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We compare metric theories to bi-metric theories, to theories with teleparallelism,
and to metric-affine (Einstein-Cartan) theories of gravitation in order to discuss
the implications arising from the equivalence principle for the related space and
energy problems.

1 Introduction

All classical local geometric theories of gravitation are based on the assump-
tion that the space-time manifold is primarily or can secondarily be en-
dowed with a Lorentz metric, i.e. with a symmetric tensor field of signature
(+,—,—,—). This is even true for purely affine theories such as the Einstein-
Schrédinger theory [1,2], where the geometry is specified by a connection as
basic variable, while the metric is only of secondary importance. In the final
analysis, a metric structure is always needed in order to arrive at a theory
which is physically interpretable. Only such a structure allows us to introduce
the notions of spatial distance, time interval, angle, and relativistic velocity.

As a consequence of the principle of equivalence, however, the metric has
to be related to the gravitational field. In contrast to the special-relativistic
approach, it cannot be introduced a priori, but has to be specified in accor-
dance with the other unrenouncable geometric structure, the connection. In
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other words, a theory satisfying the principle of equivalence has to be estab-
lished in such a way that it solves the so-called space problem (see Refs. [3,4]).
First of all, this means to find a gravitational dynamics that does not clash
with the “kinematic” conditions ensuring the compatibility between metric
and connection.

As far as the kinematic part of the Weyl-Cartan space problem is con-
cerned, it was shown by Schrédinger [2], that the relationship

Vigik =0 (1)

between the metric g;; and the connection I‘Zl defined by V; is a sufficient
condition for their compatibility.?

In view of the dynamic aspect of the space problem, there exists a further
argument in favor of Eq. (1). It says that the coupling of spinorial matter to
geometric structures which are related to gravitation requires to assume the
validity of Eq. (1) [6].” Indeed, it follows from (1) that

= {Z:z} + kal} + gimgkrr[rlm] + gimglrr[rkm] = {;Cl} + K, (2)

where {}d} is the Christoffel connection and K ]il the contorsion which is anti-
symmetric in the first two indices, K;x = —Kg;. In the anholonomic version,
Eq. (2) reads

Ap =g+ K4, (3)
Vikt = —Vkil, Kikt = —Kpar (4)

where 74 g; are the Ricci rotation coefficients, v g; = h*j, hp uk, and the last
expression in Eq. (3) is defined as K#p; = h*;hg* K} ; both are antisymmet-
ric in the first two indices. As a consequence, the anholonomic components
of the internal connection are antisymmetric in the first two indices, too:

Nkt = —Agar - (5)

Exploiting the one-to-two correspondence of the Lorentz group O(3,1) to the
unimodular group SL(2,C), this recovers the usual spinor formalism, where

aFor physical reasons, Einstein [5] considered Eq. (1) even as a necessary condition.

bBy means of another line of arguments, this was also shown in Refs. [7,8]. Even more,
it was demonstrated there how the usual spinor formalism can be generalized for the case
that the nonmetricity is of the Weyl form. We shall confine ourselves to spaces with a
vanishing nonmetricity. But all our arguments given in this paper can be generalized to
spaces with a nonvanishing Weyl nonmetricity, i.e. to semi-metric spaces.
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Yap and 7y, ; are the “metrics” in the spin spaces:

YaB = —VBarVapg = ~Vgar Vabil = Vapr = 0, Aaﬁl = AﬁalaAdgl = ABM . (6)

These conditions, here justified with regard to a possible gravitational dy-
namics, must of course be recovered or, at least, not be violated by the full
gravitational dynamics.

