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The full analytic reevaluation of all diagrams up to five loops of the O(N)-
symmetric ¢*-theory led to the correction of the e-expansions of the B-function
and the anomalous dimensions. These expansions were ideal testing grounds for
various resummation techniques. Especially Hagen Kleinert’s strong-coupling ap-
proach led to a reformulation of the renormalization group theory in terms of the
bare parameters.

1 Introduction

The scalar quantum field theory with ¢*-interaction correctly describes many
experimentally observable features of critical phenomena. Field theoretic
renormalization group techniques [1] in D = 4 — ¢ dimensions [2-4] combined
with Borel resummation methods of the resulting e-expansions [5] lead to
extremely accurate determinations of the critical exponents of all O(NN) uni-
versality classes. The renormalization group (RG) functions of the ¢*-theory
were first calculated analytically close to four dimensions using dimensional
regularization [6] and the minimal subtraction (MS) scheme [7] in three- and
four-loop approximations [8,9]. This calculation was extended to the five-loop
level [10-12] after the ingenious invention of special reduction algorithms for
the integrals [13,14]. The critical exponents were obtained as e-expansions [3]
up to the order €°. These expansions have to be evaluated for € = 1 in order
to obtain results in three dimensions.
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When the analytic five-loop calculation of the S-function and the anoma-
lous dimensions was completed in 1983/1984, Hagen Kleinert had the idea to
use the new algorithms to automatize the calculation of Feynman diagrams
and their e-expansions In 1989, this idea then became a thesis project for
my colleague Joachim Neu and me. Our first step in this rather lengthy
project was an independent recalculation of the five-loop perturbation series

using the same techniques [10,13]. Unfortunately, we could not reproduce

the results for some of the diagrams. Hagen Kleinert sent us to Moscow to
discuss our results, a trip which led to the discovery of errors in six of the
135 diagrams and to our first publication [15]. In the subsequent years, the
perturbation expansions for the critical exponents were used to study old
and new resummation methods leading among other results [16] to Kleinert’s
strong-coupling approach to the renormalization group [17,18].

Here, we will summarize the five-loop calculations [15] and then present
the strong-coupling approach to resum the e-expansion of the critical expo-
nents [19]. Details can be found in our textbook [20].

2 Five-Loop Expansion of the ¢*-Theory

We consider the O(N)-symmetric theory of N-dimensional real scalar fields
¢p with the Lagrangian

1 1 AB 2

Lp(2) = 5 06p(@)P+5mboh@)+@m? 32 [65@)]°, (1)
in Euclidean space with D = 4 — ¢ dimensions. The bare (unrenormalized)
coupling constant A\g and mass mp are expressed via renormalized ones as
Z g2
Z>

Zy
AB = (5 Zgg = us—(ZQ)Qg, mg = Zyam?® =

Here 11 is the unit of mass in dimensional regularization and Zy, Zs, Z,,2, Z,

m? . (2)

are the renormalization constants of the vertex function, propagator, mass,
and coupling constant, respectively, with Z4» being the renormalization con-
stant of the two-point function obtained from the propagator by the insertion
of the vertex (—¢?) in all possible ways [9]. In the MS-scheme the renormaliza-
tion constants do not depend on dimensional parameters and are expressible
as series in 1/e with purely g-dependent coefficients:

— Zik(g)
Zi=1 Zik9) 3
P2 ©
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where i = g,m?,2,4,$>. The B-function and the anomalous dimensions en-
tering the RG equations are expressed in the standard way as follows:

dg 0 Zgn
e = — — 4
_dlnm __danm2 _1 0 Zm2 1 (5)
m = dlnp /\B_ d In p? — 39 dg
danl 1 8ZZ1 . 2
i = = —— e B :2,4, . 6
7i(9) dnel, = 2o i ¢ (6)

To determine all RG functions up to five loops we calculated the five-loop
approximation to the three constants Z3, Z4, and Z,=. The constant Z> con-
tains the counterterms of the 11 five-loop propagator diagrams. The constant
Z, receives contributions from 124 vertex diagrams. Of these diagrams, 90
contribute to Zy2 after appropriate changes of combinatorial factors.

