1— foe /™0 . (29)
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Ry = 1/M gives the size of the gauge field core and r9 = 1/m the Higgs field
core. K (r) is related to the o function. Symmetry is restored above T¢.

In the case of the kink solution, the pjf'(z) condensation is induced by
the boson transformation with fg(z) = const. - e Mo (B)=1 playing the role of
“form factor”. The number of condensed bosons is proportional to |fg(z)|? =
e 2mo(B) (z1-a) " which is maximal near the kink center z; = a and decreases
over a size {5 = 2/ (83). The boson translation by f3 breaks the homogeneity
of the order parameter v(/3) which is otherwise constant in space.

The mass p1g = (20)/20(B) of the “constituent” fields p'* fixes the kink
size €3 o¢ 2/p0 = V2/vV w(3) which thus increases as T — Tc (say T #
Tc but near Tg). In the T — 0 limit the kink size is & oc V2/VAD <
V2/V M (B) = &3, since [11] v3(B) = 52 — 3(: p? :)o < 02

For T different from zero, the thermal Bose condensate (: p? :)g develops
which acts as a potential term for the kink field. Such a potential term
controls the “size” and the number of the kinks. Only in the limit v(x, 3) —
const. the pg‘ (z) field may be considered as a free field, e.g. far from the kink
core.

Finally, let me consider finite-volume effects. Suppose we have homoge-
neous boson condensation. For large but finite volume, one expects that the
condition of symmetry breakdown is satisfied “inside the bulk” far from the
boundaries. However, “near” the boundaries, one might expect “distortions”
in the order parameter: ¥ = ¢(x) (or even © — 0): “near” the system bound-
aries we may have a non-homogeneous order parameter. Non-homogeneities
in the boson condensation will “smooth out” in the V — oo limit. Let me
put V = n~=3. Then, the NG mode acquires an effective gap (mass) of the
order of 7 (wy = n?). The Goldstone theorem (existence of gapless modes) is
recovered in the infinite volume limit (n — 0). The effect of the boundaries
(n # 0) is to give an “effective mass” meg = w;, to the NG bosons. These
will then propagate over a range of the order of ¢ = 1/n, which is the system
linear size.

Note that only if € # 0 (cf. Eq. (3)), the order parameter can be kept dif-
ferent from zero, i.e. if n # 0, then € must be non-zero in order to have ¥ # 0.
In such a case the symmetry breakdown is maintained thanks to the non-zero
€ which acts as an external field acting as a pump providing energy which is
required in order to condense modes of non-zero lowest energy w,. Bound-
ary effects are thus in competition with the breakdown of symmetry [1,2].
They may preclude its occurrence or, if symmetry is already broken, they
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may reduce the order parameter to zero.

Temperature may have similar effects on the order parameter (at T¢ sym-
metry may be restored). Since the order parameter goes to zero in the absence
of the external supply of energy, when NG modes acquire non-zero effective
mass, one may represent the effect of thermalization in terms of finite-volume
effects and get n o« /|T — Tc|/Tc. In this way, temperature changes near
Tc may be discussed as variations of the condensate domain size £. For
example, in the presence of an external driving field (e # 0), for T > T¢
(but near to T¢) one may have the formation of ordered domains of size
¢ x (\V|T —Te|/To) ™Y, before the transition to the fully ordered phase is
achieved (as T'— T¢). As far as 7 # 0, the ordered domains are unstable;
they disappear as the external field coupling € — 0.

Of course, if ordered domains are still present at T' < T, they also disap-
pear as € — 0. The possibility to maintain such ordered domains below T
depends on the speed at which T is lowered, compared to the speed at which
the system is able to become homogeneously ordered. Notice that the speed
of T'— T¢ is related to the speed of n — 0.

The order parameters v(z,3) and o(z,3) provide a mapping between
the variation domains of (z,/3) and the space of the unitarily inequivalent
representations of the canonical commutation relations, i.e. the set of Hilbert
spaces where the operator field ¢ is realized for different values of the order
parameter. As is well known, one has the mapping 7 of S' in the vortex
case, surrounding the r = 0 singularity, to the group manifold of U(1) which
is topologically characterized by the winding number n € Z € 71 (S?). It is
such a singularity which is carried by the boson condensation function of the
NG modes. In the monopole case [11], the mapping 7 is the one of the sphere
S2, surrounding the singularity 7 = 0, to SO(3)/SO(2) group manifold, with
homotopy classes of 72(S?) = Z. Again, the singularity is carried by the
NG boson condensation function. The same situation occurs in the sphaleron
case [11], provided one replaces SO(3) and SO(2) with SU(2) and U(1),
respectively.

To conclude let me state that phase transitions imply “moving” over uni-
tarily inequivalent representations, and this implies in general a non-trivial
homotopy mapping between the (z, 3) variability domain and the group man-
ifold. The invariance of the theory under the involved symmetry group then
leads to NG boson condensation with topological singularities. The conditions
for the formation of topological defects are then satisfied. This explains why
we observe topological defect formation in the process of phase transitions.
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In the case of the kink there are no NG modes. Nevertheless the topolog-
ically non-trivial kink solution requires the boson condensation function to
carry divergence singularity at spatial infinity.
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