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The variational strong-coupling theory of Hagen Kleinert is used to determine the
critical exponent « of superfluid helium. It is shown that applying the theory to
exp(a), a highly accurate value of « is obtained.

1 Introduction

The variational approach of Feynman and Kleinert [1] has been systematically
improved by Kleinert in Ref. [2]. It has been extended to field theory for the
determination of critical exponents in D = 3 dimensions in Ref. [3] and in
4 — ¢ dimensions in Refs. [4,5]. For a review, see Ref. [6]. Recently, it has
been shown that the theory is applicable for the determination of amplitude
functions and ratios [7].

Having learned variational perturbation theory directly from its inventor,
it is a pleasure to dedicate a contribution on this subject to him. More
precisely, I shall focus on the theoretical determination of the critical exponent
« of superfluid helium, and show that a negative « is obtained, already at the
two-loop level. Our choice of studying this comes from the fact it is probably
the best well-known measured quantity. It was obtained in a zero-gravity
experiment by Lipa et al. [8], who parameterized the specific heat as follows
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(we use the second of the references quoted in Ref. [8]):
Ax
ct = 7|1t|*‘1(1+D|1t|A+E|1t\2A) +B, t=T/T.—1, (1)
a = —0.01056 = 0.0004, 2)

with A = 0.5, AT /A~ = 1.04424+0.001, A~ /a = —525.03, D = —0.00687, E =
0.2152 and B = 538.55 (J/mol K). Apart from B, this parameterization is an
approximation to the Wegner expansion form

F= FiMX(l + ag[t]2° + ag2[t]*20 + ag 3lt]>A0 + - - -

+ a171|t‘A1 + a1 t|2A1 + a1’3|t|3A1 4. > 3)

with x a combination of critical exponents and F.y denoting the leading am-
plitude above and below T, respectively. Compared to this general Wegner
expansion, higher powers in A = A( have been neglected in (1), as well as
daughter powers A;,i > 1. This will be also the case in the present work,
where we shall take into account only one exponent A, related to the more
well-known critical exponent w by the relation A = wwv.

2 Model and Algorithm

The critical behavior of many different physical systems can be described by
an O(N)-symmetric ¢*-theory. In particular, the case N = 0 describes poly-
mers, N =1 the Ising transition (a universality class which comprises binary
fluids, liquid-vapor transitions and antiferromagnets), N = 2 the superfluid
transition in helium, N = 3 isotropic magnets (transition of the Heisenberg
type), and N = 4 phase transition of Higgs fields at finite temperature. The
field energy is given by the Ginzburg-Landau functional

H= [0 | 5(Ton) + guboh + L6372 (@)
As mentioned above, we shall restrict our analysis to the case of superfluid
helium, for which the field ¢p has N = 2 components. The subscript B
stands for bare. We shall work in the minimal subtraction (MS) scheme in
4 — ¢ dimensions with e-expansion. For this reason, the square of the bare
mass m% goes to zero at the transition (the critical value of the bare mass is
identically zero), linearly with the temperature: m% =t = (T/T.— 1), hence
the name “reduced temperature” for ¢.
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To save space, we shall not reproduce the whole algorithm of variational
perturbation theory reviewed in Refs. [6,7]. We sketch below only the main
points. Let us start with a function f whose expansion in terms of the bare
coupling constant is known up to a given order L:

L
f~fo@s) = figs (5)
i=0

with gp a reduced coupling constant to be defined later. Then, provided we
know that the function f goes to a constant as the bare coupling constant
goes to infinity, variational perturbation theory indicates that the value of
the function f at the critical point is given by

f1(gs = 00) = opty, | > fidls )3 (_ij/ ‘”) (=11 . (6)

Jj=0

This simple formula replaces the well-known but rather involved resumma-
tion procedure for the renormalized power series. In particular, for critical
exponents, the e-expansion of Eq. (6) reproduces the e-expansion obtained
using the renormalized theory (before resummation).

The operator opt,, is referred to as “optimization”, and has a particular
meaning: The even-loop orders are optimized by extrema (they may be min-
ima or maxima depending on the critical exponents to be investigated), the
odd-loop orders by turning-points, obtained by equating the second derivative
of (6) to zero.