We have used the same methods as in the previous works [10,13] to calcu-
late the counterterms from the dimensionally regularized Feynman integrals,
namely, the method of infrared rearrangement [21], the Gegenbauer polyno-
mial z-space technique (GPXT) [14], the integration-by-parts algorithm [22],
and the R- and R*-operations [23]. These methods allow to proceed with
the calculation of massless integrals with only one external momentum. The
renormalization is carried out recursively and for each Feynman diagram sep-
arately. The higher-order diagrams are then algebraically reduced to one-loop
integrations by the integration-by-parts algorithms. Restrictions of the appli-
cability of these algorithms have so far prevented the complete automatization
on a computer.

Some of the diagrams do not follow the general scheme. Three diagrams
were calculated analytically first [11] by using the so-called method of unique-
ness, later the same results were obtained by using the Gegenbauer poly-
nomials in z-space together with several non-trivial tricks [24]. A detailed
description of the calculations including the diagramwise results is presented
elsewhere [20].

The analytic results of the five-loop approximations to the RG functions
B(9), v2(g) and v (g) are expansions in g with N-dependent coefficients. The
number ¢ appears only once in the g-function. These RG functions can now
be used to calculate the e-expansions of the critical exponents which describe
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the behavior of a statistical system near the critical point of the second-order
phase transition [4]. Close to the critical temperature T = T¢, the asymptotic
behavior of the correlation function for x| — oo has the form

e IxI/¢
TP v
Close to Tc, the correlation length ¢ behaves for 1 =T — T — 0 as
E~T17"(1+const- T +...). (8)

The three critical exponents 1, v, and w defined in this way completely specify
the critical behavior of the system.

The behavior (7) and (8) is found for the ¢*-theory if y — 0 as T — T¢.
In this limit the coupling constant g approaches the so-called infrared-stable
fixed point which is determined by the condition

Blg®) =0, H'g") = [06(9)/0g],_,. >0 . (9)
The fixed point ¢g* is determined as an expansion in &:
oo
g = Zg(k)sk . (10)
k=1

Approaching the fixed point, the renormalized mass goes to zero such that
& = 1/m behaves like (8). The resulting formulas for the critical exponents
are

n=2%(g"), 1/v=2[1-y.(9")], w=7pF(g"), (11)

each emerging as an e-expansion up to order £° [15,20].

It is known that the e-expansions are asymptotic series, and special re-
summation techniques [5,25] should be applied to obtain reliable estimates of
the critical exponents. One such technique will be described now.

3 Strong-Coupling Theory

In 1998, Hagen Kleinert has developed a new approach [26,27] to critical
exponents of field theories based on the strong-coupling limit of variational
perturbation expansions [28,29]. This limit is relevant for critical phenomena
if the renormalization constants are expressed in terms of the unrenormalized
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coupling constant since the infrared-stable fixed point is approached for infi-
nite gp: g(gp) — ¢* for gg — oco. This idea has been applied successfully to
O(N)-symmetric ¢*-theories in three and 4 — ¢ dimensions [17-19], yielding
the three fundamental critical exponents v, n,w with high accuracy.

From model studies of perturbation expansions of the anharmonic os-
cillator it is known that variational perturbation expansions possess good
strong-coupling limits [30,31], with a speed of convergence governed by the
convergence radius of the strong-coupling expansion [32,33]. This has enabled
Hagen Kleinert to set up an algorithm [29] for deriving uniformly convergent
approximations to functions of which one knows a few initial Taylor coeffi-
cients and an important scaling property: the functions approach a constant
value with a given inverse power of the variable. The renormalized coupling
constant ¢ and the critical exponents of a ¢*-theory have precisely this prop-
erty as a function of the bare coupling constant gg. In D = 4 — ¢ dimensions
the approach is parameterized as follows [26]

const

w/e
B

*

9(98) = 9" — - (12)
where g* is the infrared-stable fixed point, and w is called the critical exponent
of the approach to scaling [compare Egs. (8) and (11)]. This exponent is
universal, governing the approach to scaling of every function F(g),

