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We transform the five-dimensional hydrogen atom into eight oscillators in a para-
metric time by adding three new degrees of freedom and by using the Hurwitz
transformation. The path integration is then performed over the holomorphic co-
ordinates of the oscillators. The end-point integrations over the extra three degrees
of freedom give the coherent states of the five-dimensional hydrogen atom.

1 Introduction

In 1926, Schrodinger constructed the coherent states for the harmonic oscil-
lator [1] and later some authors searched to obtain the coherent states for the
hydrogen atom [2-7].

In 1979, Duru and Kleinert performed the path integration for the hy-
drogen atom [8]. They made use of the SO(4) dynamical symmetry of the
system and transformed the three-dimensional Kepler problem into four har-
monic oscillators in a new parametric time by using the Kustaanheimo-Stiefel
transformation [9].

Recently, we discussed the path integral for the hydrogen atom in holomor-
phic coordinates a; and a,j instead of the physical coordinates # and 7 [10].
Since the coherent states are the eigenstates of the lowering operator a;, we
showed that the kernel between the holomorphic coordinates governs the time
evolution of the coherent states. We also discussed the time evolution of the
expectation values of () and showed that they satisfy the Kepler laws and
that the dispersions also oscillate with the frequency of the elliptic orbit.
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The transformation z1 +ix2 = (u1 + iuz)Q maps the two-dimensional Ke-
pler problem into two harmonic oscillators [11]. The Kustaanheimo-Stiefel
transformation maps the three-dimensional Kepler problem into four os-
cillators and this transformation has been used to derive the path-integral
solution of the Kepler problem. Cornish discussed the complex form of the
Kustaanheimo-Stiefel transformation and showed that it can be written as
x = u? by using quaternions, without using the nonholonomic constraints for
the Kepler problem [12].

The aim of this study is to generalize the path-integral method over the
holomorphic coordinates of the 5-dimensional hydrogen atom. In order to
generalize the path integration methods for the three-dimensional hydrogen
atom we will use the Hurwitz transformation which maps the 5-dimensional
Kepler problem into 8 harmonic oscillators [13]. In Section 2 we discuss the
mapping between the 5-dimensional hydrogen atom and 8 harmonic oscilla-
tors and derive the Lagrangian of the system in holomorphic coordinates. In
Section 3 we solve the path integral over the holomorphic coordinates, and
derive the coherent states of the five-dimensional hydrogen atom in spherical
coordinates.

2 Classical Kepler Problem in 5D

The action of the 5-dimensional Kepler problem is

t dz  (p-p k
= _'. _ _ 1
4 /t dt {p dt <2m 7“)} ’ M

a

where k = €2, and p, Z, and r are

1
ﬁ: (p15p25p37p4;p5)5 f:($1,1‘2,£b3,174,$5), T:[I'.’IJ]Q.

This system has 15 conserved quantities: 10 for the angular momentum
€ijkT;pr and 5 for the Runge-Lenz vector A;. To use this dynamical sym-
metry we add new degrees of freedom to the free-particle Lagrangian. Then,
Eq. (1) becomes

A:/dt [pA-‘ZU—tA—<pA2;fA—§>}, 2)
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where

g = (Z,x6,27,28), pa = (D,Ps:P7.Ps) -

We introduce a new parametric time A and the dimensionless variables X 4

and P4 according to

dt
-

T

1

Xa = (2m|po|)? za,

Py = (2m|po|) 2 pa.

Then the action becomes

Ap
A:/ d\
A

a

dx dt
—2 4 (—po)

P _
SN X o2m

The complex form of the Hurwitz transformation is

dX, — %d (X1 +iXa) = deso + Eydéc — denth — Endes,
0, = %d(xs LX) = dEhED + E3dep + dEp€l + Endel,

dxX, %d(xs, +iXg) = E4dEY + EdEl — Endéc — Ebden,

o %d()@ 4 iXs) = Epdén + Eadtn — Epdéc — Eodin,
where

&a (u1 +iug), &= (ug + iuy),

_ 1 1
V2 V2
_ 1 , 1 .
éc—E(U5+ZU6), ¢p —E(w—l—zug).

In this transformation Xg, X7, and Xg are non-holonomic.