We are now ready to determine the exponent « for superfluid helium. We
proceed in two steps. The first step (Section 3) is dedicated to two- and three-
loop orders, where we can calculate the strong-coupling limit limg,, . (95)
analytically. The second step is given in Section 4, where we shall present
numerical results up to five loops.

The starting point of our analysis are the five-loop calculations of
Refs. [9,10]. Working within the MS scheme means that only the poles in € are
removed. This allows us to identify the renormalization constants Z,,2, Z,,
and Zy which relate the bare and renormalized mass, coupling constant, and
field, respectively:

9 L2
Zy '

(7)

my =m
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Z
gB =1t Z—j%g, (8)
o5 = 2,/%6. (9)

In the MS scheme, the renormalization constants depend only on g, or, upon
inverting (8), on gg = gp/|m|. This statement comes from the identification
of the scale p with the renormalized mass |m| and setting D = 3, or € = 1.
At the critical point, the renormalized mass goes to zero: The critical theory
corresponds to the strong-coupling limit of the bare theory.
From these considerations and the relevant expansions for the O(2)-
symmetric theory taken from Ref. [6], we obtain
g=9gB— 13—05723 + %@33 - —[6017 +8?;84C(3)] g5
[420505 4 78432((3) — 5760((4) 4+ 36480((5)] _5
* 972 B
— [26929681 + 9514768¢(3) 4+ 92928¢(3)% — 1260960¢ (4)

=6
+8001280¢(5) — 912000¢ (6) + 3386880 (7)] 997;‘2, (10)
1T, 67T, [S1913+4272¢(3) + 2304C(4)]
a=3 QB+293 36 9B 648 9B
— [311381 + 46896¢(3) — 3520((3)> + 18492( (4)
=5
+ 12480 (5) + 15200 (6)] %, (11)

where we have redefined g and gp so as to absorb a factor 1/(47)2. To save
space, we have also written these expressions only for e = 1. We have however
checked that, by keeping e everywhere, the usual e-expansion of the critical
exponents would have been recovered. Taking the exponential of (11), and
reexpanding up to the fifth order, we have

exp() _ 5 809 _5  [99229 + 4272¢(3) + 2304¢(4)] _,
=1— 452 — —2
NG 9B+ 395 — 5598 T 648 9B
— [3788857 + 490320((3) — 35200 (3)* + 196440¢ (4)
=5
9B
+ 124800¢(5) + 152000¢(6)] 310" (12)

The aim of this article is to show that the strong-coupling limit of the critical
exponent « from the series (12) yields a much better result than the original
series (11).
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3 Analytical Evaluation of a up to Three Loops

Following the general procedure described in Refs. [3-7], the critical exponent
w of the approach to scaling can be extracted from (10) by considering its
logarithmic derivative. The result has been obtained analytically at the two-
loop level in Ref. [4] and at the three-loop level in Ref. [7]. Specializing to the
case of superfluid helium, the solutions read, with w = 1/(p — 1), and where
the subscript indicates the loop order,

=12, (13)

_ 50311+ 1152¢(3) _, /3[1039 + 18((3)] [62779 1 2638((3)]
T 2012907 — 3456((3)] [12907 — 3456((3)]

p3
2 1
X COS {gw + garcsec(O) , (14)

with

o 400 [62779 + 2688((3)]*/*
/3117 + 384C(3) {55818649 + 768((3) [~ 118163 + 15552((3)]}

Numerically, we have ps ~ 2.52982 and ps =~ 2.38683, to which correspond
we &~ 0.65367 and w3 ~ 0.721069.

Using (6) to two loops, together with (13), the strong-coupling limit of (11)
and (12) is

(15)

3

— 2 ~0.0428571 16

o = = , (16)
1 5

ay=5—In <§> ~ —0.0108256, (17)

respectively, from which it is clear that the strong-coupling limit of the direct
series (11) fails to give a negative value of « at the two-loop level, while the
strong-coupling limit of exp(«) leads to such a negative value. Moreover, this
value is extremely close to the experimental result (2).

The three-loop order is also determined analytically and confirms the two-
loop conclusion: Using (6) to three loops, together with (14) and (15), the
strong-coupling limit of (11) and (12) is

450097 + T7826p3 — 127218p% + 89883
B 916658

a3

~0.0363442,  (18)
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Table 1. Critical exponent w of the approach to scaling for different loop orders L.