2 Metric Theories

In metric theories the space problem is solved a priori by assuming a Rieman-
nian space-time, i.e. by assuming a four-dimensional manifold with a Lorentz
metric, where the connection given by the metric and their first derivatives
satisfies (1) identically. In this case, the field equations for the metric cannot
conflict with (1). Then the free gravitational Lagrange density is formed from
9ir and Oy gik

Ly = L (gir: O19ik, 010mYik ) (7)

while the matter Lagrange density depends on both the gravitational and
matter variables, g;r and ¢(Y); imposing, as an implication of the principle of
equivalence, the principle of minimal coupling, one generally has

Lm = Lm (gikv algik; Qb(A)a al¢(A)) . (8)

The Euler variation of the action integral

I= /(Lf + 2kL,y, )d*z (9)
by the matter field provides the matter field equations
oL,,
W =0 (10)

and by the metric the gravitational equations
Gik = kP , (11)

where the Einstein tensor is defined by

5Ly

Gir = Sqik
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and the metric energy-momentum tensor of matter reads
2 0L,
Vg dgt

Furthermore, assuming that all field equations are satisfied, one obtains [9],

Py, (13)

S L+ (LE™) m =0 (14)
with 6z* := £, the Lie differential 6*¢** of ¢**,
5*!]ik _ ,(]Skfi,s +gisfk,s (15)

and the corresponding Lie differential §*¢(4) of ¢(4). For & = o = const.
Eq. (14) yields the Noether identity

1 ,
(Pﬂc + %tik> L= ViPE =0, (16)

where t;* is the gravitational energy-momentum pseudo-tensor. This equa-
tion is equal to the contracted Bianchi identities when calculated via the field
equations (16).

Following Lorentz [10], one can read the field equations (11) as the state-
ment that the total metric energy-momentum density of matter and gravity is
equal to zero. That such a reading of (11) has a physical meaning was shown
for Einstein’s GRT, where Ly = /—¢R, and for fourth-order gravitational
equations, where Ly = /=¢(R + aR;xR* + BR?) [11,12]. For the recent
development of the topic see Ref. [13] and the papers quoted therein.

Purely metric theories are insofar physically completely satisfying as they
guarantee the following three points: (i) they solve the space problem; (ii)
they are in agreement with the principles of equivalence and general relativity;
(iii) their “conservation” laws given by Noether’s theorem follow, via the field
equations, automatically from the Bianchi identities. Otherwise, and that is
their disadvantage, as a matter of these principles, they do not allow for the
existence of a genuine law of energy-momentum conservation.

3 Bi-Metric Theories

Bi-metric theories have in addition to the Riemann-Einstein metric gz, a
second metric g;,. Such theories go back to ideas of Rosen [14], Band [15],
and Papapetrou [16], but their satisfying elaboration was only given by
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Kohler [17,18].° In this theory, the Weyl-Cartan space problem is solved
in the same manner as in the uni-metric theories discussed above (both met-
rics ¢;, and g, are presupposed to satisfy Eq. (1)). And, even more, since
the second metric g;;, is assumed to be a pseudo-Euclidean one, one has 10
Killing vectors such that also the Helmholtz-Lie space problem is solved.

Corresponding to the two metrics, there exist the two (Riemann-
Christoffel) connections I'y, and ﬁd, where the latter vanishes in pseudo-
Cartesian coordinates. Their difference is a tensor pj, describing the gravi-
tational field such that the connection I'}; is the sum of the inertial field T,
and the gravitational field p¢,:

T =Tk + ' - (17)
Kohler specified the free Lagrangian as
Ly = Ly (9ik: OGis Tog» 0Tig,) + Lim (i Aigin, &0, 010 (18)

such that, as in the above uni-metric theories, the metric-energy-momentum
tensor fulfills again the dynamical equation with respect to I'%:

VP =0. (19)

But now, due to the existence of the second metric, this can be rewritten as

Vi (@(Pik + tik)> =0, (20)

where V is the covariant derivative with respect to f;l, g is the determinant of
gik, and g the determinant of §;;.. In contrast to t;* in Eq. (16), the expression
t;* arising in Eq. (20) is a tensor under general coordinate transformations.
The variation of Eq. (18) by g;x provides 10 field equations, while its
variation by g;, leads to four additional equations. The latter ones can be
interpreted as coordinate conditions soldering the two metrics; they are equiv-
alent to Eq. (19). Thus, in this theory the dynamical Eq. (19), representing
a conservation law according to Eq. (20), is no implication of the Bianchi
identities and the field equations. This is the price one has to pay for the
formulation of differential laws of conservation [19]. Except for this point,
one finds the same situation as in the uni-metric theories considered above.