1
2 2
_2mIp)® p(pypy 1) k]
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The transformations for the momenta are

Pey =V2[Pyy &+ Puy &b + Paz €4+ Po, €8],
Py = V2[~Pa, € + P, € + Po; € — Pay €a].
Pfc:\/i[Pwa £Z+ng; € — Pu. &6 — Puy §D]7

Pep = V2 [~Pps &+ Po, &4 — P, €p + Po, &c] )

By using Eqgs. (6) and (7) we write the action as

Ay
A= /d)\
Aa

where w = (|po] /2m
complex spinors

dX a dPy dt
(PA‘W—W'XA) —poa—w(Png—i-ng)-Hf . (8)

)1/ 2, and § and P are the following four-component

€a P+,

1| s 1| P

= — P = — B
¢ 2| & ' ¢ 2 Pgé
92 Pey,

Here ¢ and P: are defined as

=), P=[)]

The coherent states are the eigenstates of the lowering operators of the har-
monic oscillators. For this reason we define the holomorphic coordinates of
the eight oscillators:

1 /gt 4 1 , ,
0=5 (e ) @ =glem et —in). ©)

In Eq. (9) @ and a' represent eight-component spinors. Then the Lagrangian
of the oscillators becomes

1 (dat da dt
L=—(=Zg—-ad=)—p—= —wal 1
2i<d)\a ad)\> PO walatk, (10)
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where w a'a is the Hamiltonian of the eight oscillators in the parametric time
A. The value of the parametric energy is k.

3 Path Integration

The kernel of the eight oscillators between the holomorphic coordinates a, =
a(Xa) and af = af (\p) is

D (— Dt Da'Da
K (alvtwaaata) :/ ( pO) ¢ . Sa ezA, (11)
2m (27i)

where A is the action of the system and where we use h = 1. The relation
between the physical kernel K (&, tp; T4, tq) of the 5D Kepler problem and
K(az, ty; ag, ty) is

K (Zy,to; Ta,ta) :/du6 (b) duz (b) dus (b)/dAK (az,tb;aa,ta).

We evaluate K (az,tb;aata) by using the method given in Ref. [14]. The
result is

K (az, t; aata) = exp {aZe%“’(Ab*)‘“)aa —i(dw — k) (N — )\a)] . (12)

Since the Hurwitz transformation is double-valued, the kernel is symmetric
with respect to the end points:

1 ) )
K (az,tb; aata> =5 {exp [aZe_M(’\”_’\a)aa] + exp [—aZe’“(Ab_A“)aa}}

w e~ i 4w—k) Ao—Xa)

K (a' (\);(A\q)) is the matrix element of the evolution operator between
at(\) = a', a()\,) = a. It gives the time evolution of the eigenstate of the
lowering operator a in parametric time:

K (a,T N)sa)=la(N) = % [exp (aTe™) o+ exp (fa,Tefi“’)‘) o . (13)

We expand the exponential in Eq. (13) into the power series of a;r:

ol _1\niteetns
la(N) = Z <1+( 1)2 )
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" @11)'1__, (a8)|864¢w(n1+~~+ns)7 (14)
Vny: VvV ng:

where |n;) is the energy eigenstate of the ith oscillator.

The coherent state of the five-dimensional Kepler problem is obtained by
integrating over the final values of the additional free particle coordinates
Xe (b), X7 (b), and Xz (b). These integrals are performed in spherical coor-
dinates. We represent the complex coordinates £4, B, £c, and ¢p in terms
of spherical harmonics as

€a = lu|cos= (D__D" _+D_,D ),

(
¢g =|ulcos= (-Dy_D' =D, D, ),

&o = |ulsin

M|CDl\3|®1\3|G)l\:J ©)

(DyyD'_ =D D),
¢p = ulsin= (Dy_D" _—D__D, ),
where D, and D!, , are
(%) / (2)
D'mm’:Dm/27m//2(¢70:¢)a Dn Dn/Qn’/Q( :ﬁaﬁ/)'
Then we can write the (¢, f‘L!a (A)) as

<§7 E]L!OZ ()\) > = 67‘§‘2+\/§(§a+§’r&¢)70_cﬂ (15)

where a and a! are the complex spinors

a1 — iy a3 — i o — iog a7ia8)
b)

“‘(“—’ﬂ"”"‘”‘( 2 v v N

o aq + 1o

b B+ . 1 as + iy
al = = — .