L 2 3 4 5
pr | 2.52982 | 2.38683 | 2.36773 | 2.32803
wr, | 0.653671 | 0.721069 | 0.731141 | 0.752997

Table 2. Critical exponent « for different loop orders L.

L 2 3 4 )
ar from Eq. (11) | 0.0428571 0.0363441 0.0214116 0.0189176
ar, from Eq. (12) | —0.0108256 | —0.0116665 | —0.0110531 | —0.0116324

1 648337 + 56280ps — 931442 + 103203
a3 = — + In
2 654481
~ —0.0116664, (19)

respectively. The second result lies again very close to the experimental
value (2), whereas the direct evaluation would have led to a positive value.
The excellent agreement of the strong-coupling limit of (12) is confirmed by
the numerical five-loop calculation of the next section.

4 Numerical Evaluation of a to Five Loops

It is not possible to evaluate analytically the strong-coupling limit of a given
function above the three-loop order since the defining equation for p, obtained
taking the logarithmic derivative of (10) and applying the algorithm (6), is
higher than cubic. Nothing can, however, prevent us from calculating the
algorithm numerically. We have done it for the four- and five-loop orders. To
facilitate the comparison with the previous section, we recall also below the
numerical value of the second- and third-loop order.

With N = 2 and € = 1, we obtain for pr, and wy the values shown in
Table 1. Applying (6) to (11) and (12), together with the numerical values of
Table 1, we obtain for the critical exponent « results which are summarized
in Table 2. We see that the strong-coupling limit of «, as given by the direct
series (11), decreases, as expected, but is still positive at the five-loop order. A
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Figure 1. Critical exponent « of superfluid helium as a function of the loop order L. Thick
dots denote the exponent based on the strong-coupling limit of Eq. (12) while thin dots
are Shanks-improved results [12].

nontrivial extrapolation procedure, such as the one employed in Refs. [3.,5,6],
is needed.

The calculation of «, based on (12), gives negative results, not too far
from the experimental result. Moreover, the results seem to alternate around
a given value, see Fig. 1. An ordinary procedure for accelerating the conver-
gence seems to be applicable. In our case, it is tempting to perform a Shanks
transformation [12]. Denoting by a* the improved value, we can construct

2
% vy — a3

= —— — ° = _0.011312. 20

% as + oy — 2a3 i (20)
9

ol = W T 011351, (21)

a3 + as — 20y

In Figure 1, we have plotted the values given in the last raw of Table 2 as
well as the improved values of Egs. (20) and (21).

It would be extremely interesting to obtain the six-loop order of a.
Then a third Shanks-improved point «f could be obtained, and an iter-
ated Shanks transformation could be performed, allowing to obtain o** =
[t — (a)?]/ (o) + ai — 2a). This would probably lead to an extremely
precise value of a. Due to the large number of Feynman diagrams to be
evaluated, this task is, however, not manageable at present using available
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techniques, and calls for new ideas.

Another interesting work would be to check if the Borel resummation
of the e-expansion of exp(a) would lead to a similar improvement of the
convergence as variational perturbation theory.

5 Conclusion

In this contribution, we have applied variational perturbation theory to the
determination of the critical exponent « of superfluid helium from five-loop
e-expansions. Previous studies were based on Borel resummation [11], or on
variational perturbation theory together with a suitable extrapolation proce-
dure [3,5,6]. The approach followed here was based on a full self-consistent
calculation, using the same loop order for the critical exponent of the approach
to scaling w as for the exponent « itself. For the direct resummation of «,
this has proven to be of less accuracy than the extrapolation approach [5,6].
However, we have shown here that an appropriate choice of the function of
a, in this work we have chosen expla(gp)], to be evaluated in the strong-
coupling limit gp is able to drastically improve the convergence. Our work
does not solve the question of which function of a critical exponent gives the
fastest convergence of strong-coupling theory, nor have we checked whether
the exponential function can be used to obtain the other exponents more ac-
curately than before. The present note may, however, be seen as a first step
of a program towards optimizing the functions of the critical exponents to be
evaluated.
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