°See also Refs. [19,20].
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4 Theories with Teleparallelism (Einstein-Mayer-Type Theories)

Theories with teleparallelism consider the tetrad field h*;(z!) given by the
coframe field h* = h#,;dz" as basic quantity; the metric is a secondary concept
defined as

gir =naph™ih®y, (21)

with n = diag(1, —1, —1, —1). Since the h*; are assumed to be fixed by the
gravitational field equations, they define a teleparallelism in the Riemannian
space. Thus the Weyl-Cartan space problem is solved in the same way as in
GRT.

Let us start now from a Weitzenboeck Lagrange density which is a scalar
density with respect to coordinate transformations but not invariant under
local Lorentz transformations rule. One finds here a restricted invariance,
namely an invariance with respect to global Lorentz transformations rule. To
discuss the points in this paper under consideration we shall confine ourselves
to the Einstein-Mayer class of Lagrangians [21-26]

Ley = V=gR + ahFaiy, FA%* + bh ™ (22)

where h = det(h?;) = /=g, R = ¢"*Rj;, is the Ricci scalar, a and b are
numerical constants, the ¢4 are defined as ¢4 = h* A47™;mm, and the Fyu;, are
Cartan’s anholonomy objects

Faik = haix — hari = ha'(vik — i) s (23)

with the Ricci rotation coefficients ~;p = hAihAk;l. The Lagrangian (22) lies
on the basis of Mgller’s tetrad theory of gravitation [27].4 (From the viewpoint
of a unified gravito-electromagnetic theory in the sense of Einstein’s program
of 1929, it is also discussed in Ref. [29]; however, in contrast to Einstein’s ap-
proach, there, like in Mgller’s theory, an additional matter Lagrangian is in-
troduced.) For historical reasons, we shall call the Lagrangian (22) “Einstein-
Mayer Lagrangian”, while the tetrad equivalent of the Einstein-Hilbert La-
grangian will be called “Mgller Lagrangian”. (For other metric-teleparallel
theories, see, e.g. Kopczyniski [30], Hayashi and Shirafuji [31]).

Now, in the anholonomic (Einstein-Cartan) representation of the space-
time structure the reference systems, i.e. the “tetrads” h4;(z!), are the grav-

dIn order to remove singularities from the theory of gravitation, later Mgller [28] also
introduced Lagrangians quadratic in the Weitzenboeck invariants.



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

Metric and Connection: Kinematic and Dynamic Solutions . .. 691

itational field variables. From the standpoint of the theories here under con-
sideration, Einstein’s GRT is a degenerate case, now following from (22) for
a=b=0.

In Refs. [26,27] one assumes for matter a Lagrange density depending
only on the tetrads via the algebraic combination (21). This leads to the field
equations

10Lgm
h ShAi

hAk = —rT5, (24)

with

ShA kT TShAk

The 10+6 equations (24) and (25) determine the 16 components of h*; up
to constant Lorentz rotations of the tetrads. Together with the Noether
identities

i =0. (25)

Hliz = Flcl;i - F“%lk ) (26)

where Hy, = Eijp + Oy and Fjp = Oy, and together with Eq. (25) this
leads again to the dynamical equations (16).

As argued in Refs. [32,33], in a Riemannian theory with Einstein-Cartan
teleparallelism one finds quite a satisfying situation for the gravitational en-
ergy. One has a Lagrangian of canonical structure that is coordinate-covariant
but, like Mgller's Lagrangian, not covariant with respect to local Lorentz
transformations rule. Thus the Lagrangian leads to field equations which
do not satisfy the general principle of relativity. These are equations fix-
ing the 16 components of the tetrads h*; instead of their 10 combinations
git. = h*h zp, and the Hamiltonian H is given by the 00-component of the
energy-momentum complex (which is a tensor with respect to the group of
global Lorentz transformations rule lying on the basis of this theory).®

Similarly to the Kohler case, the dynamical equations of the theory with
teleparalellism are not simply an implication of the Bianchi identities and
the field equations, now given by Eq. (24). They result from the additional
conditions (25) which specify the reference tetrads instead of the coordinates.
Again, this is the price that one has to pay for having differential laws of

°In Refs. [32,33] such theories are considered as models realizing the local version of
the Mach principle, according to which the cosmic matter distribution fixes the reference
system.