T+ V2 | as +iag

04 a7 +iag

The expressions « - ¢ and &1 - af are

a-&=|ul (A_D_ +B,D’+_),
af &' = |u[ (AyD__" + By D} "),
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A =|(a=D__—-p_-Dy ) COS% +(y-Diy +d_D; )sin %} ,

B =|(a—D_-_—-p3-D;) COS% +(—v-Dyy—96_D__)sin %} ,

(C) (C]
A+ = (a+ — Dif — ﬁ -+ Di*) COS 5 =+ (*’Y+Di+ -+ 5+D17) sin 5:| s

o . O
B+ = (a+Di+ — 6+Di+) COS E + (—’Y+D*_+ — 6+D*__) Sin E:| .

We substitute - € and af - ¢F into Eq. (15) and expand the exponential into

: / / / * / *
power seriesof D” , D', , D" ", and D! ":

<§’£T|a> — e*\f\Q —a-af i |u|(n1+n2+n3+n4) (Dl,,)nl (D;i)n2
ni;...,na=0
(A" (B (A™ (BY™ ) o oo
. nilnalnz!ng! (D7) (D7)

Using the following identities

nr n1/2
(DL,) ' - D7n1/2,7n1/2 (aaﬁa’)/)a
(D)™ = D e (@ B7).

we combine (D'ff)n1 and (D'+7)n2 as

/APy P2 _ /M1t N2 Mi—N2M1 N1 N2 N2
(D)™ (L) _< 2 2 27 2’2+2>

(n14+n2)/2 N
XD ) /2,y a2 (5 557)

Then (£, £|a) phys becomes

o0 |u|(n1+n12+‘n3+n4)

(&€ [a) e = € 1Pl 3

ny,n2,
ng,ng4=0

(A)™ (B-)"™

nl'n4'

ny+ng Ny —MnNa| N1 N1 N2 n2>

ns ng
(A (B (T T T

— 1
X<@ _n3 na E‘ n3+n4;_n3 n4> /dad(COSﬁ)d“/

2’7 27272 2 2 3272
*(ng+nq)/2 (n1+nz2)/2
XD—(T:3+”44)/2:—(”3—W4)/2 (a’ B, 7) D—(lfll+2n2)/27—(n1—n2)/2 (a’ s, 7) : <1

6)
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We perform the «a, 3 and 7 integration. The result is

= A_A)" (B_B.)"™
<€’£T’a> _ eﬂ&ﬁfoﬁa Z |u|2(n1+n2) ( +) ( - +)
phys o (77,1!77,2!)
ny + na ny — N2
X ,—
2 2

2
ni ny M2 N2
-2,z 17
e e ()

where A_ A, and B_B are linear functions of D} . (¢,0,7) and cos©.
Then the final expression of the coherent states is a function of D? . (¢, 0,) ,
r(mtn2) and cos O.

4 Conclusion

We have used the mapping between the five-dimensional hydrogen atom and
eight oscillators and quantized the latter via path integration over holomor-
phic coordinates. The kernel governs the parametric time evolution of the
eigenstates of the lowering operators and corresponds to the coherent states
for the harmonic oscillators. The contribution of the extra degrees of freedom
is eliminated by integrating over their final points. We expressed the state
functions of the oscillators in terms of the spherical harmonics Dir{,i, (¢, 0,1)
and D:ﬁ (e, B,7) and performed the integrals over «, 3 and 7 by using the
orthogonality properties of the D functions. The final expression of the co-
herent states depends on five physical coordinates of the hydrogen atom.
The Kustaanheimo-Stiefel transformation can be written as x = u? be-
tween the 3-component z and 4-component u quaternions. One of the open
problems is to write the Hurwitz transformation in the same way as the
Kustaanheimo-Stiefel transformation in terms of the octonions without us-
ing the additional degrees of freedom. We used the path integration over the
c-number holomorphic coordinates a and af, instead of z and p. Another open

problem is to define the path integrals over the quaternions or octonions.
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