Flg8) = Flalgs) = F(g") + F'(g") x O = pr 4 0 (13
gB 9B

Strong-coupling theory is designed to calculate f* and w. Let f(gg) be a
function with this behavior and suppose that we know its first L+ 1 expansion
terms,

frlgn) = aigh. (14)
1=0

More specifically than in Eq. (12), we assume that f(gg) approaches its con-
stant strong-coupling limit f* in the form of an inverse power series

M
fu(gs) = Z b (95", (15)
m=0

with a finite radius of convergence [34]. Then the Lth approximation to the
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value f* is obtained from the strong-coupling formula [17,26,27]

fi =opt [Z alvlgB] . (16)

98 |i1=o

The quantities

EL l( ql/2> (—1)* (17)

k=

are simply binomial expansions of (1 — 1)"11/ 2 up to the order L —I. The
expression in brackets in Eq. (16) has to be optimized in the variational
parameter gg. The optimum is the smoothest among all real extrema. If
there are no real extrema, the turning points serve the same purpose.

3.1 Application to Renormalization Constants and Critical Exponents

Going back to Egs. (1) and (2) we now set the scale parameter p equal to
the physical mass m and consider all quantities as functions of gg = Ag/m®.
Now, instead of u, we let m% go to zero like 7 = constx(T" — T.) as the
temperature T" approaches the critical temperature T, and assume that also
m? goes to zero, and thus ¢gg to infinity. The latter assumption turns out to
be self-consistent. Assuming the theory to scale as suggested by experiments,
we now determine the value of the renormalized coupling constant g in the
strong-coupling limit gg — o0, and also of the exponent w, assuming the
behavior (12). First we apply formula (16) to the logarithmic derivative
s(gp) of the function g(gp):

s(98) = 989 (98)/9(9B) (18)

Setting s7 = 0 determines the approximation wy, to w.
The other critical exponents are found as follows. If we assume that the
ratios m?/m% and ¢?/¢% have a limiting power-law behavior for small m

2 2
m* -
—5 X an"‘/E o m'm, —5 g%/s xm™ (19)
B B

the powers 7),, and 1 can be calculated from the strong-coupling limits of the
logarithmic derivatives

m?> d ¢2
log—-, n(gs)=

_ 20
“dloggs °m% € Tloggp 28 2 (20)

N (9B) =—
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When approaching the second-order phase transition, where the bare mass

2 vanishes with a different

m?% vanishes like 7 = (T —T.), the physical mass m
power of 7. This power is obtained from the first equation in (19), which
shows that m oc 71/(2=7m)  In experiments one observes that the correlation
length of fluctuations £ = 1/m increases near T, like 77%. A comparison with
the previous equation shows that the critical exponent v is equal to 1/(2—,).
Similarly we see from the second equation in (19) that the scaling dimension
D/2 — 1 of the free field ¢p for T — T, is changed in the strong-coupling
limit to D/2 — 1 + n/2, the number 1 being the anomalous dimension of the
field. This implies a change in the large-distance behavior of the correlation
functions (¢(x)$(0)) at T. from the free-field behavior r=P+2 to r=P+2-1,
The results from the renormalization group are recovered from assumption
(19). Comparison with Eq. (11) shows that 7, = 2v,,, whereas 7 is the same
as above.

Let us mention that this procedure leads to resummed expressions which
have the same e-expansions as those found by renormalization group tech-
niques.

3.2 Five-Loop Results

In a first step, we determine the parameter w such that the logarithmic deriva-
tive of ¢g(¢gp) approaches zero for gg — oo. We therefore insert the coeffi-
cients of the power series of s(gg) from Eq. (18) into Eq. (16) and determine
q=2/wfor L =2,3,4,5, such that sj = 0. The resulting e-expansion for the
approach-to-scaling parameter w reproduces the well-known e-expansion [15]
up to the corresponding order. In Fig. 1a), the approximations wy, are plot-
ted against the number of loops L for ¢ = 1 and N = 3. Apparently, the
five-loop results are still some distance away from a constant L — oo-limit.
The slow approach to the limit calls for a suitable extrapolation method. The
convergence behavior in the limit L — oo was determined [26] to be of the
general form

fH(L) = f* + const x el (21)