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

692 H.-H. von Borzeszkowski and H.-J. Treder

conservation. Or better, this is a part of the price, for, the other part is that
one has even to sacrifice the local Lorentz covariance and, thus, the general
principle of relativity.

5 Einstein-Cartan Theories

The more general case is considered in Ref. [34], where the matter Lagrange
density depends independently on the 16 tetrad and the 64 connection compo-
nents. Such a theory with teleparallelism can be considered as a constrained
Einstein-Cartan theory which generally is formulated in spaces with nonva-
nishing curvature and torsion. Therefore, Einstein-Cartan theories can be
regarded as a straightforward generalization of the Einstein-Mayer-type the-
ories. Thus, let us turn to Einstein-Cartan theories.

As to the general principle of relativity, such theories resemble the purely
metric theories: they are covariant under local Lorentz rule and general co-
ordinate transformations. A great similarity is also found as to the energy-
momentum problem. Indeed, starting from a Lagrange density of the form

Lic = Ly(h*;, AYB)) + kL, (b4, A28, 0 9,0, (27)

where the tetrad and the connection fields, h and I', are regarded as in-
dependent variables, the Euler variation of ®(4), h4,, and I'*B; yields the
matter field equations and the following gravitational equations (h denotes
the determinant of h*;),

SL; . 6L,
~ A = KhT4" = K(ShAi (28)
and
5Ly R
—TABZ = K'/hTAB = Iﬁ)m . (29)

The source term in Eq. (28), T4¢, is the canonical energy-momentum tensor,
and the source term in Eq. (29), Tap?, represents the canonical spin-angular
momentum tensor of the matter field. Therefore, as in GRT and its uni-
metric generalizations, Eq. (28) can be read as the statement that the total
energy-momentum density is equal to zero. (However, this statement does
not concern the total metric, but the canonical tensor.)

As to the fact that one has the same symmetries as in GRT, there does
not exist a differential law of conservation. There exist dynamical equations
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which are a generalization of Eq. (19), and, for the class of theories under
consideration in Refs. [35-38], it turns out that, provided the field equations
are fulfilled, the generalized dynamical equations are again an automatic by-
product of the Bianchi identities which hold in Riemann-Cartan space [39].

For spinless matter these generalized dynamical equations reduce to
Eq. (19). This implies that spinless point particles move along geodesics
of the Riemann-Christoffel connection, but not along autoparallels. Hagen
Kleinert [40,41] considers this fact as an objection to the proposed class of
Einstein-Cartan theories.

After mentioning a series of similarities between GRT and Einstein-Cartan
theories, it should finally be stressed that there is a great difference as to the
Weyl-Cartan space problem. The point is that in Einstein-Cartan theories the
validity of Eq. (1) cannot kinematically be guaranteed. To solve the space
problem now means to solve it by using an appropriate dynamic starting
point. That is, one has to look for a Lagrangian such that the solutions of
the corresponding gravitational field equations (28) and (29) satisfy Eq. (1),
i.e. they yield solutions satisfying the constraints Aap; = —Apa; (or Apg =
Agar). From this point of view, for example, the Einstein-Hilbert Lagrangian
V/—gR, viewed as a functional of the metric and an arbitrarily generalized
connection, has to be excluded from the consideration [42]; it leads to

2
Vigin = —2gisL'fy + g(ri!]kl +Tkgir) (30)

with the torsion vector I'; = T'%..

6 Conclusion

Physically interpretable theories need a metric. However, due to the princi-
ple of equivalence, the metric cannot be presupposed a priori. Taking this
fact into consideration and rejecting any restriction of the principle of gen-
eral relativity, one is necessarily led to purely metric theories like GRT or to
Einstein-Cartan theories. Both suffer from the fact that the only energetic
statement one can make consists in that the (metric and canonical, respec-
tively) total energy-momentum density vanishes. As to the space problem,
metric theories seem to be less problematic since for them it can be solved
kinematically, while for Einstein-Cartan theories it has to be solved dynami-
cally.
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