We plot the approximations sy, for a given w near the expected critical expo-
nent against L, and fit the points by the theoretical curve (21) to determine
the limit s*. Then w is varied, and the plots are repeated until s* is zero. The
resulting w is the desired critical exponent, and the associated plot is shown in
Fig. 1b). Since the optimal variational parameter g comes from minima and
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Figure 1. a) Critical exponent w of approach to scaling calculated from s} = 0, plotted
against the order of approximation L for N = 3. b) Extrapolation of the solutions of the
equation s7 = 0 to L — oo with the help of Eq. (21). The value of w for which s7 — 0
for L — oo determines w = 2/q. The best extrapolating function is s, = —6.8 X 1077 +

156.916¢ 584 L0299% ¢) Determination of the critical exponent v plotted as a function of

L. The extrapolating function is vz, = 0.7081 — 4.0104e—3-6012 L0'2092, the horizontal line
indicates the value of voo.

turning points for even and odd approximants in alternate order, the points
are best fitted by two different curves. The resulting w-values are listed in
Table 1. They are used to derive the strong-coupling limits for the exponents
v, v and 7. For the calculation of the critical exponent v, we find the five-loop
expansion for v(gp) using the relation v(gg) = 1/[2 — nm(gs)]. From this
we calculate the strong-coupling approximations vy for L = 2,3,4,5. After
extrapolating these to infinite L, we obtain the numbers listed for different
universality classes O(IN) in Table 1. The corresponding extrapolation fits are
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Table 1. Critical exponents of five-loop strong-coupling theory and comparison with the
results from Borel-type resummation (GZ) [33], and from variational perturbation the-
ory in D = 3 dimensions [27]. The parentheses behind each number show the five-loop
approximation to see the extrapolation distance.

VPT, D =4—¢ | Borel-Res. (GZ) || VPT 3D
Weo (ws)
N =0 |0.80345(0.7448) 0.828 £ 0.023 0.810
N =1 0.7998(0.7485) 0.814 £+ 0.018 0.805
N =2 | 0.7948(0.7530) 0.802 + 0.018 0.800
N =3 | 0.7908(0.7580) 0.794 £ 0.018 0.797
Voo (v5) (L)
N =0 0.5874(0.5809) 0.5875 £ 0.0018 0.5883
N=1 0.6292(0.6171) 0.6293 £ 0.0026 0.6305
N =2 0.6697(0.6509) 0.6685 £ 0.0040 0.6710
N =3 0.7081(0.6821) 0.7050 £ 0.0055 0.7075
Moo (175) (1)
N=0 0.0316(0.0234) 0.0300 £ 0.0060 || 0.03215
N =1 0.0373(0.0308) 0.0360 £ 0.0060 || 0.03370
N =2 0.0396(0.0365) 0.0385 £ 0.0065 || 0.03480
N =3 0.0367(0.0409) 0.0380 £ 0.0060 || 0.03447
oo (75)

N=0 1.1576(1.1503) 1.1575 + 0.0050 1.616
N=1 1.2349(1.2194) 1.2360 4 0.0040 1.241
N =2 | 1.31045(1.2846) | 1.3120 £ 0.0085 1.318
N =3 1.3830(1.3452) 1.3830 £ 0.0135 1.390

plotted in Fig. 1c). Similarly, estimations for the exponents 1 and + can be
obtained [19]. In Table 1 the resulting values are compared to those found by
Borel resummation in D = 4 — ¢ dimensions and by the same strong-coupling
approach in D = 3 dimensions.

4 Conclusion

Instead of expressing the renormalization group functions in the renormalized
coupling constant gg, we can reexpand in the bare coupling constant g. This
allows applying strong-coupling theory to the five-loop perturbation expan-
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sions of O(N)-symmetric ¢*-theories in 4 — ¢ dimensions. Satisfactory values
for all critical exponents are obtained.
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